

Technical Guide
Version 2016.3

© 2016 Exago Inc. All rights reserved.

Exago is a registered trademark of Exago, Inc. Windows is a registered trademark of Microsoft

Corporation in the United States and other countries. All other company and product names

mentioned may be trademarks of the respective companies with which they are associated.

Exago Inc. makes a sincere effort to ensure the accuracy of the material. The content of this

manual is furnished for informational use only, is subject to change without notice, and should not

be construed as a commitment by Exago Inc. Exago Inc. assumes no responsibility or liability for

any errors or inaccuracies that may appear in this document.

Except as permitted by licensing agreement, no part of this publication may be reproduced, stored

in a retrieval system, or transmitted, in any form or by any means, without the prior written

permission of Exago Inc.

Exago Inc. strives to provide our customers with high-quality printed and online documentation. If

you have any comments or suggestions on how we can improve our documentation for your use,

please contact us at: webmaster@exagoinc.com.

mailto:webmaster@exagoinc.com

Exago Technical Guide

2 Exago Inc.

Exago, Inc.

Two Enterprise Drive

Shelton, CT 06484 USA

Phone 203.225.0876

Fax 203.926.9505

Email exagoinc.com

Support & development

Phone 845.481.5221

Fax 845.255.0209

Email webmaster@exagoinc.com

Web exagosupport.com

Blog exagoinc.com/blog.html

http://www.exagoinc.com/
file:///C:/Users/Alex/Dropbox/Work/Exago/2016.3/webmaster@exagoinc.com
http://www.exagosupport.com/
http://www.exagoinc.com/blog.html

Exago Technical Guide

3 Exago Inc.

Table of Contents

Table of Contents ... 3

Technical Overview .. 10

Architecture ... 11

Installation ... 13

System Requirements ... 14

Web Application Installation ... 15

Installing the Web Application ... 15

Configuring Exago ... 17

Web Service Installation .. 19

Installing the Web Services API .. 19

Configuring Web Services API .. 21

Scheduler Service Installation .. 22

Installing the Scheduler Service .. 22

Configuring Scheduler Services ... 24

Starting and Changing Scheduler Services .. 26

Installing Exago on Linux .. 27

Silent Installation with Parameters ... 27

Guided Installation .. 27

Installation Manifest .. 29

Installing Optional Features ... 30

Legacy Maps (GeoCharts) ... 30

Google Maps .. 30

Application Themes ... 31

Administration Console .. 32

About.. 33

Important Security Notes ... 33

Creating Additional Configuration Files.. 33

Accessing the Administration Console .. 35

Navigation ... 36

Main Menu .. 36

Tabs .. 37

Supported Browsers ... 37

Data .. 38

Data Sources .. 38

Data Source Drivers .. 40

Web Services and .NET Assemblies .. 40

Excel and XML Files ... 42

OLAP and MDX Queries ... 44

ODBC Drivers ... 44

Parameters ... 45

Data Objects ... 46

Exago Technical Guide

4 Exago Inc.

Stored Procedures .. 48

Table Value Functions ... 49

Custom SQL Objects ... 49

Column Metadata ... 51

Custom Columns ... 52

Retrieving Data Object Schemas ... 53

Data Object Ids .. 53

Reading Images from a Database ... 55

Joins ... 56

Modifying Joins .. 57

Note About Cross Source Joins ... 57

Automatic Database Discovery .. 57

General .. 59

Main Settings .. 59

Culture Settings.. 60

Features/UI Settings .. 61

Available Report Types ... 61

ExpressView Settings .. 62

Express Report Designer Settings .. 62

Standard Report Designer Settings .. 62

Dashboard Report Designer Settings ... 65

Common Settings .. 65

Programmable Object Settings.. 67

Filter Settings .. 68

Database Settings .. 69

Type-Specific Database Settings ... 70

Scheduler Settings ... 70

User Settings .. 73

Other ... 74

Hidden Flags ... 75

Roles ... 76

About Roles .. 76

Creating Roles .. 77

Main Settings .. 77

General Settings ... 77

Folder Access .. 79

Object Access ... 80

Filters Access .. 80

Extensions ... 81

Functions .. 81

Creating Functions .. 82

Exago Session Info .. 83

Calling Exago Functions ... 85

Example .. 85

Exago Technical Guide

5 Exago Inc.

Filter Functions... 86

Creating Filter Functions .. 86

Example .. 87

Server Events .. 88

Event Handlers .. 88

Custom Code ... 90

.Net Assemblies ... 90

Setting Event Handlers on Specific Reports .. 90

Displaying User Messages from Server Events .. 92

List of Events .. 93

Action Events .. 109

Creating Event Handlers .. 110

Adding Local Events to a Report Item .. 112

Writing Action Events .. 113

Description of Global Events ... 117

List of ClientInfo Elements ... 120

List of UI Elements .. 124

Custom Options ... 125

Creating Options ... 125

Setting Options .. 126

Accessing Options ... 127

Integration .. 128

Styling... 129

Exago Control Properties.. 129

Changing CSS ... 129

Changing Icon Images ... 131

Hovering Images ... 132

Image Ids .. 132

Styling the Administration Console... 132

Multi-Language Support ... 133

Translating Exago ... 134

Modifying Select Language Elements ... 134

Text of Prompting Filters and Parameters on Dashboards 135

Customizing Getting Started Content ... 136

Creating Additional Custom Tabs .. 136

Available JavaScript Functions ... 137

Themes: Charts, Crosstabs, Express Reports & Maps .. 140

Chart Themes ... 140

Crosstab Themes ... 140

Express Report Themes .. 141

Map Themes ... 142

Using Exago within a WinForm .. 143

Cloud Environment Integration ... 144

Cloud Support .. 144

Exago Technical Guide

6 Exago Inc.

Configuration File Storage ... 144

Report Storage ... 145

Temporary Files Storage ... 145

.Net Assembly/Web Service Cloud Support ... 146

Example .. 146

Multi-Tenant Environment Integration .. 148

Column Based Tenancy .. 148

Schema Based Tenancy .. 149

Database Based Tenancy ... 149

Custom SQL Based Tenancy .. 150

Manual Application Installation ... 151

Exago and Exago Web Service Api Installer Integration .. 151

Summary .. 151

Directory Structure ... 151

File Installation... 152

IIS Configuration .. 152

Exago Scheduler Installer Integration .. 155

Summary .. 155

File Installation... 156

Directory Security Settings ... 156

Windows Service Creation ... 157

Optional Setup Information ... 158

Creating a Registry .. 158

Values in a Registry ... 159

Example of Registry .. 159

Extensibility .. 161

Load Balancing Execution ... 162

Multiple Data Models .. 163

Example .. 164

External Interface ... 167

Report Execution Start Event ... 167

User Preference Management .. 167

Handling Time Zones .. 168

Email List for Report Scheduling ... 168

Custom Scheduler Recipient Window .. 169

Scheduler Repository Notification .. 170

Custom Scheduler Recipient Window ... 171

Custom Filter Execution Window ... 172

Available JavaScript Functions ... 172

Example Custom Filter Execution Control ... 174

Example Custom Filter Execution WebPage .. 175

Saving Scheduled Reports to External Repository .. 176

Custom Context Sensitive Help .. 177

Report Templates Setup .. 179

Exago Technical Guide

7 Exago Inc.

PDF Templates ... 179

Check Boxes in PDF Templates. .. 179

RTF Templates .. 179

Dynamic content with RTF Templates .. 180

Excel Templates ... 180

Referencing Data in Excel Templates ... 180

Report and Folder Storage/Management .. 182

List of Methods .. 182

Accessing SessionInfo in Folder Management .. 186

Application Logging ... 188

Logging Defaults .. 188

Custom Logging ... 189

Responsive Dashboards .. 190

Scheduler Queue .. 192

Exago API .. 194

.NET API ... 195

Quick List of Name Spaces and Classes ... 195

WebReports.Api ... 197

Api Class ... 197

WebReports.Api.Data .. 199

DataSource Class ... 199

DataSourceCollection Class ... 199

WebReports.Api.Common .. 200

ReportObjectFactory Class .. 200

ReportObject Class ... 201

WebReports.Api.Composite.Dashboards ... 202

DashboardReport Class ... 202

ReportItem Class ... 202

WebReports.Api.Composite.Chained .. 203

ChainedReport Class .. 203

ReportItem Class ... 203

WebReports.Api.Reports .. 203

Filter Class .. 203

Report Class ... 204

ReportFilterCollection Class... 205

ReportSortCollection Class .. 205

Sort Class .. 205

WebReports.Api.Roles ... 207

DataObject Class ... 207

DataObjectCollection Class .. 207

DataObjectRow Class .. 207

DataObjectRowCollection Class .. 208

Folder Class .. 208

FolderCollection Class .. 208

Exago Technical Guide

8 Exago Inc.

General Class ... 209

Parameter Class .. 210

ParameterCollection Class ... 210

Role Class ... 210

RoleCollection Class .. 211

Security Class ... 211

WebReports.Api.Scheduler .. 212

ReportScheduler Class ... 212

SchedulerEmailInfo Class ... 221

Other Notes .. 222

Using MySQL through the .NET Api .. 222

Examples ... 222

SOAP Web Service API ... 226

Quick List of Web Service Methods ... 226

Full Description of Web Service Methods .. 227

Main Methods .. 227

Data Methods ... 230

Folder Methods .. 232

Parameter Methods .. 233

ReportObject Methods ... 234

Dashboard Methods ... 234

Report Methods ... 235

Role Methods ... 237

Scheduler Methods ... 240

Examples C# ... 248

Examples PHP .. 250

REST Web Service API .. 252

Authorization .. 252

List of Resources .. 254

Sessions .. 255

DataSources ... 256

Joins ... 257

Roles .. 259

Settings ... 263

Parameters ... 264

Entities .. 265

Functions .. 268

ServerEvents .. 269

Folders .. 271

Reports ... 272

Data Definitions ... 273

Return Codes .. 284

Error Data ... 284

Error Codes ... 285

Exago Technical Guide

9 Exago Inc.

Troubleshooting ... 286

See Full Error Details ... 287

Read the Log File .. 288

Scheduler Log .. 288

Web Service Log .. 289

Check the Version, Connections & Permissions .. 290

Verifying Folder Permissions ... 290

Verifying Administration Settings ... 290

Verifying Versions .. 291

Submitting a Debug Package ... 293

Manually Creating a Debug Package .. 293

Exago Technical Guide

10 Exago Inc.

Technical Overview

Exago is an ASP .NET web application that utilizes C#, JavaScript and A JAX. Exago consists of four

main components.

1. .NET API: Controls all server-side processing and the user interface. The .NET API can also

be called by your host application to integrate Exago. For more information see .NET API

and Integration.

2. User Interface: ASP.NET pages that are converted to HTML at runtime. To access the UI see

Accessing the Administration Console.

3. REST and Web Service API: Gives non .NET host applications access for integration

purposes. For more information see REST API, Web Services API, and Integration.

4. Report Scheduler Service: Windows service used that handles processing scheduled

reports. The Scheduler can also be used for load balancing. For more information see

Scheduler Installation and Load Balancing Execution.

Exago Technical Guide

11 Exago Inc.

Architecture

The diagram below details the architecture of Exago:

Exago Technical Guide

12 Exago Inc.

Host Application

The Host Application uses the REST, Web Service, or .NET API to set user permissions and embed

the User Interface.

Exago

Exago uses the .NET API to process reports and support the User Interface. High performance

ADO.NET drivers are used to for database connectivity.

Report Templates

Report templates are stored as XML in the file system by default. Alternatively the Host Application

can use a Web Service to manage report template storage.

Data Sources

Exago can retrieve data from tables, views, stored procedures, Web Services, .NET Assemblies or

custom SQL. Data can be joined across data sources to provide additional flexibility.

Extensibility

Exago provides several features that allow the Host Application to dynamically extend its

capabilities.

Exago Technical Guide

13 Exago Inc.

Installation

The following chapter details the system requirements and walks through the installation of

Exago.

NOTE. Please be sure to disable your antivirus software (and check to make sure it's

stopped for services, and, not running in your task list) before installing. Antivirus software

may lock up the installation or cause it to fail.

To begin download the installer from our support site. Make sure your antivirus software is

disabled and run the installer as Administrator. There are three components of Exago that can be

installed, but only the Web Application is required.

Web Application

This component consists of the User Interface and the .NET assembly WebReportsApi.dll which

can be used directly by .NET host applications. See Web Application Installation.

Web Service API (Optional)

This component provides a platform independent means of communication with Exago at

runtime. As well as being platform independent the Web Service API provides cross domain

accessibility and application isolation. See Web Service Installation.

Scheduler Service (Optional)

This component uses .NET Remoting to communicate with Exago. This service can be used to load

balance report processing. Additionally, it can be used to schedule and email reports. The Exago

Scheduling Service can be installed on any server that can communicate with the Exago web

application via an HTTP URL/Port. See Scheduler Service Installation.

http://www.exagosupport.com/

Exago Technical Guide

14 Exago Inc.

System Requirements

The following components are required to install and run Exago:

Windows:

Windows Server 2003+ / Windows XP / Windows Vista / Windows 7 / 8 / 10

Internet Information Services (IIS) v5.1+

Microsoft .NET Framework version 4.5+

NOTE. IIS should be installed prior to the .NET Framework. If IIS is installed after the .NET

Framework, then the .NET Framework must be reinstalled or repaired via Add/Remove

Programs >.NET Framework 4.0 > Change/Remove, then choose the Repair option.

Linux:

Red Hat Enterprise Linux 7+ / SLES 12+ / CentOS 7+ / Fedora 21+ / Debian 8+ / Ubuntu 14+

Apache HTTP Server 2.4+

Mono 3.12; 4.0 - 4.2.4 are recommended. 4.4+ are not supported.

mod-mono 3.2.8+

mono-basic (optional VB.NET support)

any basic font or font package

SELinux is not supported.

Data Sources (one or more):

Microsoft SQL Server 2000 or greater

Oracle 9i or greater

MySQL 5.0 or greater

PostgreSQL 7.1 or greater

Web Services

.NET Assemblies

Data Adapters (one or more):

Oracle – ODAC11 from oracle.com

MySQL – Connector/Net from mysql.com

PostgreSQL – dotConnect for PostgreSQL Express from devart.com

Exago Technical Guide

15 Exago Inc.

Web Application Installation

Installing the Web Application

For instructions on installing Exago on Linux, see Installing Exago on Linux.

Use the following steps to install the web application on Windows:

 Download the installation wizard from our support site.

 Make sure your antivirus software is disabled and run the installation Wizard as

Administrator.

 Click the Web Application button.

 Click Next to bring up the 'Select Installation Location' menu.

http://www.exagosupport.com/

Exago Technical Guide

16 Exago Inc.

 In this menu specify the web site, virtual directory and physical directory where you want

Exago installed. Click Next.

 Confirm your location selections by clicking Next.

Exago Technical Guide

17 Exago Inc.

 Monitor the installation and click Finish when it is complete.

Configuring Exago

After the installation is complete, configure Exago using the following steps:

 Create a folder for storing reports. This folder needs to be accessible from the web server,

but is not required to be on the web server. It can reside on any server accessible by Exago

via direct UNC or virtual path created in IIS.

NOTE. Do not create the reports folder within the Exago application structure. Doing so will cause

ASP.NET sessions to die when report folders are created or deleted within the Exago application.

 Give the Report Folder read and write privileges for the ASP.NET user.

 Specify the location of the Report Folder in the 'Report Path' setting of the Administration

Console. See Accessing the Administration Console and Main Settings of the General

Section.

Below are three examples of report paths to the folder \ReportsRepository:

1. C:\Program Files\Exago\ ReportsRepository – Folder is on a file system.

2. \\Server Name\ReportsRepository – Physical folder is on a separate server.

3. /ReportsRepository – Assumes an IIS virtual directory called 'ReportsRepository' has

been created to point to the folder.

Exago Technical Guide

18 Exago Inc.

 Verify that the user running under the Exago instance within IIS has read/write privileges on

the folders below:

o The folder specified in the Report Path of the Main settings of Administration

Console.

o The Config sub-folder of the Exago installation.

o The folder specified in the Temp Path. By default this is a sub-folder of Exago called

'Temp'. However this can be changed in the Main Settings of the Administration

Console.

Exago Technical Guide

19 Exago Inc.

Web Service Installation

Installing the Web Services API

For instructions on installing the Web Services API on Linux, see Installing Exago on Linux.

Use the following steps to install the Web Service API on Windows:

 Download the installation wizard from our support site.

 Make sure your antivirus software is disabled and run the installation wizard as an

Administrator.

 Click the Web Service button.

 Click Next to bring up the 'Select Installation Location' menu.

http://www.exagosupport.com/

Exago Technical Guide

20 Exago Inc.

 In this menu specify the web site, virtual directory and physical directory where you want

Exago installed. Click Next.

NOTE. The Web Service API must be installed on the same server and web site as

the Exago Application.

 Confirm your location selections by clicking Next.

Exago Technical Guide

21 Exago Inc.

 Monitor the installation and click Finish when it is complete.

Configuring Web Services API

To configure the Web Service API edit the file 'WebReportsApi.xml' which is located in the Config

sub-folder where the Web Service API is installed. The location of the Config sub-folder is

determined when the Web Service API is installed. Set the following items:

 apppath – IIS virtual directory of the Exago web application. For example, entering '/Exago'

will cause the Web Service API to look for the Exago virtual directory.

 throwexceptiononerror – set to true if you want to catch exceptions in your application

thrown by Exago.

 writelog – set to true to write a log file (WebReportsApiLog.txt in the Config sub-folder) of

any exceptions thrown. Write permissions for the Config sub-folder must be given to the

ASP.NET user.

Exago Technical Guide

22 Exago Inc.

Scheduler Service Installation

The version and build number of the Scheduler Service must match that of the Web Application.

You may have different installations of Exago with different versions/builds on separate servers.

The Scheduler Service installation wizard allows you to install multiple Schedulers to maintain

corresponding version/builds with the Web Application.

Installing the Scheduler Service

For instructions on installing the Scheduler Service on Linux, see Installing Exago on Linux.

Use the following steps to install the Scheduler Service on Windows:

 Download the installation wizard from our support site.

 Make sure your antivirus is software disabled and run the installation wizard as an

Administrator.

 Click the Scheduler button.

 Click Next to bring up the 'Select Installation Location' menu.

http://www.exagosupport.com/

Exago Technical Guide

23 Exago Inc.

 Specify if you want to create a new service or if you want to update an existing one.

 To create a new service set a name and location.

 Select to who the Exago Scheduler Windows Service will be installed. By default, “Everyone”

is selected. Click Next.

 Confirm your location selections by clicking Next

Exago Technical Guide

24 Exago Inc.

 Monitor the installation and click Finish when it is complete.

Configuring Scheduler Services

To configure the Scheduler Service API, edit the file 'WebReportsScheduler.xml' in the folder where

the scheduler service was installed.

Set the following items:

NOTE. Settings that can be true or false are case sensitive and should use lower case. Ex.

encrypt_schedule_files will cause an error for True.

 smtp_server – The smtp server used to email reports.

 smtp_enable_ssl – Set to 'true' to enable SSL.

 smtp_user_id – The user id that is used to login into the smtp server.

 smtp_password – The password id that is used to login into the smtp server.

 smtp_from – The 'From' email address used in the report emails.

 smtp_from_name – The 'From' name used in the report emails.

 error_report_to – The email address to send error reports to.

 channel_type – tcp or http – must match the setting of the Remote Host in the Scheduler

Settings of the Administration Console.

 port – The port number of the .NET remoting object used to communicate with Exago; this

should also be entered in the Scheduler Settings of the Administration Console.

Exago Technical Guide

25 Exago Inc.

 working_directory – The directory where scheduled documents and temporary files are

written. The default setting '[INSTALLDIR] working' will create a 'working' folder in the

location the scheduler was installed.

 default_job_timeout – The maximum number of seconds any report execution is allowed.

If an execution reaches a maximum number of seconds an email will be sent to the address

specified under 'error_report_to.'

 report_path – A path to specify where to save reports when 'Email Scheduled Reports' is

set to False in the Scheduler Settings. For more details see Saving Scheduled Reports to

External Repository.

 sleep_time - The time interval (in seconds) used for polling for scheduled reports to

execute.

 simultaneous_job_max – The maximum number of report executions that can occur

simultaneously. This setting is based on the resources available of the server where the

scheduler is installed.

 logging – Set to 'on' in order to log events to ExagoScheduler.log in the working directory.

 flush_time – The number of hours that a completed, deleted, or aborted job will be saved

for viewing in the schedule reports manager. Set to 0 to flush jobs immediately upon

completion. Set to -1 to disable automatic flushing.

 sync_flush_time – The flush time for synchronous (non-scheduled remote) jobs.

 email_addendum – Text that will be added at the end of email body. Use '\n' to insert lines.

 external_interface – This is optional and overrides the value set in the Administration

Console. The advantage of setting the value here is that the existing scheduled reports that

have a previous external interface value will take the new value. For more details see

External Interface.

 abend_upon_report_error – This controls how the scheduling service should proceed if an

error occurs while loading or executing a report. The default 'true' will stop the running the

schedule and set the status to Abended. Set to False to continue running the schedule and

maintain the status as Ready.

 ip_address – Binding IP address for the Scheduling Service. Most commongly used when

the server has multiple Network Interface Cards (NICs)

 encrypt_schedule_files – Set to 'true' to encrypt the files created by the scheduling service.

All existing schedules will be encrypted the next time the service is started.

 max_temp_file_age – The number of minutes between each “flush” of the temp files

created by the scheduling service. The default is 1440 minutes (24 hours).

Exago Technical Guide

26 Exago Inc.

NOTE. Making this value too low may result in errors as temp files are used during report

execution and for Interactive Report Viewer capabilities when using remote execution. It is

not recommended setting this value any lower than 60 minutes.

 email_retry_time – In the case an email fails to send, the number of minutes to wait

before retrying to send the email. After five failed attempts the schedule will set itself to

Aborted. The default is 10 minutes.

Starting and Changing Scheduler Services

The Windows Service will have to be manually started for new

installations of the Scheduler. Starting the service will create the

working directory as set in 'working_directory' described above.

To start the scheduler open Windows Services. Double click on

'ExagoScheduler' and the Properties menu will appear. Click Start.

If any changes are made to the configuration (detailed above) the

service must be stopped and restarted for the changes to take effect.

Exago Technical Guide

27 Exago Inc.

Installing Exago on Linux

The Exago Linux Setup Application can be used to install the Web Application, Web Service API,

and Scheduler Service. The application can also install a compatible version of Mono. Use the

following steps to install Exago on Linux.

NOTE. Exago relies on apache2-mod_mono which is not compatible with SELinux. Either disable

SELinux or create a custom policy for mod_mono in order to use Exago.

Download the Linux Setup Application from our support site. Decompress the download into a

temporary location. Run installExago.sh as root. The install script can be run as a guided install

or silently with parameters.

Silent Installation with Parameters

Run installExago.sh -h to see the available options:

Usage: [-d <install path>] [-m <TRUE|FALSE>] [-i <WEBAPP|WEBAPI|SCHEDULER>] [-y] [-h]

-d <install path> Set the install location to use
-m <'TRUE'|'FALSE'> Set whether or not to install Mono
-i <WEBAPP|WEBAPI|SCHEDULER> Set the component to install
-y Do not prompt for final verification before installing
-h Show the help screen

Guided Installation

The installer will attempt to detect certain system information such as OS and Apache versions. If

it cannot detect something it will prompt for the information.

Specify an install path when prompted. If you do not specify a path the installer will default to

'/opt/Exago'.

You may elect to install Mono when prompted. If you already have Mono installed this option will

have no effect. You can also run installMono.sh at a later time.

You will be prompted to select which components to install. Select up to three components by

typing their respective numbers delineated by a space. If you are not sure whether you will need a

certain component, you can install it at a later time by running installExago.sh again.

1. Web Application

2. Web Service API

3. Scheduler

NOTE. The Scheduler will not run as a Linux service by default. It must be added to your init

script.

http://www.exagosupport.com/

Exago Technical Guide

28 Exago Inc.

If you elect to install the Web Service API and/or the Scheduler, the installer will create the

subdirectories 'WebServiceApi' and/or 'Scheduler' in your previously specified install path.

The installer will detect your Apache installation and generate a default configuration file called

exago.conf in your Apache site path. You can also run configApache.sh at a later time.

The installer will automatically set read/write permissions for the current Apache user on the

install paths, Config directories and Temp directories.

You must manually create and set the permissions for a report directory. For instructions on how

to configure a report directory see Configuring Exago.

For instructions on configuring the Web Service API, see Configuring Web Services API.

For instructions on configuring the Scheduler, see Configuring Scheduler Services.

Exago Technical Guide

29 Exago Inc.

Installation Manifest

When installing the Exago Host Application, the installer will create a new manifest file on your

system called 'ExagoMainfest.txt'. It is very important that you do not delete this file.

Some features in the Exago application enable you to create your own files located in the Exago'

installation folder outside of the Config folder. The manifest file ensures that future installs of

Exago do not wipe out the local files that you have created.

During subsequent upgrades to the Host Application, the installer will read the manifest file to

determine which files to over-write. If the manifest file exists but the installer cannot access it, the

installation will fail and give notification.

If, however, the manifest file does not exist, any files in the Exago tree outside of the Config

folder will be deleted. Additionally, any custom .aspx pages or image files that live outside the

Config folder (such as per-user styling) will be erased.

Exago Technical Guide

30 Exago Inc.

Installing Optional Features

Several features require some additional configuration before they can be used. This may entail

downloading some additional files from our support site.

Legacy Maps (GeoCharts)

The GeoCharts feature which was present since v2013.2 has an additional requirement for use if

you are enabling it for the first time, or if you are implementing your application under a new

domain name.

Our mapping features use the Google Maps API. Historically, this was a free solution. However, in

June 2016, Google began to require paid licenses for commercial usage.

If you had GeoCharts enabled prior to June 2016, and you have not since changed the domain

name of your app, this section does not affect you because you have been grandfathered in.

If you are a new user in need of mapping, we strongly suggest implementing the new Google

Maps feature instead of GeoCharts.

If you intend to implement GeoCharts under a new domain name, then you must acquire a Google

Maps API License in order to use this feature. See this page for details. Your license must include

the Google Maps Javascript API.

To install your license file, place your license key in the following setting in the Admin Console:

(Feature/UI Settings Geochart Map Key) <geochartmapkey>

Google Maps

There are additional steps needed in order to enable the Google Maps Wizard.

First, you need to download and install a polygon file. This is a free download located on our

support site. The file is named 'MapPolygonDataBase.sqlite'. Once you've obtained this file, place

it in the following location in your install path (if the folder does not exist, create it):

"Application root"\Mapcache

The new wizard uses the Google Maps API, which requires a paid license for commercial use. You

must acquire a Google Maps API License in order to enable this feature. See this page for details.

Your license must include the Google Maps Javascript API and the Google Maps Geocoding API.

To install your license file, first toggle the following setting to True:

(Feature/UI Settings Show Google Maps Wizard) <showgooglemapwizard>

Then place your license key in the following setting in the Admin Console:

(Feature/UI Settings Google Map Key) <googlemapkey>

http://support.exagoinc.com/hc/en-us/categories/202053837
https://developers.google.com/maps/
https://developers.google.com/maps/pricing-and-plans/
http://support.exagoinc.com/hc/en-us/categories/202053837
https://developers.google.com/maps/
https://developers.google.com/maps/pricing-and-plans/

Exago Technical Guide

31 Exago Inc.

Application Themes

Application themes are customizations that change the look of the Exago UI. App themes are

applied for all users of the application. These are not included in the installer, and must instead be

downloaded from our support site. All app themes can be fully customized using CSS and image

editing. We will periodically introduce new ones over time.

App themes are provided as compressed folders. To add an app theme to Exago, uncompress the

folder into the following location in your install path:

"Application root"\ApplicationThemes

There should be separate folders for each app theme (the default is "Basic").

Then, use the Admin Console to select the app theme from the following dropdown:

(Feature/UI Settings Application Theme Selection) <csstheme>

http://support.exagoinc.com/hc/en-us/categories/202053837

Exago Technical Guide

32 Exago Inc.

Administration Console

The following chapter details how to configure data, set permissions and enable/disable features

through the Administration Console.

Exago Technical Guide

33 Exago Inc.

About

The Exago Administration Console serves as a user interface to set up and save administrative

preferences. Using the Administration Console you can:

 Establish how to connect to data. Determine what data should be exposed to users. See

Data.

 Modify global settings of Exago to enable/disable features. See General.

 Create and modify security Roles for individuals or groups of users. See Roles.

 Create and modify custom functions to make calculations on reports. See Functions.

 Create and modify custom code that is run when reports execute. See Server Events.

 Create and modify custom options that can be set on reports. See Custom Options.

The Administration Console creates three configuration files: an XML file called WebReports.xml, a

backup of the XML file called webreport.xml.backup, and an encrypted XML file called

WebReports.xml.enc. These files are created and saved in the Config folder where Exago was

installed.

Important Security Notes

 Each time you save the Administration Console settings a backup copy of WebReports.xml

is created. Store this xml copy in a secure place and delete the WebReports.xml and the

WebReports.xml.backup from the Config directory.

 Before deploying Exago into a production evnrionment be sure to set a value for the Temp

Path in Main Settings to a location that resides behind your server's firewall/security

system.

Creating Additional Configuration Files

As part of the integration of Exago you may want to create alternative configuration files in

addition to WebReports.xml. Additional configuration files can be utilized in two ways:

 If entering Exago directly, the configuration file to be used is specified in the custom

styling page.

 When entering through the Api the configuration file to be used is specified in the Api

constructor methods.

To create additional configuration files:

1. Navigate to the Administration Console in a browser.

2. Append '?configFn=NewConfigFile.xml' to the URL replacing NewConfigFile with the name

you want to give the configuration file.

Exago Technical Guide

34 Exago Inc.

3. Click in the URL bar and press enter.

Exago Technical Guide

35 Exago Inc.

Accessing the Administration Console

Once Exago is installed navigate your browser to http://'Your Server'/Exago/Admin.aspx. In the

Other Settings menu under the General Section you can set a login and password to restrict

future access to the Admin Console.

Exago Technical Guide

36 Exago Inc.

Navigation

The Administration Console consists of two sections. On the left is the Main Menu and on the right

are tabs that can contain menus to create and modify Data Sources, Data Objects, Parameters,

Roles, and other settings.

Main Menu

Through the main menu you can:

 Create Data Sources, Data Objects, Joins, Parameters, Roles and Custom Functions.

 Edit settings for - Data, Roles, Functions and General features.

 Delete Data Sources, Data Objects, Joins, Parameters, Roles and Functions.

Click the circles () to hide the main menu.

Exago Technical Guide

37 Exago Inc.

Tabs

The right section of Exago is made up of tabs containing the menus to create and modify

administrative settings.

To save the changes made in a tab click 'Ok' () or press 'Apply' ().

Tabs can be closed without saving by clicking the 'x' to the right of the tab name.

Tabs can also be rearranged by clicking and dragging them as desired.

Supported Browsers

The Administration console can be accessed by the following browsers:

 Firefox 3+

 Internet Explorer 8+

 Google Chrome

 Safari

NOTE. In Internet Explorer's Compatibility Mode some items may not display correctly.

Exago Technical Guide

38 Exago Inc.

Data

This chapter discusses how to determine which data should be made available to users to create

reports. Using Data Sources, Data Objects, Parameters and Joins you can create user friendly

names and control what data users may access.

All existing Data elements are listed in the Main Menu under Data. Whenever a data element is

added or modified it will be displayed in a Tab based on its type. For example, all Data Objects you

select to edit will appear in an Objects tab.

 To add a new element select the type (Sources, Object, Parameter or Join) in the Main Menu

under Data, then click the add button ().

 To edit an element either double click it or select the desired element and click the edit

button ().

 To delete an element select it and click the delete button ().

 To save changes click the Ok button () or press the 'Apply' button ().

Data Sources

Data sources establish the connection between Exago and a database or a web service. Although

typically only one database is used, Exago can join data from different sources into a single report.

Exago Technical Guide

39 Exago Inc.

NOTE. To utilize some types of Data Sources you may need to download and install the

appropriate driver. Please see Data Source Drivers for more information.

All existing Data Sources are listed in the Main Menu under Data. All the Sources you are adding

or editing will be displayed in a Tab entitled Data Sources.

 To add a new Data Source click 'Sources' in the Main Menu then click the add button ().

 To edit a Data Source either double click it or select the Data Source and click the edit

button().

 To delete a Data Source select it and click the delete button ().

 To save changes click the Ok button () or press the 'Apply' button ().

Each Data Source must have the following:

 Name – a name for the data source.

 Type – the type of source being used. Valid types include:

o mssql – Microsoft SQL Server.

o mysql – MySQL.

o oracle – Oracle.

o postgres – PostgreSQL.

o db2 – IBM db2.

o informix – IBM Informix.

o websvc – Web Service. For more information see Web Services.

o assembly - .NET Assembly dll. For more information see .NET Assemblies.

o file – XML or Excel file. For more information see Excel and XML Files.

o msolap – OLAP. For more information OLAP and MDX Queries.

o odbc – ODBC Driver. For more information see ODBC drivers.

 Schema/Owner Name (blank for default) – Provide a default database schema for the

data source.

NOTE. Only use this if you are using schema to provide Multi-Tenant security. For

more details see Multi-Tenant Environment Integration.

 Connection String – the method that is used to connect to the data source. Connection

strings vary by type:

o mssql, oracle, postgres, mysql and olap – Please refer to ConnectionStrings.com for

database connection strings.

Exago Technical Guide

40 Exago Inc.

o websvc – Can take up to four parameters but only requires url.

 url – The url of the web service.

 Authentication (optional) – Set to 'basic' to utilize basic authentication

through IIS. This will send the userid and password as clear text (unless https

is used).

 uid (optional) – User id is passed to the web service.

 pwd (optional) – Password is passed to the web service

o assembly – Requires two parameters.

 assembly – The full path of the assembly name.

 class – The class name in the assembly where the static methods will be

obtained.

o file – Requires the physical path to the excel or xml file and the file type. Ex.

File=C:\example.xls;Type=excel;

Click the green check mark to verify the connection succeeds ().

Data Source Drivers

Below is a lists of recommended ADO.NET drivers for each type of Data Source.

 SQL Server – No external ADO.NET driver needed

 Oracle – ODAC1120320_x64 or newer – Oracle ODAC Connector -

http://www.oracle.com/technetwork/database/windows/downloads/index-

090165.html

 MySQL/MariaDB – dcmysqlfree.exe – Devart Connector -

http://www.devart.com/dotconnect/mysql/download.html

 PostgreSQL – dcpostgresqlfree.exe – Devart Connector -

http://www.devart.com/dotconnect/postgresql/download.html

 DB2/Informix – ibm_data_server_driver_package_win64_v10.5.exe or newer – IBM Data

Server Driver Package –

https://www14.software.ibm.com/webapp/iwm/web/reg/download.do?source=swg-

idsdpds&lang=en_US&S_PKG=win_64&cp=UTF-8&dlmethod=http

Web Services and .NET Assemblies

Web Services and .NET Assemblies can be used as Data Sources. This is possible when the Web

Service and .NET Assemblies underlying methods are setup as Data Objects. An advantage of

doing this is being able to use a high-level language to manipulate the data being reported on at

run-time. The main disadvantage is not being able to take advantage of the database to perform

joins with other data objects; data from methods can still be joined, but the work to do this is done

within Exago. For more information see Note about Cross Source Joins.

http://www.oracle.com/technetwork/database/windows/downloads/index-090165.html
http://www.oracle.com/technetwork/database/windows/downloads/index-090165.html
http://www.devart.com/dotconnect/mysql/download.html
http://www.devart.com/dotconnect/postgresql/download.html
https://www14.software.ibm.com/webapp/iwm/web/reg/download.do?source=swg-idsdpds&lang=en_US&S_PKG=win_64&cp=UTF-8&dlmethod=http
https://www14.software.ibm.com/webapp/iwm/web/reg/download.do?source=swg-idsdpds&lang=en_US&S_PKG=win_64&cp=UTF-8&dlmethod=http

Exago Technical Guide

41 Exago Inc.

Parameters are passed from Exago to Web Services and .NET Assemblies. Three types of

parameters can be passed but only Call Type is required.

 Call Type (required) – Integer that specifies what Exago needs at the time of the call. There

are three possible values. You may specify the name of this parameter in the

Programmable Object Settings of the General Section.

o 0 : Schema – returns a DataSet with no rows.

o 1 : Data – returns a full DataSet.

o 2 : Filter Dropdown Values – returns data for the filter dropdown list. The Data

Field being requested is passed in the column parameter. The filter type is passed in

the filter parameter (see below).

 Column, Filter and Sort Strings (optional) – To optimize performance Exago can pass

user-specified sorts and filters to the Web Service or .NET Assembly. This process reduces

the amount of data sent to Exago. If these parameters are not used, all of the data will be

sent to Exago to sort and filter. Column, filter and sort strings are sent as standard SQL.

You may specify the name of these parameters in the Programmable Object Settings of

the General Section.

 Custom Parameter Values (optional) – Additional parameters can be specified to be sent

to individual methods in the Data Object Menu.

IMPORTANT. When a Web Service or .NET Assembly is first accessed it is compiled and kept in an

internal cache within Exago. This is done in order to increase performance. Due to this internal

cache, Exago will not be aware of any changes within the Web Service or .NET Assembly. If the

service or assembly is subsequently changed, Exago will execute the prior compiled version. Thus,

when you modify the Web Service or .NET Assembly, reset the internal cache of Exago by clicking

the green check mark of the Data Source () or by restarting IIS.

NOTE. If an Exago .NET API application needs to access reports which use an Assembly data

source, it must include a reference to the assembly WebReportsAsmi.dll.

.NET Assemblies

It is important to note that when a connection string for .NET Assembly is set the class name must

match the name of the class where the static methods will be searched. UNC or absolute paths

may be used. Make sure that the assembly has read privileges for the IIS user running Exago.

Below is an example of a .NET Assembly connection string:

assembly=\\MyServerName\MyShareName\MyAssembly.dll;class=Main

.NET Assembly methods must be static. Below is an example of a .NET Assembly method.

 public class Main
 {
 public static DataSet dotnet_optionees(int callType, string columnStr, string filterStr, int myCustomParameter)
 {

file://Server1/ShareName/MyAssembly.dll;class=Main

Exago Technical Guide

42 Exago Inc.

 switch (callType)
 {
 case 0:
 // return schema
 case 1:
 // return data
 case 2:
 // return filter values for dropdown
 }
 }
 }

Web Services

Web Services are accessed via SOAP. Below is an example of a Web Service connection string:

url=http://MyServer/MyWebService.asmx

Web services methods are similar to .NET Assembly methods with the following exceptions:

 Methods do not need to be static

 Methods must return a serialized XML string. The returned XML must follow the structure

used by the C# method DataSet.GetXML. An example of XML format can be found in the

following section.

Excel and XML Files

Exago can use Microsoft Excel and XML files as Data Sources. Remember though that Excel and

XML files are not databases. Simply put, these Data Sources do not offer the speed, performance,

security or heavy lifting of a real database. Using Excel and XML files is recommended only if your

dataset is small or if the information is only available in this format.

Excel

Each worksheet in the Excel file will be read as a separate table. Each worksheet's name will be

read as the table's title. The top row will be read as the column header, and the remaining cells will

be read as the data. Do not leave any blank rows or columns.

XML

The XML document must begin with the schema. After defining the schema the data must be

placed into the appropriate tags. For reference see the working example below:

<ExagoData>
 <xs:schema id="ExagoData" xmlns="" xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">

 <xs:element name="ExagoData" msdata:IsDataSet="true"

msdata:UseCurrentLocale="true">

 <xs:complexType>

 <xs:choice minOccurs="0" maxOccurs="unbounded">

 <xs:element name="Call">

 <xs:complexType>

 <xs:sequence>

http://myserver/MyWebService.asmx

Exago Technical Guide

43 Exago Inc.

 <xs:element name="CallID" type="xs:unsignedInt" minOccurs="0" />

 <xs:element name="StaffID" type="xs:string" minOccurs="0" />

 <xs:element name="VehicleUsed" type="xs:unsignedInt" minOccurs="0"

/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Staff">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="StaffID" type="xs:unsignedInt" minOccurs="0" />

 <xs:element name="Rank" type="xs:string" minOccurs="0" />

 <xs:element name="LastName" type="xs:string" minOccurs="0" />

 <xs:element name="FirstName" type="xs:string" minOccurs="0" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:choice>

 </xs:complexType>

 </xs:element>

 </xs:schema>

 <Call>

 <CallID>890</CallID>

 <StaffID>134</StaffID>

 <VehicleUsed>12</VehicleUsed>

</ Call >

< Call >

 <CallID>965</CallID>

 <StaffID>228</StaffID>

 <VehicleUsed>4</VehicleUsed>

</ Call >

< Call>

 <CallID>740</CallID>

 <StaffID>1849</StaffID>

 <VehicleUsed>2</VehicleUsed>

</ Call >

<Staff>

 <StaffID>134</StaffID>

 <Rank>Captain</Rank>

 <LastName>Renolyds</LastName>

 <FirstName>Malcom</FirstName>

 </Staff>

 <Staff>

 <StaffID>228</StaffID>

 <Rank>Lieutenant</Rank>

 <LastName>Brown</LastName>

 <FirstName>Bill</FirstName>

 </Staff>

 <Staff>

 <StaffID>1849</StaffID>

 <Rank>Sergeant</Rank>

 <LastName>John</LastName>

 <FirstName>Pepper</FirstName>

 </Staff>

</ExagoData>

Exago Technical Guide

44 Exago Inc.

OLAP and MDX Queries

Exago can query OLAP Data Sources using MDX Queries. OLAP Data Sources and Objects are

identical to regular data base type object with the following exceptions.

 OLAP Data Objects will always be MDX Queries written in the Custom SQL Object menu.

 Data Objects must have Schema Access Type set to Metadata and must have Column

Metadata set for all fields.

ODBC Drivers

Exago can use ODBC drivers to connect to Data Sources. When connecting to an ODBC data

source an extra option will appear to set the Column Delimiter(s). Leaving this setting blank will

not surround tables, views or other objects with any delimiter. Setting a delimiter will prevent

issues if you have spaces in your object names.

Exago Technical Guide

45 Exago Inc.

Parameters

Parameters are used throughout the Exago application to store values. Although parameters can

be created and given a default value in the Administration Console, parameters are designed to be

set at runtime through the API.

In Exago parameters can be used to:

 Pass values to Web Services, .NET Assemblies, or custom SQL Data Objects.

 Set tenant values to assure security in a multi-tenant environment. For more information

see Data Objects

 Pass values into cells and formulas of a report. To display a non-hidden parameter in a cell

type '=@ParameterName@'.

NOTE. Parameters ARE case sensitive.

 Pass values into custom functions. For more information see Custom Functions.

 Create a custom dropdown list of values for user selection on a report prompt.

All existing Parameters are listed in the Main Menu under Data. All the parameters you are adding

or editing will be displayed in a Tab entitled Parameters.

 To add a new parameter click 'Parameters' in the Main Menu then click the add button (

).

 To edit a parameter either double click it or select it and click the edit button ().

 To delete a parameter select it and click the delete button ().

 To save changes click the 'Ok' button () or press the 'Apply' button ().

Each Parameter has the following properties:

 Name – a name for the parameter. Prompting parameters are sorted alphabetically by

name unless otherwise specified or unless there are dropdown parameters with

dependencies.

 Type – the type of parameter being used.

 Value – the default value of a parameter. This is intended to be overwritten at runtime

through the API. Date values should be entered in yyyy-MM-dd format.

 Hidden – check hidden to disable this parameter from being used by users in cells and

formulas.

 Prompt Text – give non-hidden parameters a prompt text to query the user for a value at

the time of report execution. Leave blank to use the default value.

Exago Technical Guide

46 Exago Inc.

 Parameter Dropdown Object – optional Data Object for populating the parameter as a

drop-down selection list. Only applicable with prompting parameters. Commonly used in

conjunction with programmable data objects (such as stored procedures).

o Stored Procedure Parameters – a list of preexisting Exago parameters to be used

as variables for a selected stored procedure.

o Value Field – a column from the data object or custom SQL that sets that actual

value of the parameter at runtime. This represents a set of values that are not

displayed to the end user but are instead used when parameter values are required

in custom SQL or stored procedures, or other server side processing.

o Display Value Field – a column from the data object or custom SQL that sets the

display value of the parameter for the dropdown selector. This represents the set of

values that should be presented to the end user when they are executing or

scheduling a report.

o Display Type – the display value data type.

Data Objects

Data Objects are the tables, views, methods, stored procedures, functions and custom SQL that

you want to make accessible for reports.

All existing Data Objects are listed in the Main Menu under Data. All the Data Objects are adding

or editing will be displayed in a Tab entitled Objects.

 To add a new Data Object click 'Objects' in the Main Menu then click the add button ().

NOTE. Data Objects can be added quickly using Automatic Database Discovery.

 To edit a Data Object either double click it or select it and click the edit button ().

 To delete a Data Object select it and click the delete button ().

 To save changes click the Ok button () or press the 'Apply' button ().

Each Data Object has the following properties:

 Name – Select the Data Object's Source from the first dropdown. In the second dropdown

select a Data Object.

NOTE. This will display all the of the Source's tables, views, methods, stored procedures

and functions.

o To add custom SQL click the 'Add Custom SQL' button () next to the Data Object

dropdown. For more details see Custom SQL Objects.

Exago Technical Guide

47 Exago Inc.

NOTE. The name of tables or views may not contain the following characters: { }

(curly braces), [] (square brackets), ',' (comma), '.' (period/full stop).

 Alias – the user friendly name for the Data Object. The alias will be displayed to end-users.

NOTE. An alias may not contain the following characters: @ (at sign), { } (curly

braces), [] (square brackets), ',' (comma), '.' (period/full stop).

 Unique Key Fields – the columns which uniquely identify a row.

 Category – the 'folder' used to group related Data Objects. Sub-categories can be created

by entering the category name followed by a backslash then the sub-category name. Ex.

'Sales\Clients'.

 Id – a unique value for the Data Object. Ids are required when creating multiple Data

Objects with that have the same name but come from distinct Data Sources. Ids can also be

used to optimize Web Service and .Net Assembly calls. For more information see Using

Data Object Ids.

 Parameters – parameters that are passed to stored procedures, table functions, Web

Services or .NET assembly methods. Clicking in the dropdown will bring up a menu. Click

the add button () and select the parameter from the dropdown list. For more information

see Parameters, Stored Procedures and Web Services & .NET Assemblies.

o NOTE. Parameter values are passed in the order in which they are listed in the Data

Object. It is critical to ensure that the order is correct.

 Tenants Columns – specify which columns contain tenant information and link the

parameters accordingly.

o This setting is used to filter data when multiple users' information is held within the

same table or view and a column(s) holds information identifying each user. Exago

will only retrieve the rows where the column value(s) matches the corresponding

parameter(s).

 Column Metadata – Specify any columns that should not be filterable, visible or that

should be read as a specific data type. See Column Metadata for more information.

 Schema Access Type – Specify how Exago should retrieve the schema for the Data Object.

There are three possibilities:

o Default – Follow the global Schema Access Type setting in Other Settings.

o Datasource – Queries the Data Source for the schema.

o Metadata – Reads the schema from the stored metadata.

NOTE. For more information see Note on Retrieving Data Object Schemas.

Exago Technical Guide

48 Exago Inc.

 Filter Dropdown Object – Specify an alternative Data Object to be queried when a user

clicks the value dropdown in the Filters Menu. This setting is most likely to be used when

the Data Object is a Stored Procedure, Web Service or .Net Assembly that takes more than

a few seconds to return data. In this scenario a table or view can be designated to increase

performance.

NOTE. The Filter Dropdown Object must have a column with the same name as each

column in the main Data Objects.

Stored Procedures

Stored Procedures offer the ability to use high level code to modify the data set before it is sent to

Exago. It is important to note that stored procedures must know what sorts and filters the user

has set and whether to return the schema, a single column, or the entire data set. To accomplish

this use the Call Type, Filter, Column and Sort Parameters in the Programmable Object Settings.

These parameters will be passed from Exago to identically named parameters in the Stored

Procedure. Additional parameters may be passed by setting them in the Data Object Tab.

Important Note for SQL Server:

SQL Server has an attribute called 'FMTONLY' that must be handled by all stored procedures.

FMTONLY has two possible values:

 ON: The stored procedure will only return the column schema. However all IF conditional

statements are ignored and all of the code will be executed. This setting will fail if the stored

procedure contains any temp tables.

 OFF: The stored procedure returns all of the data and the column schema. The stored

procedure will correctly execute IF conditions.

The ON setting will cause problems if there are IF conditions in the procedure; However, only using

the OFF setting will hurt performance if the Call Type Parameter in the Programmable Object

Settings is not used.

The following example demonstrates how to use the Call Type, Column, Filter and Sort Parameters

to maintain efficiency.

 NOTE. For SQL Servers, FMTONLY is set to OFF.

ALTER PROCEDURE [dbo].[sp_webrpt_person]
@callType INT, --optional but should be implemented for efficiency and dropdown

support
@columnStr varchar(1000), --optional; used for limiting data for efficiency
@filterStr varchar (1000), --optional; used for limiting data for efficiency

@fullFilterStr varchar (1000), --optional; used for limiting data for efficiency
@sortStr varchar(1000) –optional; may improve performance a bit if used
AS

SET NOCOUNT ON --for performance reasons
SET FMTONLY OFF --force procedure to return data and process IF conditions

Exago Technical Guide

49 Exago Inc.

declare @sql varchar(2000)
declare @columnInfo varchar(1000)

if @callType = 0 --return schema; don't need to return any rows
begin

 set @sql = 'select * from vw_webrpt_person' where 0 = 1
end

else

if @callType = 1 --return all data for execution
begin

 set @sql = 'select ' + @columnStr + ' from vw_webrpt_person where ' +

@filterStr + ' order by ' + @sortStr
end

else

if @callType = 2 --return filter dropdown values; limit # rows to some value
begin

 set @columnInfo = '[' + @columnStr + ']'
 set @sql = 'select top 100 ' + @columnInfo + ' from vw_webrpt_person where ' +

@columnInfo + ' >= ' + @filterStr + ' and ' + @fullFilterStr + ' order by ' +

@columnInfo
end

exec(@sql)

Table Value Functions

Table Value Functions can be used as Data Objects. Any available table value functions of a Data

Source will be displayed in the Data Object menu under Functions. Exago handles table value

functions similar to views and tables except it will pass any parameters set in the Data Object Tab

or in the Programmable Object Settings.

Custom SQL Objects

Exago can use custom SQL as Data Objects. Parameters can be embedded in these SQL

statements to enable you to change the statement at runtime.

To add or edit a Custom SQL Data Object click the 'Custom SQL' button () and a dialog will

appear.

 Data Object Name – the name of the Data Object to be displayed in the Administration

Console.

 Data Source – the Data Source that will be sent the SQL.

 Parameter/Insert – select the parameter you want to embed in the statements. Use the

'add' button to move the selected parameter into the SQL statement where your cursor is

located. Parameters may also be added manually between @ symbols (ex. @userId@).

Use the 'TEST' button () to verify that the SQL statement is correct.

Exago Technical Guide

50 Exago Inc.

Press OK to save the SQL statement or Cancel to close the dialog without saving.

Data Object Macros

'Macros' can be embedded in Custom SQL Data Objects to make them even more dynamic. Each

'macro' allows for different SQL to be used according to the circumstances in which the Data

Object is being called. Below are the details and examples of available macros.

IfExecuteMode (string trueCondition, string falseCondition)

Description Will include the trueCondition if a user is executing a report. Will include the
falseCondition otherwise.

Example select * from vw_webrpt_optionee IfExecuteMode("where [State] = 'CT'","")

IfExistReportDataObject' (string dataObjectName, string trueCondition, string falseCondition)

Description Will include the trueCondition if dataObjectName exists inside the full Exago SQL
statement to the data source. Will include the falseCondition otherwise.

Example select * from vw_webrpt_optionee IfExistReportDataObject("fn_webrpt_grant", join
on fn_webrpt_grant...", "")

Exago Technical Guide

51 Exago Inc.

Column Metadata

Column Metadata refers to the properties of each column in the Data Objects. Normally Exago

gets the metadata for each column directly from the Data Source. However, in some cases it may

be helpful to override or add additional information to the metadata.

The following properties of each column can be modified:

 Column Alias – The name of the Data Field that the end-users see.

 Column Description – Description hover-text for the data field. In-line HTML tags like

are also valid.

 Data Type – The type of data Exago should treat the Data Field as (ex. DateTime).

o Valid values for Data Type include: String, Date, Datetime, Time, Int, Decimal, Image,

Float, Boolean, and Guid.

 Filterable – If set to False the Data Filed will not be listed in the Filters menu.

 Sortable – If set to False the Data field will not be listed in the Sorts menu.

NOTE. Users will still be able to enter the field manually as a formula.

 Visible – If set to False the Data Field will not be listed for users.

 Sort and Group-By Value – Specify a custom formula by which columns should be sorted

and grouped by the application.

To modify the metadata of a column select it and click the 'add' button or double click it. Enter a

Column Alias or use the Data Type, Filterable and Visible dropdowns to set the desired properties.

Click the 'Read Schema' button () to quickly create column metadata for each

column in the Data Object.

To remove Column Metadata for a column select it in the right panel and click the delete button (

)

To save changes to Colum Metadata, click the 'OK' button (). Click the 'Cancel' button to discard

changes.

Exago Technical Guide

52 Exago Inc.

Custom Columns

Custom columns are a way to add columns to Exago that don't exist in the database. This is

completely transparent for the users; they can then use them like any other column. New data

fields can be created from composite or interpreted data fields. You could even use a formula to

create data from scratch. Admins often use custom columns to make popular formula sorts

available on an application-wide level.

To add a custom column, open the Column Metadata dialog. Press the Add New button and

enter a name for your data field in the dialog box.

Data Type, Column Alias, and Column Value are required fields. In the Column Value field, press

the button to bring up the Formula Editor.

Exago Technical Guide

53 Exago Inc.

Press OK when done, then Apply the change.

Retrieving Data Object Schemas

Many of the dialogs throughout Exago require schema information (ex. column name, data type,

etc.). By default these dialogs query the Data Sources for the schema. This process, however, may

cause performance issues if the Data Sources take a considerable amount of time to return the

schema.

To enhance performance, schema information can be stored as Column Metadata. Then Exago

can read the Column Metadata instead of querying the Data Source.

NOTE. While storing the schema as Column Metadata improves performance, updates to

the Column Metadata will be required whenever columns are added, removed or retitled.

For Exago to retrieve schema information from Metadata:

1. In Other Settings, set 'Schema Access Type' to 'Metadata'. This will force Exago to get

all schema information from Metadata for all Data Objects.

NOTE. Alternatively this setting can be overwritten for individual Data Objects by setting

the 'Schema Access Type' property.

2. For each Data Object open the Column Metadata Menu.

a. Click the 'Read Schema' button (). A message will appear asking

you to confirm you want to continue. Click Ok.

b. Click Ok to close the Column Metadata Menu.

c. Press Apply or Ok to save the Data Objects.

NOTE. Other metadata options such as aliasing can still be utilized.

Data Object Ids

There are three ways in which you can utilize Data Object Ids.

Adding Multiple Data Objects with the Same Name

Ids are used distinguish Data Objects that have the same name but come from different Data

Sources. When adding multiple Data Objects with the same name make sure each Data Object has

a unique Id.

Avoiding Issues from Changes to Object Names

Providing Ids for all the Data Objects will avoid issues if the name of the underlying tables, views,

stored procedures, is changed.

Exago Technical Guide

54 Exago Inc.

Calling a Single Web Service/.Net Assembly/Stored Procedure

Web Services, .Net Assemblies, and Stored Procedures comprise a group called Programmable

Data Objects. These Objects can retrieve parameters from Exago and the host application in order

to control what data is exposed to the user.

Generally for Web Services and .Net Assemblies each Data Object calls a distinct method. Similarly

each Stored Procedure is its own Data Object. By using Data Object Ids a single method/stored

procedure can be called. This method can then return data or schema based on the Data Object

Id.

To call a single Web Service/.Net Assembly/Stored Procedure:

 Provide a name for 'Data Object ID Parameter Name' in Programmable Object Settings

 Create a method/ procedure in your Service/Assembly/Procedure that utilizes the Object Id

Parameter to return the appropriate data/schema. (see example below)

 For each Data Object:

o Select 'Object' in the Main Menu and click the 'add' button

o Select the single Service/Assembly/Procedure

o Provide an Alias and an Id for the Object

o Select the key columns

o Click Apply or Ok to save the Object.

Ex. This stored procedure uses the Object Id Parameter (@objectID) to return different

data/schema information for different Object Ids.

ALTER PROCEDURE "dbo"." Exago_Example"
@callType INT,
@objectID nvarchar(max)
AS
SET NOCOUNT ON
SET FMTONLY OFF

if @objectID = 'Produce'
begin
 if @callType = 0
 begin
 SELECT ProductID,
 ProductName,
 SupplierID,
 UnitPrice,
 UnitsInStock
 FROM Products
 WHERE CategoryID = 1001
 end
 else if @callType = 1
 begin

Exago Technical Guide

55 Exago Inc.

 SELECT ProductID,
 ProductName,
 SupplierID,
 UnitPrice,
 UnitsInStock
 FROM Products
 ORDER BY ProductID
 end
 else if @callType = 2
 begin
 SELECT ProductID,
 ProductName,
 SupplierID,
 UnitPrice,
 UnitsInStock
 FROM Products
 ORDER BY ProductID
 end
end
if @objectID = 'Orders0'
begin
 if @callType = 0
 begin
 SELECT OrderID,
 OrderDate,
 RequiredDate,
 ShippedDate,
 CustomerID
 FROM Orders
 WHERE CustomerID = 0
 end
 else if @callType = 1
 begin
 SELECT OrderID,
 OrderDate,
 RequiredDate,
 ShippedDate,
 CustomerID
 FROM Orders
 ORDER BY OrderID
 end
 else if @callType = 2
 begin
 SELECT OrderID,
 OrderDate,
 RequiredDate,
 ShippedDate,
 CustomerID
 FROM Orders
 ORDER BY OrderID
 end
end

Reading Images from a Database

Exago can read images from a database and load them directly into a cell of a report. When

images are stored in a database as a binary string there are two ways that Exago can load them

into a report.

Exago Technical Guide

56 Exago Inc.

1. In the Administration Console edit the Data Object that contains the images. Open the

Column Metadata Menu and for the image column set Data Type to 'Image'. Next, simply

place the Data Field containing the images into the desired cell of a report. Upon execution

the images will be loaded into the cell.

2. Place the Data Field that contains the images into the LoadImage function. Upon execution

Exago will interpret the binary and load the images into the cell.

Joins

Joins specify to Exago the relationship between Data Objects.

All existing Joins are listed in the Main Menu under Data. All the joins you are adding or editing

will be displayed in a Tab entitled Joins.

 To add a new join click 'Joins' in the Main Menu then click the add button ().

NOTE. Joins can be added quickly using Automatic Database Discovery.

 To edit a join either double click it or select it and click the edit button ().

 To delete a join select it and click the delete button ().

 To save changes and new join click the Ok button ().

Each join has the following properties:

 From Object –the first Data Objects you would like to join.

 To Object – the other Data Object you would like to join.

o NOTE. The order of the Data Objects is important if you have a one-to-many relation

type or a Left/Right Outer Join type. See below for details.

 Join Column(s) – specify the field(s) of each Data Object that must match to join an entity

in the From Object to an entity(s) in the To Object.

 Join Type – specify whether rows from either Data Object that do not have a match should

or should not be included.

o Inner: only includes rows of the From Object that have a match in the To Object and

vice versa.

o Left Outer: includes rows of the From Object that do not have a match in the To

Object but not vice versa.

o Right Outer: includes rows of the To Object that do not have a match in the From

Object but not vice versa.

Exago Technical Guide

57 Exago Inc.

o Full Outer: includes rows in either Data Object that do not have a match.

 Relationship Type – specify if the join type is one-to-one or one-to-many.

o One-to-One: Each row in the From Object can join to at most one row from the To

Object.

o One-to-Many: Each row in the From Object can join to any number of rows from the

To Object.

 Weight – give a join weight in order to set its precedence when multiple join paths exist

between Data Objects. The path with the higher weight will be utilized.

o Ex. A report contains three Data

Objects 'Students', 'Professors'

and 'Comp Sci 101.' Students is

joined to 'Professors' and 'Comp

Sci 101.' Additionally 'Professors'

is joined to 'Comp Sci 101.'

There are two available join

paths between 'Students' and

'Comp Sci 101.' Adding weight to

a join will clarify which of the

two paths Exago should use.

Modifying Joins

Although joins are created in the Administration Console they are saved within each individual

report. For Join changes in the Administration Console to take effect edit the report and use the

'Recreate' button in the Advanced Options menu. For instructions on how to access the Advanced

Options please see the User Guide.

IMPORTANT. It is important to make sure that all of the joins are set to your desired specifications

in the Administration Console before you begin building numerous reports.

Note About Cross Source Joins

Data Objects from different Data Sources can be joined in Exago. Because the Data Objects come

from distinct databases they must be joined through code by Exago. Though Exago strives for

efficiency this process may be memory intensive for large data sets.

Automatic Database Discovery

Automatic Database Discovery enables you to quickly and easily add many Data Objects and Joins

from a single Data Source. Discovery can only be performed on database type sources: mssql,

oracle, mysql, postgresql, db2, and Informix.

Exago Technical Guide

58 Exago Inc.

To start using Database Discovery, select a Data Source and click the Discovery button (). This

will open a discovery tab for the Data Source.

In the discovery tab you can do the following:

 Select the Tables, Views, Functions and Stored Procedures you would like to add by either

checking individual boxes or pressing 'Select All Objects' or 'Select All Complete Objects'.

NOTE. Objects with identified unique key values will have a key icon next to them () and

objects with associated joins will have a join icon next to them ().

 Set any missing Unique Key fields by right clicking on an object.

 Check 'Preview Only' and then 'Add Objects' to preview the selected objects and joins.

 Add the selected Data Objects by pressing 'Add Objects'.

NOTE. If any selected Objects are missing unique key values they can be comepleted

individually in a new tab entitled 'Incomplete Objects'.

 Add the selected Objects and any associated Joins by pressing 'Add Objects and Joins'.

Exago Technical Guide

59 Exago Inc.

General

This chapter details the available settings to enable, disable and modify various features of Exago.

Settings made in General will be set for all users unless specifically overwritten in Roles.

To edit any of the settings double click the category or select it and click the edit button. ()

Main Settings

The main settings are the basic options for Exago. The following settings are available:

 Report Path – The parent folder for all reports. The Report Path may be:

o Virtual Path

o Absolute Path – used to provide increased security (ex. C:\Reports)

o Web Service URL or .NET Assembly – using a Web Service or .Net Assembly allows

reports and folders to be managed in a database. For more information see Report

Folder Storage & Management.

 Temp Path – The location where temp files are stored. The Temp Path may be:

o Blank – All temp files and images will be saved to /Temp.

Exago Technical Guide

60 Exago Inc.

o Virtual Path

o Absolute Path – Temp files will be saved to the absolute path and image files will be

saved to ./Temp

IMPORTANT. Before deploying into a production environment be sure to set a Temp

Path that resides behind your server's firewall/security system.

 Temp Cloud Service – Web Service, .Net Assembly or Azure Authentication string used to

integrate into a Cloud Environment. For more information see Cloud Environment

Integration.

 Language File – List of the xml files that specify language strings. See Modifying Select

Language Elements for more details.

 Temp URL – Overrides the portion of the temporary URL used to store images from reports

that are run in the Report Viewer. Temp URL can override just the scheme (i.e. https) or the

full URL.

 Allow direct access to Exago

o True – allows users direct access to Exago with no security.

o False – users must be authenticated by the host application to enter Exago. Users

that try to directly access Exago will receive a message saying 'Access Denied.'

IMPORTANT. We highly recommend setting this to False before deploying Exago in a

production environment.

 Allow Execution in Viewer – Enables or disables running reports in the Report Viewer.

 Allowed Export Types – The available formats for exporting all reports. Check the box of

the formats that should be available.

 Default Output Type – The format that appears when a new report is selected unless a

specific export format is set in the Options Menu of the Report Designer.

NOTE. The Default Output Type must be one of the available Allowed Output Types.

Culture Settings

The culture settings give administrators control over formats and symbols that vary amongst

geographic location (e.g. $ is the currency symbol in the U.S.A but € is the symbol used in Europe).

These settings can be overwritten for a specific user or group of users by modifying the Role. For

more information see Roles.

The following settings are available:

 Date Format – The format of date values. May be any .NET standard (ex. MM/dd/yyyy).

Exago Technical Guide

61 Exago Inc.

 Time Format – The format of time values. May be any .NET standard (ex. h:mm:ss tt).

 DateTime Format – The format of date-time values. May be any .NET standard (ex. M/d/yy

h:mm tt).

NOTE. For more details on .NET Date, Time and DateTime Format Strings please visit

http://msdn.microsoft.com/en-us/library/8kb3ddd4%28v=vs.71%29.aspx.

 Date Time Values Treated As – Choose to format DateTime as Date or DateTime values.

To change this setting for specific columns see Column Metadata.

 Numeric Separator Symbol – Symbol used to separate 3 digit groups (ex. thousandths) in

numeric values. The default is ','.

 Numeric Currency Symbol – Symbol prepended to numeric values to represent currency.

The default is '$'.

 Numeric Decimal Symbol – Symbol used for numeric decimal values. The default is '.'.

 Numeric Decimal Places – Default number of decimal places for numeric fields to show.

Leave blank to keep variable by field.

 Currency Decimal Places – Default number of decimal places for currency fields to show.

Leave blank to keep variable by field.

 Apply Numeric Decimal Places to General Cell Formatting – Set to true to apply the

Numeric Decimal Places to any cell that has Cell Formatting set to General but contains a

number. Default value is false.

 Apply General Currency Right Alignment – Set to true to cause currency values to appear

right-aligned by default in report cells.

 Server Time Zone Offset –Value that is used to convert server to client time (the negation

is used to convert client to server time). Leave blank to use server time, or to use External

Interface to calculate value.

NOTE. This offset is NOT applied to data coming from Data Sources. It is utilized by the

Exago UI such as the Scheduling Service.

Features/UI Settings

The Features/UI settings allow administrators to hide various features in the user interface. As

each heading indicates settings may apply to specific report types or the entire application.

Available Report Types

These settings enable/disable report types.

 Allow Creation/Editing of Express Reports – Enables/Disables the Express Report Wizard.

http://msdn.microsoft.com/en-us/library/8kb3ddd4%28v=vs.71%29.aspx

Exago Technical Guide

62 Exago Inc.

 Allow Creation/Editing of Standard Reports – Enables/Disables the Standard Report

Wizard and Report Designer.

 Allow Creation/Editing of Crosstabs – Enables/Disables the Crosstab Report Wizard and

Insert Crosstab button in the Report Designer.

 Allow Creation/Editing of Dashboards – Enables/Disables the Dashboard Designer.

 Allow Creation/Editing of Chained Reports – Enables/Disables the Chained Report

Wizard.

 Allow Creation/Editing of ExpressViews – Enables/Disables the ExpressView Designer.

ExpressView Settings

These settings only apply to the ExpressView Designer.

 Allow Editing ExpressView with Live Data – Allows users to make changes to

ExpressViews while in Live Mode.

NOTE. We recommend setting this to False. Editing live ExpressViews will cause a large

increase in database calls, and may reduce performance.

 Show Data Fields Search Box – Enables/Disables the data field search tools in the sidebar

of the ExpressView Designer.

NOTE. We highly recommend setting Column Metadata, and setting Schema Access Type

to Metadata for all available objects, before enabling this feature.

Express Report Designer Settings

These settings only apply to the Express Report Wizard.

 Show Styling Toolbar – Enables/Disables the styling tools in the Layout tab of the Express

Report Wizard.

 Show Themes – Enables/Disables the Theme dropdown in the Layout tab of the Express

Report Wizard.

 Show Grouping – Enables/Disables the grouping tools in the Layout tab of the Express

Report Wizard.

 Show Formula Button – Enables/Disables the formula editor button in the Layout tab of

the Express Report Wizard.

Standard Report Designer Settings

These settings only apply to the Report Designer.

Exago Technical Guide

63 Exago Inc.

 Show Chart Wizard – Enables/Disables the Insert Chart button in the Report Designer. Set

to False to disable users from creating or editing charts.

 Chart Colors – Lists the values used for default chart colors. Hexadecimal values should be

separated by commas (or semicolons).

 Maximum Number of Chart Data Points – Upper limit on the number of data points

visible on a chart. If the limit is exceeded, a warning will be displayed to the user. Charts

with large numbers of data points could cause browser performance issues.

 Default Chart Font – Specifies a default font for charts created in the Report Designer.

This setting can be overridden on a per-report basis. Does not apply to Data Visualizations.

 Show Geochart Map Wizard – Enables/Disables the Geochart Maps button in the Report

Designer. Set to False to disable users from creating or editing Geochart Maps.

NOTE. Geocharts refers to the legacy maps feature, which was available starting in v2013.2.

NOTE. The first time this setting is set to true a dialog appears prompting you to accept the

terms of using the Google Charts Api. Type “I accept” in the first box and your full name in

the second to accept the terms and enable mapping.

 Geochart Map Key – Optional Google Maps license key for geochart permissions. License

must contain the Google Maps Javascript API service. See Legacy Maps (Geocharts) for

more information.

NOTE. Because of a change in Google's Maps API Terms of Service, if geocharting was

enabled after June 2016, or if you had geocharting enabled before, but changed your host

domain name after June 2016, you need a license key to use this feature.

 Geochart Map Colors – List the values used for default Geochart map colors. Hexadecimal

values or css color names should be separated by commas (or semicolons).

 Show Google Map Wizard – Enables/Disables the Google Maps button in the Report

Designer. Set to False to disable users from creating or editing Google Maps.

Exago Technical Guide

64 Exago Inc.

NOTE. In order to use Google Maps, a license key must be obtained from Google, and a

polygon file must be downloaded from our support site. See Google Maps for more

information.

 Google Map Key – License key for Google Maps permissions. This is required to use the

new Google Mapping feature. License must contain the Google Maps Javacsript API and

Geocoding API services. See Google Maps for more information.

 Google Map Colors – List the values used for default Google map colors. Hexadecimal

values or css color names should be separated by commas (or semicolons).

 Show Gauge Wizard – Enables/Disables the Insert Gauge button in the Report Designer.

Set to False to disable users from creating or editing gauges.

 Gauge Colors – List the values used for default gauge colors. Hexadecimal values or css

color names should be separated by commas (or semicolons).

 Show Document Template – Enables/Disables the Document Template Menu. Set to False

to disable users from using the Document Template Menu.

 Show Document Template Upload Button – Set to True to allow users to upload

Document Templates to the Report Path. Set to False to prevent users from uploading

Document Templates.

 Show Linked Report – Enables/Disables the Linked Report button in the Report Designer.

Set to False to disable users from creating Linked Reports.

 Show Linked Report Fields – Enables/Disables the Fields selector tab in the Linked Report

dialog.

 Show Linked Report Formula – Enables/Disables the Formula editor tab in the Linked

Report dialog.

 Show Linked Action – Enables/Disables the Linked Action button.

 Show Insert Image – Enables/Disables the Insert Image button in the Report Designer. Set

to False to disable users from inserting images.

 Show Joins Window – Enables/Disables the Joins Menu under Advanced. Set to False to

disable users from modifying joins.

 Show Advanced Joins – Enables/Disables additional options in the Joins Menu. Set to True

to enable advanced users to create, delete, and modify joins.

 Show Events Window – Enables/Disables the Events Menu under Advanced. Set to True to

enable advanced users to apply Event Handlers for the report. See Server Events for more

information.

http://support.exagoinc.com/hc/en-us/categories/202053837

Exago Technical Guide

65 Exago Inc.

 Show Linked Reports in New Tab – Specify how to display Linked Reports. Set to True to

open Linked Reports in a new tab. Set to False to display Linked Reports in a floating

window above the parent report.

 Allow Grouping on Non-Sorts – Enables/Disables the group formula button in the Group

Header/Footer Menu. Enabling this will allow users to group on non-sort formulas.

NOTE. Grouping on non-sort formulas is deprecated and unsupported.

Dashboard Report Designer Settings

These settings only apply to the Dashboard Designer. If 'Show Dashboard Reports' is false these

settings will be ignored.

 Prompt user for Parameters/Filters on Execution – Default setting indicating whether to

prompt the user for filter and/or parameter values when executing a dashboard. The

option can be overridden on an individual dashboard in the Options menu.

 Show URL Item Button – Enable/Disable the New URL item in the Toolbox of the

Dashboard Designer.

 Allow Creation/Editing of Dashboard Visualizations – Enable/Disable the New Data

Visualization item in the Toolbox and the Data Fields of the Dashboard Designer.

 Show Data Fields Search Box – Enable/Disable the search bar above the Data Fields of the

Dashboard Designer.

NOTE. The search will require the schema of all available Data Objects. For best

performance, only set this to True if using Column Metadata for Schema Access type. See

Retrieving Data Object Schemas for more details.

 Use Sample Data for Dashboard Visualization Design – Set to True to use sample data

while creating and editing Dashboard Visualizations. This will reduce the number of calls to

the database. Set to False to queiry the Data Source for each change made while editing

Dashboard Visualizations.

 Visualization Database Row Limit – Maximum number of rows returned on a queries

made by Data Visualizations. This only applies to Tables, Views and Functions. Set to '0' to

return all rows.

 Refresh Reports/Visualizations on Dashboards Silently – Set to 'True' to disable the

refresh hourglass for timed automatic dashboard reloads.

Common Settings

 Default Designer Font – Specifies a default font for reports created in the Standard Report

Wizard, Express Report Wizard, Standard Report Designer, and Dashboard Designer. This

setting can be overridden on a per-Report basis. Does not apply to CrossTabs.

Exago Technical Guide

66 Exago Inc.

NOTE. End-users must have the selected font installed locally in order to display.

Otherwise, Exago will default to Sans Serif.

We suggest using a font-face css tag in your custom home page to tell the browser to

download the font automatically:

@font-face {
 font-family: 'Open Sans';
 src: url('myFonts/OpenSans.ttf');
 }

 Default Designer Font Size – Specifies a default font size for reports created in the

Standard Report Wizard, Express Report Wizard, Standard Report Designer, and Dashboard

Designer. This setting can be overridden on a per-Report basis. Does not apply to

CrossTabs.

 Show Help Button – Enables/Disables the Help button in the top right corner of Exago. Set

to False to disable users from accessing Context Sensitive help.

 Custom Help Source – Specifies the URL that contains custom Context Sensitive Help

content. See Custom Context Sensitive Help for more details.

 Show Exports in Tab – Set to True to open PDF reports in a tab in Exago. Set to False to

prompt the user to download the PDF.

 Show IE Download Button – Set to True if Internet Explorer is not automatically prompting

users to download PDF, XLS, RTF or CSV reports.

 Show Join Fields – Enables/Disables any Data Fields that are used as Unique Keys or Joins.

Set to False to hide all unique key and join Data Fields from users. To hide specific Data

Fields see Column Metadata.

 Show Grid Lines in Report Viewer – Sets the default output to show grid lines. This can be

modified in the Options Menu of the Report Designer.

 Save on Report Execution – Set to False to disable automatic saving of reports when

executing from the Report Designer.

 Save on Finish Press – Set to False to disable automatic saving of reports when finish

button is pressed in a wizard.

 Enable Right-Click Menus – Set to False to disable right click menus.

 Enable Reports Tree Drag and Drop – Set to False to disable the dragging of reports and

folders in the Main Menu.

 Show Report Upload/Download Options – Set to True to enable users to upload and

download report files by right clicking on folders and reports. Default value is False.

Exago Technical Guide

67 Exago Inc.

 Allow interactivity in Report Viewer – Set to False to disable Interactive Report Viewer

capabilities, including: changing column width, styling output, and interactive filters.

 Show Toolbar in Report Viewer – Specify if Report Viewer should display paging, search,

and export options.

o Auto - Exago will detect if the report only displays a single page of content from the

Report Footer Section. If so the Toolbar will be hidden, otherwise it will show.

o Show – The toolbar will always show.

o Hide – The toolbar will never show.

 Default interactive report viewer dock is open – Set to False to have the Interactive

report Viewer Dock minimized by default.

 Interactive report viewer default dock placement – Specify if the Interactive Report

Viewer Dock should appear on the right or left of the default output.

 Allow save to report design for report viewer – Set to False to prevent users from saving

Interactive Report Viewer changes onto the report.

 Maximum number of fields in a crosstab header or tabulation source – Specify the

maximum allowed fields in a crosstab header or tabulation source.

NOTE. Adding a large number of data fields to a crosstab will significantly increase the

execution time of the report.

 Use SVG for Application Icons – Set to true to enable Exago to use SVG (scalable vector

graphics) icons instead of the default PNG icons for the UI elements. SVG icons look nicer

on high-pixel density screens, but they may not be compatible with older web browsers.

 Application Theme Selection – Choose from a selection of downloadable UI themes. See

Application Themes for more information.

Programmable Object Settings

The Programmable Object Settings enable you to specify names for parameters that will be

passed from Exago to stored procedures, web services or .NET Assemblies. Using these

parameters will allow filtering to be done before the data is sent to Exago which will increase

performance and reduce server resources. For more information on these types of Data Objects

see Web Services & .NET Assemblies.

Names for the following Parameters can be set:

 Call Type Parameter Name – Integer that specifies what Exago needs at time of the call.

There are three possible values.

o 0 : Schema – return a DataSet with no rows.

Exago Technical Guide

68 Exago Inc.

o 1 : Data – return a full DataSet.

o 2 : Filter Dropdown Values – returns data for the filter dropdown list. The Data

Field requested is passed in the Column Parameter and the filter value is passed in

the Filter Parameter (see below).

 Column Parameter Name - Name of the column being requested by the user. Only this

column needs to be returned to Exago.

 Filter Parameter Name –

o CallType = 1: The filter string specific to the Data Object being called passed as

standard SQL.

o CallType = 2: The current value of the filter whose dropdown is being requested.

 Full Filter Parameter Name –

o CallType = 1: The filter string for the entire report passed as standard SQL.

o CallType = 2: The Tenant and Row Level filters passed as standard SQL.

 Sort Parameter Name – The sort string for the report. This is for informational purposes

only as Exago sorts data upon return from stored procedures and Web Services.

 Data Category Parameter Name – The Data Object's Category. Can be used in

conjunction with the Data Object ID Parameter.

 Data Object ID Parameter Name – Id of Data Object being called. For more information

see Calling a Single Web Service/.Net Assembly/Stored Procedure.

Filter Settings

The Filter Settings provide control over what filter options are exposed to users and how

dropdowns in filters behave.

Names for the following Parameters can be set:

 Show Group (Min/Max) Filters – Enables/Disables the Min/Max Filter menu. Set to False to

disable users from using Min/Max filters.

 Allow New Filters at Execution – Controls the creation of new filters when a user is

prompted for a filter value at the time of report execution. Set to False to disable new filters

from being created at execution.

 Read Database for Filter Values – Enables/Disables filter dropdowns to contain values

from the database. Set to false only if retrieving values for the dropdown will take more

than a couple of seconds.

Exago Technical Guide

69 Exago Inc.

 Allow Filter Dependencies – Causes filter dropdowns to retrieve values dependent on the

filters above them in the menu. Set to True to enable.

o NOTE. This setting only works for Data Objects from databases and will not change

dropdowns from Web Services, .NET Assemblies, stored procedures, etc.

o NOTE. Dropdowns after an 'OR' filter will not be dependent on previous filters.

 Show Filter Description – Enables/Disables reports to have a description text for the filters

menu. The filter description is set in the Description tab of the New Report Wizard or the

Description Menu. A help button will appear in the Filters menu and display the filter

description when clicked.

 Default Filter Execution Window – Species the type of filter execution window that new

reports should use by default.

o Standard – New reports display the standard filter execution window.

o Simple with Operator – New reports display a simplified filter execution window

that only allows the operator and value to be changed.

o Simple without Operator – New reports display a simplified filter window that only

allows the value to be changed.

 Allow User to Change Filter Window – Enables/Disables reports to change the type of

filter execution window that is displayed.

 Include Null Values for 'NOT' Filters – Indicates to include NULL values for filters with

using the operators 'not equal' or 'not one of'.

 Custom Filter Execution Window – Specifies a control or URL that contains Custom Filter

Execution Window. See Custom Filter Execution Window for more details.

 Restore All Default Date Filter Functions – Restores the default Filter Functions to the

Extensions menu.

Database Settings

The Database Settings allow administrators to adjust how Exago interfaces with databases.

Additional type-specific settings allow you to specify which driver to utilize when connecting to

each data source.

The following Database Settings are available:

 Database Timeout – Maximum number of seconds for a single query to run.

NOTE. This setting will also control the maximum number of seconds that a Web

Service Api method can run. If set to '0' the Web Service time out will be 'infinite'.

Exago Technical Guide

70 Exago Inc.

 Database Row Limit – Maximum number of rows returned on a query. This only applies to

Tables, Views and Functions. Set to '0' to return all rows.

 Disable Non-Joined Data Objects – If True users are not able to add Data Objects to a

report that does not have a join path with at least one other Data Object on the report. Set

to False to disable this behavior.

 Enable Special Cartesian Processing – If True any one-to-many Joins will cause special

processing to avoid data repeating on the report. Set to False to disable this behavior.

 Aggregate and Group in Database – If True, aggregate and grouping calculations will be

done in the database when possible. This will provide a performance boost for reports with

group sections.

IMPORTANT. Before enabling this, you MUST ensure that all One-To-Many Joins in your

environment are correctly identified and set as One-To-Many in the Join options menu. If

these joins are not properly identified, reports which utilize them will return incorrect

aggregate data!

Type-Specific Database Settings

Each Type of Data Source has the following settings available.

 Data Provider – The name that can be used programmatically to refer to the data provider.

This matches the InvariantName found as a property of DbProviderFactories in the

machine.config file. See http://msdn.microsoft.com/en-

us/library/12kxkt25(v=vs.80).aspx for more information.

 Table Schema Properties – Specifies how to retrieve the schema of tables.

 View Schema Properties – Specifies how to retrieve the schema of views.

 Function Schema Properties – Specifies how to retrieve the schema of Functions.

 Procedure Schema Properties – Specifies how to retrieve the schema of Procedures.

NOTE. For any of the Schema Property settings you can dynamically refer to properties

from the Data Source's connection string by surrounding the property name in @ symbols.

Ex. "@database@" will be replaces with the database name from the connection string of

the Data Source being queried.

Scheduler Settings

Reports can be emailed or scheduled for recurring automated delivery to an email address. The

Scheduler settings are used to configure these services. Before adjusting the settings ensure that

the scheduler service 'ExagoScheduler' is installed, running and set to automatically start. For

more information see Installing the Scheduler Service.

http://msdn.microsoft.com/en-us/library/12kxkt25(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/12kxkt25(v=vs.80).aspx

Exago Technical Guide

71 Exago Inc.

The Remote Execution service can be used to move processing to a different server or to provide

load balancing across multiple servers. For more information see Load Balancing.

The following Scheduler Settings are available:

 Enable Report Scheduling – If False will override Show Report Scheduling Option, Show

Email Report Options, & Show Schedule Manager to False.

 Show Report Scheduling Option – Enables/Disables the scheduler icon on the Main

Menu. Set to False to disable users from creating scheduled reports.

 Show Email Report Options – Enables/Disables the email report icon on the Main Menu.

Set to False to disable users from emailing reports.

 Show Schedule Reports Manager – Enables/Disables the scheduler manager icon on the

Main Menu. Set to False to disable users from editing existing schedules.

 Show Schedule No End Date Option – Controls if users must set an end date for recurring

report schedules. Set to False to force users to set a limit to the schedule.

 Show Schedule Intraday Recurrence Option – Enables/Disables options in the New

Schedule Wizard to have the schedule repeat throughout the day it is run. Set to False to

disable users having schedules repeate during its execution day.

 Scheduler Manager User View Level – Controls what information each user can see in the

Schedule Manager. These levels utilize the Parameters companyId and userId. There are

three possible values:

o Current User: Can only view and delete report jobs that have been created by that

user. This setting will hide the Host, User Id and Company Id columns of the

Schedule Manager.

o All Users in Current Company: User can only view and delete report schedules for

their company. This setting will hide the Host and User Id columns of the Schedule

Manager.

o All Users in All Companies: User can view and delete report schedules for all

companies (administrator).

 Email Scheduled Reports – Set to False to have the Scheduling Service save reports to a

repository instead of attaching them to emails. For more details see Saving Scheduled

Reports to an External Repository.

 Enable Batch Reports – Set to True to allow users to schedule reports which are filtered

separately for each recipient user. Batch reporting requires a table or other data structure

containing email addresses for the intended recipients associated with a key used to filter

the reports. For more information see Batch Reports in the User Guide.

Exago Technical Guide

72 Exago Inc.

 Show Schedule Delivery Type Options – Set to true to allow users to choose the output

option (e.g. email or archiving) with each schedule. When enabled the default value will

reflect whatever is set in the 'Email Scheduled Reports' setting.

 Use Secure Scheduler Remoting Channel – Set to true to cause data sent to remote

schedulers to be encrypted. Each scheduler config file must also have <secure_channel> set

to true.

 Schedule Remoting Host– Sets the server and port for the 'ExagoScheduler' windows

service.

 Enable Remote Report Execution – Permits report execution to be done on a different

server via the scheduler service. Set to True to enable this behavior.

 Enable Access to Data Sources Remotely – Permits all non-execution data base calls to

be done on a different server via the scheduler service. Set to True to enable this behavior.

Example calls include Filter value dropdowns, Data Object Schema retrieval, and Data

Source schemata retrieval in the Administration Console.

 Remote Execution Remoting Host – Specifies the server(s) to use for remote execution.

The Port is set in the schedule remoting configuration of the scheduler. Separate multiple

servers with commas or semicolons. Ex.

http://MyHttpServer1:2001,tcp://MyTcpServer:2001.

 Custom Queue Service – Specifies the web or assembly queue service for custom

scheduler management and load balancing. See Scheduler Queue for details.

 Delete Schedules upon Report Deletion – When a report is deleted corresponding

schedules can be deleted automatically by Exago. Set to True to enable this behavior.

 Default Email Subject – Set a default subject that will be displayed in the schedule report

wizard. Parameters such as @reportName@ may be utilized in this area.

 Default Email Body – Sets a default body that will be displayed in the schedule report

wizard. Parameters such as @reportName@ may be utilized in this area.

 Password Requirement (for PDFs only) – Requires a password for PDF export. This

parameter can be made up of the following values:

o A: requires an upper case letter for each 'A'.

o a: requires a lower case letter for each 'a'.

o n: requires a numeric character for each 'n'

o 4: password must have at least 4 characters.

Ex. 'AAnna6' would require a password of at least six characters with 2 capitals, 1 lower

case and 2 numeric characters..

Exago Technical Guide

73 Exago Inc.

 Custom Scheduler Recipient Window - Provides URL, height and width for custom

Scheduler Recipient window. See Custom Scheduler Recipient Window for more

information.

User Settings

The User Settings give administrators choices about how to store and utilize users' preferences

such as which Dashboards and/or Reports to execute when they enter Exago.

The following User Settings are available:

 User Preference Storage Method – How to store User Preferences such as which

Dashboards and/or Reports to execute when a user enters Exago. There are two possible

values:

o None – Users will not have the ability modify User Preference features. The User

Preferneces button will be hidden.

o Cookie – User Preferences are stored in the browsers cookie. This is the default

behavior as it does not require any additional setup. However a user's preferences

will not be carried over to other machines or browsers and will be lost if the user

deletes their browser's cookies.

NOTE. A user is identified by the values of the Paramters userId and

companyId.

o External Interface – User Preferences are stored and retrieved via the External

Interface. This requires the host application to implement the methods

SetUserPreference and GetUserPreferences in the External Interface but User

Preferences will be preserved for a user across browsers and machines.

o Server Events – User Preferences are stored and retrieved via Server Events. This

requires the global events onGetUserPreferences and onSetUserPreferences to

be implemented.

 Startup Report(s) Replace Getting Started – Set to False to display both the Getting

Started Content and any Dashboard and/or Reports that were set to run at startup. Set to

True to hide the Getting Started Content if any Dashboards and/or Reports execute when a

user enters Exago.

 Maximum Number of Startup Reports – Sets the number of Dashboards and/or Reports

that can be executed when a user enters Exago.

 Allow User Reports – Set to False to prevent users from saving changes made in the

Interactive Report Viewer as User Reports. Set to True to allow changes in the Interactive

Report Viewer to be stored as User Reports and applied to future report executions.

Exago Technical Guide

74 Exago Inc.

Other

Admin options that do not fall into any of the previous categories are in the “Other” category.

The following Other Settings are available:

 Excel Export Target – Choose the type of Excel export you would like. Choosing 2003 will

automatically split the workbook into multiple worksheets when Excel's row limit is

reached.

NOTE. Linux does not support setting the excel export target to 2003.

 External Interface – Provide a Web Service URL or .NET Assembly to interface with the

external module. For more information see External Modules.

 Enable Paging in Report Viewer – Controls when report data is sent to the client. Set to

true to send data as each page is requested (this will cause multiple hits to the server). Set

to False to send all the data to the client browser at once.

 Renew Session Automatically – This setting is used to bypass the session timeout

property set in web.config. Set to True to send a server side A JAX callback every two

minutes to keep the session from expiring.

NOTE. This will only work if the timeout period set in web.config is greater than two

minutes.

 Write Log File – Set to True to write a log file for debugging purposes. For more

information see Read the Log File.

 Enable Debugging – Set to True to enable debugging. For more information see Manually

Creating a Debug Package.

 Max Report Execution Time – Specify how long reports should run before timing out.

Default is 240 minutes (4 hours).

 Maximum Age for Temp Files – Maximum number of minutes a temp file can exist before

Exago's automatic cleanup of temp files will remove it. It is important to understand that

setting the maximum age too low may cause an error as users might spend some time

viewing a report which uses AJAX to read temp paging files. The default value is 1440

minutes (1day). The minimum this value can be set to is 30 minutes.

 Enable Web Service/Assembly Data Mapping – Allows Web Service and .NET Assembly

methods to replace Data Field names.

 Limit Report to One Category – Limits reports to Data Objects within a single category.

Set to True to enable this behavior.

 Cache External Services – Caches external Web Services and .NET Assemblies. Setting to

False may reduce performance due to loading/unloading of services.

Exago Technical Guide

75 Exago Inc.

 Global Schema Access Type – Specifies whether to query the Data Source for an Object's

schema or to read it from Column Metadata. See Note on Retrieving Data Object

Schemas for more information.

 Allow Multiple Sessions – Allows multiple sessions of Exago per user. Set to True to

enable this behavior.

 Allow MD5 Hashing on FIPS server – Allows a FIPS-complaint server to encrypt PDF files

by using an alternate MD5 library to the built-in System.Cryptography.

 'LoadImage' Cell Function Parameter Prefix – A string that is prepended to the

LoadImage Function when the report is run. This setting allows an administrator to hide the

report path of images on your server. This field is ignored for images loaded from a

database.

 Ignore Inaccessible Report Folders – If False Exago throws an error message if a folder

has an accessibility issue. Set to True to ignore the error and hide the inaccessible folder.

 User ID – User Id to gain Access to the Administration Console. Leave blank to permit

unverified access to the Administration Console.

 Password – Used in conjunction with User ID to gain access to the Administration Console.

 Confirm Password – Used to confirm the value of “Password.”

 Debug Password – A password that enables clients to send a debug package directly to

Exago Inc. Leave blank to disable Debug Extraction. When set to true, correct permissions

must be set on the ./Debug Folder. For more details see Submitting a Debug Package.

 Exago Expiration Date – A date when users will no longer be able to access Exago.

 Custom Code Supplied by Exago – Used for custom functionality.

Hidden Flags

The following options are inaccessible from the Admin Console, but may be toggled on or off by

editing the field in the config file xml.

 <allowhtmlinscheduledemails> – Set to True to allow users to insert html tags within the

body of scheduled emails.

Any fields which are not mentioned here are either not intended for external use or not fully

implemented, and should be ignored.

Exago Technical Guide

76 Exago Inc.

Roles

This chapter explains how to use the Roles to control access to Data and override the General

settings.

 To add a new role select 'Roles' in the Main Menu then click the Add button ().

 To edit a role either double click it or select it and click the edit button ().

 To delete a role select it and click the delete button ().

About Roles

Roles are created to specify how a user or group of users interfaces with Exago. Roles can restrict

access to folders or Data Objects. Roles can also override the general settings.

NOTE. Exago was designed to be an integrated reporting solution for other applications

using the application's own security and authentication methods. Although you can create

Roles through the Administration Console, Roles are typically created through the API to

dynamically set the users access. For more information see chapters Integration and API.

Roles have five sections to control access: Main, General, Folders, Objects, & Filters.

Main – controls the broad properties of the Role.

General – overrides General Settings.

Folders – controls which report folders a role can see and edit.

Objects – controls which Data Objects a role can access.

Filters – provides row level filters on Data Objects.

Exago Technical Guide

77 Exago Inc.

Creating Roles

To create a Role click 'Roles in the Main Menu and click the Add button (). This will open the Main

Section.

Main Settings

The main settings control the broad properties of the Role.

The Main settings control:

 Id – A name for the role.

 Active – Check to activate the role.

 Include All Folders – If checked all folders that are not listed in Folder Access will be

available. If unchecked only those listed in Folder Access will be available.

 All Folders Read Only – If checked, all folders that are not specified in Folder Access will be

execute-only. If unchecked only those specified in Folder Access will be execute-only.

 Allow Folder Management – Enables/Disables the Folder Management Icon and

functionality.

 Include All Data Objects – If checked all Data Objects that are not listed in Objects Access

will be available. If unchecked only those listed in Objects Access will be available.

General Settings

The General Settings of a Role override the Global General Settings. Utilize the API in order to

overwrite additional settings for a user or group of users. For more information see API.

The following settings can be overridden:

 Report Path – The parent folder for all reports. The Report Path can be:

o Virtual Path

o Absolute Path – used to provide increased security (ex. C:\Reports)

o Web Service URL or .NET Assembly – using a Web Service or .NET Assembly allows

reports and folders to be managed in a database. For more information see Report

Folder Storage & Management. A Web Service should be formatted as

'url=http://WebServiceUrl.asmx'. A .NET Assembly should be formatted as 'assembly

= AssemblyFullPath.dll;class-Namespace.ClassName'.

 Date Format – The format of date values. Can be any .NET standard (ex. MM/dd/yyyy).

Leave blank to use the browser culture.

Exago Technical Guide

78 Exago Inc.

 Time Format – The format of time values. Can be any .NET standard (ex. h:mm:ss tt). Leave

blank to use the browser culture.

 Date Time Format – The format of date-time values. May be any .NET standard (ex. M/d/yy

h:mm tt). Leave blank to use the browser culture.

NOTE. For more details on .NET Date, Time and DateTime Format Strings please visit

http://msdn.microsoft.com/en-us/library/8kb3ddd4%28v=vs.71%29.aspx.

 Numeric Separator Symbol – Symbol used to separate 3 digit groups (ex. thousandths) in

numeric values. The default is ','.

 Numeric Currency Symbol – Symbol prepended to numeric values to represent currency.

The default is '$'.

 Numeric Decimal Symbol – Symbol used for numeric decimal values. The default is '.'.

 Server Time Zone Offset – Value that is used to convert server to client time (the negation

is used to convert client to server time). Leave blank to use server time, or to use External

Interface to calculate value.

 Show Grid Lines in Report Viewer – Sets the default value option when running a report

to Show Grid. This can be modified in the Options Menu of the Report Designer.

 Allow Creation/Editing of Express Reports – Enables/Disables the Express Report Wizard.

 Allow Creation/Editing of Standard Reports – Enables/Disables the Standard Report

Wizard and Report Designer.

NOTE. If this is False then attempts to edit Standard or Crosstab reports will cause an

'Access Denied' message. Additionally, users will not be able to create Crosstab reports.

 Allow Creation/Editing of Crosstabs – Enables/Disables the Crosstab Report Wizard and

Insert Crosstab button in the Report Designer.

 Allow Creation/Editing of Dashboards – Enables/Disables the Dashboard Designer.

 Allow Creation/Editing of Chained Reports – Enables/Disables the Chained Reports

Wizard.

 Allow Creation/Editing of ExpressViews – Enables/Disables the ExpressView Designer.

NOTE. If this is False then attempts to edit or view ExpressViews will cause an 'Access

Denied' message.

 Allow Editing ExpressView with Live Data – Allows user to make changes to ExpressViews

while in Live Mode.

NOTE. We recommend setting this to False. Editing live ExpressViews will cause a large

increase in database calls, and may reduce performance.

http://msdn.microsoft.com/en-us/library/8kb3ddd4%28v=vs.71%29.aspx.

Exago Technical Guide

79 Exago Inc.

 Show Styling Toolbar – Enables/Disables the styling tools in the Layout tab of the Express

Report Wizard.

 Show Themes – Enables/Disables the Theme dropdown in the Layout tab of the Express

Report Wizard.

 Show Grouping – Enables/Disables the grouping tools in the Layout tab of the Express

Report Wizard.

 Show Formula Button – Enables/Disables the Formula Editor button in the Layout tab of

the Express Report Wizard.

 Database Timeout – Maximum number of seconds for a single query to run.

 Read Database for Filter Values – Enable/Disables filter dropdowns to contain values

from the database. Set to false only if retrieving values for the dropdown will take more

than a couple of seconds.

 Show Report Scheduling Option – Enables/Disables the scheduler icon on the Main

Menu. Set to False to disable users from creating scheduled reports.

 Show Email Report Options – Enables/Disables the email report icon on the Main Menu.

Set to False to disable users from emailing reports.

 Show Schedule Reports Manager – Enables/Disables the scheduler manager icon on the

Main Menu. Set to False to prevent users from editing existing schedules.

 Scheduler Manager User View Level – Controls what information each user can see in the

Schedule Manager. These levels utilize the Parameters companyId and userId. There are

three possible values:

o Current User: Can only view and delete report jobs that have been created by that

user.

o All Users in Current Company: User can only view and delete report schedules for

their company.

o All Users in All Companies: User can view and delete report schedules for all

companies (administrator).

 Allow Creation/Editing of Dashboard Visualizations – Enable/Disable the New Data

Visualization item in the Toolbox and the Data Fields of the Dashboard Designer.

Folder Access

The Folder Access controls which report folders are visible and executable for the Role.

To add a folder click Add ().

Click in the Folder Name column and select the Folder you want to add.

Exago Technical Guide

80 Exago Inc.

To make the folder execute-only check the box in the Read Only column.

To delete a folder click the delete button ().

NOTE. If Include All Folders is checked this list will deny access to the folders added, if

unchecked the list will allow access to the folders added.

If All Folders Read Only is checked this list will overwrite the setting when a folder is added

without the Read Only option checked.

Object Access

The Objects Access controls which Data Objects are accessible to the Role. A report can only be

run if the Role has access to all the Data Objects on the report.

To add a Data Object click Add ().

Click in the Data Object Name column and select the Object you want to add.

To delete an Object click the delete button ().

NOTE. If Include All Data Objects is checked this list will deny access to the Data Objects

added, if unchecked the list will allow access to the Data Objects added.

Filters Access

The Filter Access provides a means to filter a Data Object by Role.

To add a Data Object click Add ().

Click in the Data Object Name column and select the Object you want to add.

Enter the filter string in the Filter String Column. The filter string should be Standard SQL. This

string will be added to the Where clause.

To delete a Data Object click the delete button ().

Exago Technical Guide

81 Exago Inc.

Extensions

This chapter explains how to utilize several of Exago's Extensions, which permit the host

application to extend the capabilities and behaviors of Exago.

There are several types of Extensions offered:

 Functions – Custom code that can be used as formulas inside or reports and dashboards.

 Filter Functions – Custom code to provide filters with dynamic values that are updated

each time the report is executed.

 Server Events – Events in the Exago runtime where custom code handlers can determine

the application's behavior.

 Custom Options – Place holders for values that a user can specify while editing a report.

These values can then be utilized by other extensions such as custom functions or server

events.

Functions

Exago comes with a large number of predefined functions that can be used to make formulas in

the Formula Editor. As an administrator you may create additional custom functions using high

level coding languages. Custom functions will be accessible to users in the Formula Editor or by

Exago Technical Guide

82 Exago Inc.

typing their name into a cell of a report. Functions can be added to a preexisting function category

or a function can be put into a new custom category.

Functions can be written in C#, JavaScript or VB. Net. Functions can take as few or many

arguments as inputs, provided that the max number of arguments is greater than or equal to the

minimum number of arguments.

Functions written in C# and VB.Net can get and set elements from the current session of Exago

such as Parameter values. See Exago Session Info for more information.

Creating Functions

To create a custom function, select 'Functions' in the Main Menu and click the Add button ().

This will open a Custom Function tab.

Each Custom Function has the following properties:

Name – A name for the function that will be displayed to the end users.

Description – A description of the function that will be displayed to the end users.

NOTE. To support multi-language functionality, if the description matches the id of

any element in the language files then the string of that language element will be

used instead of the description. For more information see Multi-Language

Support.

 Minimum Number of Arguments – The minimum number of values that an end user

must enter in the function separated by commas.

 Maximum Number of Arguments - The maximum number of values that an end user

may enter in the function separated by commas.

NOTE. Arguments are passed to your code as an array of generic objects so there

can be as many arguments as desired. The argument array is accessed by args[

].Arguments are passed into the function as objects.

 Category – A way of grouping similar functions. You can assign custom functions to an

existing Exago Category or create a new Category. To create a new Category, select

“Other”. An input field will appear. Leaving this field blank will assign your Function to the

“Other” Category in the Exago Formula Editor. A non-empty value in this field tells Exago to

create a new Category with the specified name.

NOTE. To support multi-language functionality, if the custom category matches the

id of any element in the language files then the string of that language element will

be used instead of the description. For more information see Multi-Language

Support.

 Language – The high-level language of the code for the function. May be C#, JavaScript or

VB.Net.

Exago Technical Guide

83 Exago Inc.

 Reference – A semicolon-separated list of any dlls that need to be referenced by the

Custom Function. If the dlls are not accessible in the GAC then the dlls must be copied to

the Bin folder of Exago or the reference should point to their physical path.

NOTE. System.dll does not need to be listed as a reference as it is already available.

 Program Code – The program code for your Custom Function. Press the green check mark

to verify the code executes properly ().

NOTE. Parameters may be referenced within custom functions by placing their

name between @'s.

Exago Session Info

Custom Functions can access the Exago session state through a “sessionInfo” variable. Access to

sessionInfo allows powerful new capabilities such as the ability to persist values across function

invocations, allowing each invocation to be aware of previous calls and behave accordingly.

NOTE. sessionInfo can also be accessed by Server Events, Action Events, and Assembly Data

Sources.

Exago Technical Guide

84 Exago Inc.

The second example in the next section provides a function that returns the line number of the

report being written by creating and incrementing a Stored Value which exists only for the report

execution.

The following properties are available:

 PageInfo – this is the parent of all information in the current session. This includes the

active Report and SetupData objects.

NOTE. Since the Report and SetupData objects are accessed frequently, direct pointers are

include for these objects.

 Report – an object that contains all of the report's Data Object, sort, filter and layout

information.

 SetupData – an object that contains all of the session's configuration settings including

Functions, Parameters, Data Objects, Joins, Roles, etc.

 CompanyId – contains the value specified by the companyId Parameter.

 UserId – contains the value specified by the userId Parameter.

The following methods are available:

 GetReportExecuteHtml(string reportName) – a method that executes the specified report

and returns its html output. This could be used to embed a report within a cell of another

report.

NOTE. The reportName is relative to the session's report path.

 GetParameter(string parameterName) – a method that returns the specigied Parameter

Object. GetParameter first looks in the Report Parameter collection, parameters beign

utilized by the report, and then in the Config Parameter collection, other parameters such

as hidden parameters or multi-tenant values.

 GetReportParameter(string parameterName) – a method that returns the specified

Parameter object that is utilized by the report being executed. Ex: If a parameter is

prompting a user for a value it will be available with the prompted value.

 GetConfigParameter(string parameterName) – a method that returns the parameter

object stored in the default configuration. Ex. Any parameter that is not being utilized by

the report being executed.

 WriteLog(string text) – a method that writes the specified text to the Exago's log file.

NOTE. The following methods utilize Stored Values which are objects that can be created

and set by custom functions during report execution to pass data between custom function

calls. Stored Values only exist for the duration of report execution.

Exago Technical Guide

85 Exago Inc.

 GetStoredValue(string valueName, object initialValue = null) – a method that retrieves a

Store Value. If a there is no Stored Value with the specified valueName, then one will be

created with the specified initialValue.

 SetStoredValue(string valueName, object newValue) – a method that sets the value of a

Store Value. Setting newValue to null will delete the Stored Value.

Calling Exago Functions

Cases may arise where you want to call an existing function within your Custom Function. Using

the class CellFormula and returninging the method CellFormula.Evaluate(). An example of this is

provided at the end of the Example section below.

Example

The following are two examples of Custom Functions.

Name – ReverseString

Description – Reverses characters in the input string

 Minimum Number of Arguments – 1

 Maximum Number of Arguments – 1

 Language – C#

 Category – Other

 Program Code –
string inputString = args[0].ToString();
char[] inputChars = inputString.ToCharArray();
System.Text.StringBuilder reverseStringSb = new System.Text.StringBuilder("");

for (int i = inputChars.Length - 1; i >= 0; i--)
{
 reverseStringSb.Append(inputChars[i]);
}

return reverseStringSb.ToString();

Name – LineNumber

Description – Displays the number of the line of the report.

 Minimum Number of Arguments – 0

 Maximum Number of Arguments – 0

 Language – C#

 Category – Other

 Program Code –
// this function creates a Stored Value and increments the value by 1 each time
the value is rendered on a report
int i = (int)sessionInfo.GetStoredValue("IncrementNumber", 0);

// increment the value by 1 and return
sessionInfo.SetStoredValue(“IncrementNumber", ++i);
return i;

Exago Technical Guide

86 Exago Inc.

Name – BarCode

Description – Transforms the input into an image of a barcode.

 Minimum Number of Arguments – 1

 Maximum Number of Arguments – 1

 Language – C#

 Category – Other

 References – WebReports.Api.Reports;(A dll to create barcodes)

 Program Code –
//Get argumentstring
inputField = args[0].ToString();
// Call custom code to get image as a bit string
filenamestring imageFilename = null;
// create formula text
string formulaText = String.Format("=LoadImage(\"{0}\")", imageFilename);
// create embedded formula for LoadImage function
CellFormula formula = CellFormula.CreateFormula(sessionInfo.PageInfo, formulaText,
CellVariableCollectionFilter.DataField);
// evaulate and return result
return formula.Evaluate(null);

Filter Functions

This chapter explains how to create Custom Filter Functions. Custom Filter Functions provide the

ability to make functions that will dynamically calculate a value for a filter using high level code.

Filter Functions can be written in C#, JavaScript or VB. Net.

Filter Functions written in C# and VB.Net can get and set elements from the current session of

Exago such as Parameter values. See Exago Session Info for more information.

Creating Filter Functions

To create a custom function, select 'Date Functions' in the Main Menu and click the Add button (

). This will open a Date Function tab.

Each Custom Date Filter Function has the following properties:

 Name – A name for the filter function that will be displayed to the end users.

 Description –

NOTE. To support multi-language functionality, if the filter function's name or description

prepended with '_wrFunctionId' matches the id of any element in the language files then

the string of that language element will be displayed to the user instead of the function

name/description.

Exago Technical Guide

87 Exago Inc.

Ex. For the example function below you could create a language id

'Begining_of_Month_wrFunctionId'. The string associated with this id would be

displayed instead of the name. For more information see Multi-Language Support.

 Filter Type – The data type of filters the fitler function should be available for.

 List Order – The order the filter function will appear amongst other filter functions of the

same type. Functions with a lower number will appear higher on the list. If two functions

have the same list value they will display in alphabetic order. All the built in filter functions

start with list value 100 or greater.

 Language – The high-level language of the code for the date function. May be C#,

JavaScript or VB.Net.

 Reference – A semicolon-separated list of any dlls that need to be referenced by the Date

Function. If the dlls are not accessible in the GAC then the dlls must be copied to the Bin

folder of Exago or the reference should point to their physical path.

NOTE. System.dll does not need to be listed as a reference as it is already available.

 Program Code – The program code for your Date Function. The code must return a

DateTime value. Press the green check mark to verify the code executes properly ().

NOTE. Parameters may be referenced within custom functions by placing their

name between @'s.

Example

The following is an example of a Custom Function.

 Name – Begining_of_Month

Exago Technical Guide

88 Exago Inc.

 Language – C#

 Program Code –
// retrieve the first day of the current month
DateTime now = DateTime.Now;
DateTime FirstDayInMonth = new DateTime(now.Year, now.Month, 1);
// return as date time
return FirstDayInMonth;

Server Events

Exago makes available certain events during the report execution process. When these events

occur, an Event Handler consisting of a .Net Assembly method or custom code snippet can be

executed to make impactful changes on the report execution process.

This chapter explains how to create Events Handlers that run custom code when reports are

executed.

 To add a new Event Handler select 'Server Events' in the Main Menu then click the add

button ().

 To edit an existing Event Handler either double click it or select it and click the edit button (

).

 To delete an Event Handler select it and click the delete button ().

Event Handlers

Event Handlers provide code that Exago can execute when certain events happen during the

report execution process. This code can either come from a .Net Assembly method or within

Exago configuration.

All existing Event Handlers are listed in the Main Menu under Server Events. All the Event

Handlers you are adding or editing will be displayed in a Tab entitled Server Events.

Each Event Handler has the following properties:

 Name – Provides a unique identifier for each Event Handler

 Function – Can either be Custom Code or a .Net Assembly method.

o Custom Code – To save code directly in Exago, select Custom Code from the first

function dropdown. Clicking on the second dropdown opens the custom code

menu.

See Custom Code for information on how to access the arguments for each Event.

Press the green check mark to verify the code executes properly ().

Custom Code has three properties:

Exago Technical Guide

89 Exago Inc.

 Language – Code can be written in C#, Javascript or VB. Net.

 References – A semicolon-separated list of any .Net Assembly dlls that need

to be referenced by the Event Handler

NOTE. System.dll does not need to be listed as a reference as it is already

available.

 Code – The code that will be executed by Exago when called.

o .Net Assembly Method – To utilize a .Net Assembly method first create a .Net

Assembly Data Source. Select the desired assembly from the first Function

dropdown. Clicking on the second dropdown will open a list of available methods.

See .Net Assemblies for information on how to access the arguments for each

Event.

NOTE. The Assembly's dll will be locked by Exago when it is first accessed. To replace

the dll, unlock it by restarting the IIS App pool.

NOTE. If you want to utilize the sessionInfo object that is passed to all Event

Handlers the Assembly must include a reference to WebReportsApi.dll. For more

information see Session Info.

NOTE. All methods used as Event Handlers must be static.

Exago Technical Guide

90 Exago Inc.

 Global Event – In this dropdown select an Event to indicate that the Event Handler should

be called whenever this event occurs for all report execution. Leave Global Event set to

'None' to indicate the Event Handler is meant for a specific report.

o Specified Event – The Event Handler will be called when the specified Event

happens during the execution of all reports.

Ex. Selecting OnReportExecuteStart from this dropdown will cause the Event

Handler to be called whenever any Report Execution begins.

o None – The Event Handler will not be called automatically for all reports, but can be

set to run for the execution of specific reports. See Setting Event Handlers on

Specific Reports for more information.

Custom Code

Event Handler custom code can be saved directly in Exago via the Administration Console. There

are two objects that custom code can utilize to access information relevant to an Event.

 sessionInfo – Without any special references, all custom code can make use of a

sessionInfo object that provides access to elements of Exago current session such as

parameters, filters, the logger, etc.

 arguments array – Custom code can also access an array of input values called args[]. For

each Event the content of the args array will be different. The content of this array is

detailed in Full Description of Events.

.Net Assemblies

Event Handlers can also reside in .Net Assemblies. The following are important details for using

.Net Assemblies as Event Handlers.

 The Assembly's dll will be locked by Exago when it is first accessed. To replace the dll,

unlock it by restarting the IIS App pool.

 The first argument of all Event Handlers is the sessionInfo object which can be used to

access elements within the Exago session. To make use of this object the assembly must

reference WebReportsApi.dll.

If the code does not need to make use of sessionInfo then the method signature in the

assembly can declare sessionInfo as an object instead of as a sessionInfo data type. For

more information see Available Events.

Setting Event Handlers on Specific Reports

Event Handlers can either be set to run during the execution of every report or to only be called

when executing specific reports.

Exago Technical Guide

91 Exago Inc.

NOTE. When multiple Event Handlers are set to run for a single Event, all the Event Handlers are

run using the same input values and then the first non-null return value is used by Exago. This

means that the return value of Report-specific Event Handlers will take precedence over global

Event Handlers.

Ex. Suppose there is a global Event Handler for OnExecuteSqlStatmentConstructed that

logs each reports SQL query and a report specific Handler that modifies the 'Where' clause

of the SQL. When the specified report is run, both Handlers will be executed and return an

SQL string. If non-null, the modified SQL from the report specific Event Handler will be

utilized by Exago to query the database.

To set an Event Handler to be report specific:

In the Administration Console:

1. Set the Event Handler's Global Event to None. Click Apply or OK.

2. In the Feature/UI Settings set Show Events Window to True. Click Apply or OK.

In the Reporting Application:

1. In the Main Menu select the desired report and double click or click the edit button ().

2. Select the Report Options drop-down menu and hover over Advanced. Click Events. This

will cause the Events Menu to appear.

3. In the Event Menu click the Add button ().

4. From the Event dropdown select when the Event Handler should be called.

5. From the Action dropdown select which the desired Event Handler.

6. Click OK and save the report.

Exago Technical Guide

92 Exago Inc.

Displaying User Messages from Server Events

Some Server Events are designed to display messages to the user based on a return value. For

most other server events a user message can be displayed by throwing the following exception

method.

WrUserMessage(string messageOrId, wrUserMessageType Type)

Description Displays a message to the user.

Remarks

wrUserMessageType can either be Text or Id.

 Text – The user message will display the string message
 Id – The user message will display the string associated with the Id in the Language
Files.

This requires a reference to WebReports.Api.Common

Example

//OnWebServiceExecuteEnd, inspect the returned value and throw a
//message if it matches any of the error messages.

object webServiceResult = args[0];

switch(webServiceResult.ToString())
{
 case "message1" : throw new WrUserMessage("Some Message to User",
WrUserMessageType.Text);

 // add any other messages
}

return webServiceResult;

NOTE. This cannot be used for the Events OnConfigLoadStart or OnConfigLoadEnd.

Exago Technical Guide

93 Exago Inc.

List of Events

The following Events can be assigned Event Handlers for runtime invocation.

OnDataCombined – Occurs when data is combined and initially processed. Expects a Data Table

to be returned.

OnReportExecuteStart – Occurs when report execution begins. Expects a string to be returned to

indicate if execution should proceed.

OnReportExecuteEnd – Occurs when a report execution finishes. Return value will be ignored.

OnWebServiceExecuteEnd – Occurs when a web service data source returns data. Expects an xml

string to be returned.

OnExecuteSqlStatmentConstructed – Occurs before the data source is queried for report

execution. Expects a SQL string to be returned.

OnFilterSqlStatmentConstructed – Occurs before the data source is queried to populate the

filter dropdown. Expects an SQL string to be returned.

OnOkFiltersDialog – Occurs when OK is clicked on the Filter Execution Window. Expects a string

to be returned to indicate if execution should proceed.

OnOkParametersDialog – Occurs when OK is clicked on the Parameter Execution Window.

Expects a string to be returned to indicate if execution should proceed.

OnScheduledReportExecuteSuccess – Occurs when a scheduled report is executed. Expects a

boolean to be returned to indicate if the report should be sent as scheduled or intercepted.

OnRenameFolderStart – Occurs when a user attempts to rename a folder. Expects a string to be

returned to indicate if execution should proceed.

OnRenameFolderEnd – Occurs when a folder has been renamed. Return value will be ignored.

OnConfigLoadStart – Occurs when the configuration of Exago is initially loaded. Expects a void

return.

OnConfigLoadEnd – Occurs after the last Api changes have been made to Exago's configuration.

Expects a void return.

OnDataFieldsRetrieved – Occurs after Data Fields are retrieved from specific Data Objects.

Expects a Data Table to be returned to indicate how to display the Data Fields.

OnGetUserPreferences – Called to retrieve user preferences when entering the application and

editing/executing reports.

OnSetUserPreferences – Called to save user preferences when a user specifies startup reports or

saves Interactive Report Viewer changes as a user report.

OnLoadReportParameters – Passes a list of Parameter elements that can be reordered or

modified before they are sent to the client for display.

OnExceptionThrown – Occurs when an exception is thrown in the Exago user interface. Used to

log additional information to the logfile.

OnExportCsvCell – Occurs prior to exporting a CSV cell for the purpose of overriding the standard

export results.

OnParameterSqlStatementConstructed – Occurs after a parameter dropdown object is

constructed. Allows for modifying the object SQL.

OnAfterLoadReportsList – Occurs after reports created in Exago have been loaded in the report

tree object, for the purpose of allowing additional items to be loaded in the report tree.

Exago Technical Guide

94 Exago Inc.

NOTE. For the following descriptions the data type WebReports.Api.Reports.SessionInfo is refered

to as SessionInfo. The class System.Data.DataTable is referred to as DataTable.

OnDataCombined

The OnDataCombined Event allows the inspection and/or modification of the raw data set after

retrieval from the Data Sources and initial combining within Exago. A common use of this event is

to modify or blank sensitive data fields in a Report depending on the authorizations available to

the user executing the report.

Signature

For custom code the args array is structured as follows:

args[] contains a single DataTable of the combined data in position zero.

For .Net Assemblies the method signature is as follows:

DataTable EventHandlerName(SessionInfo sessionInfo, DataTable combinedData)

Expected Return

The OnDataCombined Event expects a DataTable to be returned. The schema of the DataTable

must match that of combinedData.

Notes

In the DataTable, if a Data Object has an Id then that will be used as the column names, otherwise

the database name will be used. Data Fields will always use their database names despite any

Column Metadata.

Example

The following example checks a Parameter called AllowViewSSN and then censors the columns

named SocialSecurityNumber.

System.Data.DataTable dt = (System.Data.DataTable) args[0];
if (sessionInfo.GetConfigParameter(“AllowViewSSN”) == “true” &&
dt.Columns.Contains("Employees.SocialSecurityNumber"))
{
 //change the value of SSN to blank
 foreach (System.Data.DataRow row in dt.Rows)
 {
 for (int i = 0; i < row.ItemArray.Length; i++)
 {
 row["Employees.SocialSecurityNumber"] = “xxx-xx-xxxx”;
 }
 }
}
return dt;

Exago Technical Guide

95 Exago Inc.

NOTE. This assumes the column SocialSecurityNumber is saved as a string. If trying to set a date

or date time field to blank use System.DBNull.Value.

The following example filters the data based on a calculated age value.

// get field name and age from parameters to compare against
string fieldName = sessionInfo.GetParameter("fieldName").Value;
int age = int.Parse(sessionInfo.GetParameter("age").Value);

// log parameters
sessionInfo.WriteLog("FilterByAge fieldName: " + fieldName);
sessionInfo.WriteLog("FilterByAge age value: " + age.ToString());

// get DataTable view and filter
System.Data.DataTable dt = (System.Data.DataTable)args[0];
System.Data.DataView dv = dt.DefaultView;

foreach(System.Data.DataRowView drv in dv)
{
 if (drv[fieldName] == System.DBNull.Value || (int)((System.DateTime.Today -
(System.DateTime)drv[fieldName]).Days / 365) < age)
 drv.Delete();
}

// return filtered DataTable
return dv.ToTable();

OnReportExecuteStart

The OnReportExecuteStart Event occurs at the beginning of the Report Execution process. This

Event could be used to check properties of a report and log or stop execution.

Signature

For custom code the args array is structured as follows:

args[] is empty.

For .Net Assemblies the method signature is as follows:

string EventHandlerName(SessionInfo sessionInfo)

Expected Return

The OnReportExecuteStart Event expects a string to be returned. Based on the return string there

are three possible results.

 Null / Whitespace – If the string is null or whitespace then the report execution will

continue as expected.

Exago Technical Guide

96 Exago Inc.

 LanguageId – If the string matches the id of any element in the language files then the

string of that language element will be displayed as a message to the user and the report

execution will terminate. For more information see Multi-Language Support.

 Other – If the string does not match the id of any element in the language files then the

returned value will be displayed as a message to the user and the report execution will

terminate.

Notes

The report being executed can be accessed through the sessionInfo object by using

sessionInfo.Report.

Example

The following example shows how each report execution can be written to a log file.

//Writes the current time, companyId, userId and report name to a specified log file.
File.WriteAllText(“C:\ReportExecutionLogFile”, String.Format(“{0}, {1}, {2}, {3}”,
DateTime.Now.ToString(), sessionInfo.CompanyId, sessionInfo.UserId, sessionInfo.Report.Name));
//returns null to proceed with execution
return null;

OnReportExecuteEnd

The OnReportExecuteEnd Event occurs at the end of the Report Execution process. This Event

could be used to track which report executions return data.

Signature

For custom code the args array is structured as follows:

args[] contains a single Boolean indicating if Data qualified (True), or not (False).

For .Net Assemblies the method signature is as follows:

string EventHandlerName(SessionInfo sessionInfo, bool DataQualified)

Expected Return

Anything can be returned to the OnReportExecuteEnd Event. Any return value will be ignored.

OnWebServiceExecuteEnd

The OnWebServiceExecuteEnd Event occurs when data is returned from a Web Service Data

Source. This Event could be used to decompress or decrypt data being returned from a Web

Service Data Source.

Signature

Exago Technical Guide

97 Exago Inc.

For custom code the args array is structured as follows:

Args[] contains a single string of the data coming from the Web Service in position zero.

For .Net Assemblies the method signature is as follows:

string EventHandlerName(SessionInfo sessionInfo, string webServiceXml)

Expected Return

The OnWebServiceExecuteEnd Event expects a string to be returned.

NOTE. This Event is only occurs when the callType Parameter has the value 1.

Example

The following example shows how information from a web service could be decompressed.

byte[] compressedBuffer = Convert.FromBase64String((string)args[0]);

using (System.IO.MemoryStream stream = new System.IO.MemoryStream())
{

int uncompressedLength = BitConverter.ToInt32(compressedBuffer, 0);
 stream.Write(compressedBuffer, 4, compressedBuffer.Length - 4);
 byte[] uncompressedBuffer = new byte[uncompressedLength];

stream.Position = 0;
 using (System.IO.Compression.GZipStream compress = new
System.IO.Compression.GZipStream(stream, System.IO.Compression.CompressionMode.Decompress))
 {
 compress.Read(uncompressedBuffer, 0, uncompressedBuffer.Length);
 compress.Close();
 return System.Text.Encoding.UTF8.GetString(uncompressedBuffer);
 }
}

OnExecuteSqlStatementConstructed

The OnExecuteSqlStatementConstructed Event occurs just before SQL is sent to the Data Source

to retrieve data for report execution. This Event could be used to inspect, log or modify the SQL

that is being used for report execution.

Signature

For custom code the args array is structured as follows:

args[] contains a string representing the execution SQL in position zero.

For .Net Assemblies the method signature is as follows:

string EventHandlerName(SessionInfo sessionInfo, sting exectuionSql, SqlObject

sqlObject)

Exago Technical Guide

98 Exago Inc.

Expected Return

The OnExecuteSqlStatementConstructed Event expects a string to be returned.

Example

The following example shows how report execution SQL can be written to a specified log file.

//Writes the current time, companyId, userId and report name to a specified log file.
File.WriteAllText(“C:\ReportSqlLogFile”, String.Format(“{0}, {1}, {2}, {3}”,
DateTime.Now.ToString(), sessionInfo.CompanyId, sessionInfo.UserId, args[0]));
//returns null to proceed with execution
return args[0];

OnFilterSqlStatmentConstructed

The OnFilterSqlStatementConstructed Event occurs just before SQL is sent to the Data Source to

retrieve data to populate the filter dropdown menu of Exago. This Event could be used to inspect,

log or modify the SQL that is being used to populate the filter dropdown menu.

Signature

For custom code the args array is structured as follows:

args[] contains a string representing the filter SQL in position zero.

For .Net Assmblies the method signature is as follows:

string EventHandlerName(SessionInfo sessionInfo, sting filtersSql, SqlObject sqlObject)

Expected Return

The OnFilterSqlStatementConstructed Event expects a string to be returned.

Note

This Event will provide the SQL for the Filter Dropdown Object if that feature is being utilized. See

Data Objects for more information on Filter Dropdown Objects

Example

The following example shows how the filter dropdown SQL can be modified to provide the top 200

results instead of the top 100.

//this code example assumes SQL Server as a Data Source
string sql = args[0].ToString();
string newSql = sql.Replace("Top 100" , "Top 200");
return newSql;

Exago Technical Guide

99 Exago Inc.

OnOkFiltersDialog

The OnOkFiltersDialog Event occurs when a user clicks on the Ok button in the Filter Execution

Window. This window only displays if prompt for value was checked for a filter. This Event could be

used to see what filters are being used on the report and/or assure that a filter exists.

Signature

For custom code the args array is structured as follows:

args[] is empty.

For .Net Assemblies the method signature is as follows:

string EventHandlerName(SessionInfo sessionInfo)

Expected Return

The OnOkFiltersDialog Event expects a string to be returned. Based on the returned string there

are three possible results.

 Null / Whitespace – If the string is null or whitespace then the report execution will

continue as expected.

 LanguageId – If the string matches the id of any element in the language files then the

string of that language element will be displayed as a message to the user and the report

execution will terminate. For more information see Multi-Language Support.

 Other – If the string does not match the id of any element in the language files then the

returned value will be displayed as a message to the user and the report execution will

terminate.

Notes

The filters of the report being executed can be accessed through the sessionInfo object by using

sessionInfo.ReportExecFilters.

Example

The following example provides C# code that will prevent the Filter Execution Window from closing

if there are no filters specified. This and similar checks can help prevent users from executing

Reports that result in unnecessarily-large queries going against the Data Source(s).”

string hasFilters = null;

if(sessionInfo.Report.Filters.Count() > 0)
{
 hasFilters = “Please add Filters to the Report.”;
}

return hasFilters;

Exago Technical Guide

100 Exago Inc.

OnOkParametersDialog

The OnOkParametersDialog Event occurs when a user clicks on the Ok button of the Parameter

Prompt Window. The window will only displays if the report has a non-hidden parameter with a

prompt text. This Event could be used to see what values the user is setting for each prompting

parameter.

Signature

For custom code the args array is structured as follows:

args[] is empty.

For .Net Assmblies the method signature is as follows:

string EventHandlerName(SessionInfo sessionInfo)

Expected Return

The OnOkParametersDialog Event expects a string to be returned. Based on the returned string

there are three possible results.

 Null / Whitespace – If the string is null or whitespace then the report execution will

continue as expected.

 LanguageId – If the string matches the id of any element in the language files then the

string of that language element will be displayed as a message to the user. For more

information see Multi-Language Support.

 Other – If the string does not match the id of any element in the language files then the

returned value will be displayed as a message to the user.

Notes

This Event cannot override the value of Parameters for the report execution.

The Parameters of the report being executed can be accessed through the sessionInfo object by

using sessionInfo.Report.

Example

The following example provides C# code that will prevent the Parameters Execution Window from

closing if a specified parameter is blank. The user will be prompted with a message from the

language file.

//assumes the language file has an element with the id “PleaseEnterParam”
return (String.IsNullOrWhiteSpace(sessionInfo.GetReportParameter("promptName").Value) ?
"PleaseEnterParam" : null);

Exago Technical Guide

101 Exago Inc.

OnScheduledReportExecuteSuccess

The OnScheduledReportExecuteSuccess Event occurs when scheduled report execution is

finished. This event can be used to create an audit log of scheduled reports or check values on the

report and determine if they should be sent as scheduled or interrupted.

Signature

For custom code the args array is structured as follows:

args[] is empty.

For .Net Assemblies the method signature is as follows:

bool EventHandlerName(SessionInfo sessionInfo)

Expected Return

The OnScheduledReportExecuteSuccess Event expects a Boolean to be returned. Returning True

will prevent the scheduled report from being sent. Returning False will allow the report schedule

to proceed with processing.

NOTE. This server event is called for Remote Execution of reports. However, the return

value will be ignored as there is no email to be prevented.

OnConfigLoadStart

The OnConfigLoadStart Event occurs after the configuration file is loaded.This may happen in the

Api when the api object is initialized or in Exago when entering the application directly. This event

can be used to change any configuration information on-the-fly via the SessionInfo object, such as

decrypting database connection strings.

Signature

For custom code the args array is structured as follows:

args[] is empty.

For .Net Assmblies the method signature is as follows:

void EventHandlerName(SessionInfo sessionInfo)

Expected Return

The OnConfigLoadStart Event has a void return value.

Exago Technical Guide

102 Exago Inc.

OnConfigLoadEnd

The OnConfigLoadEnd Event occurs after all Api changes are made and the host application

container is redirected to Exago. If entering Exago directly this event is occurs immediately after

OnConfigLoadStart. If the Api is being used but the host application does not redirect to Exago

(such as using the direct Report.GetExecuteData method) the event can manually be called using

the public method Api.SetupData.FireOnConfigLoadEndEvent().

Similar to the OnConfigLoadStart event, this event can also be used to change configuration

information on-the-fly via the sessionInfo object. However making these changes after the Api

calls can provide extra convience. For example if the host application is using the Web Service Api

it can set a single parameter value using the WebService and then based on that parameter make

further configuration changes within this event. This provides better performance, security and a

reduction of http requests.

Signature

For custom code the args array is structured as follows:

args[] is empty.

For .Net Assemblies the method signature is as follows:

void EventHandlerName(SessionInfo sessionInfo)

Expected Return

The OnConfigLoadEnd Event has a void return value.

OnRenameFolderStart

The OnRenameFolderStart Event occurs when a user attempts to rename a folder. This event

happens before the folder is renamed permitting you to stop the renaming if desired.

Signature

For custom code the args array is structured as follows:

args[] contains two strings, the first represents the fully qualified current folder name, the

second is the new folder name.

For .Net Assemblies the method signature is as follows:

string EventHandlerName(SessionInfo sessionInfo, string currentFolderName, string

newFolderName)

Expected Return

Exago Technical Guide

103 Exago Inc.

The OnRenameFolderStart Event expects a string to be returned. Based on the returned string

there are three possible results.

 Null / Whitespace – If the string is null or whitespace then the report execution will

continue as expected.

 LanguageId – If the string matches the id of any element in the language files then the

string of that language element will be displayed as a message to the user. For more

information see Multi-Language Support.

 Other – If the string does not match the id of any element in the language files then the

returned value will be displayed as a message to the user.

OnRenameFolderEnd

The OnRenameFolderEnd Event occurs after user has renamed a folder.

Signature

For custom code the args array is structured as follows:

args[] contains two strings, the first represents the fully qualified old folder name, the

second is the new folder name.

For .Net Assemblies the method signature is as follows:

string EventHandlerName(SessionInfo sessionInfo, string currentFolderName, string

newFolderName)

Expected Return

Anything can be returned to the OnRenameFolderEnd Event. Any return value will be ignored.

OnDataFieldsRetrieved

The OnDataFieldsRetrieved Event occurs after Data Fields are retrieved for a specific Data Object.

This event is commonly used to change the order Data Fields are displayed in the Data Menu of

the Report Designer.

Signature

For custom code the args array is structured as follows:

args[] is contains three objects, the first a System.Data.DataTable containing the names and

metadata of the Data Fields, the second the Data Object as a

WebReports.Api.Reports.Entity object, the third a reference to a

WebReports.Api.Data.DataObjectBase object which calls the event.

Exago Technical Guide

104 Exago Inc.

For .Net Assemblies the method signature is as follows:

string EventHandlerName(SessionInfo sessionInfo, DataTable originalDataFields, Entity

dataObject, DataObjectBase eventCaller)

Expected Return

Expects a System.Data.DataTable return value, which represents the modified data.

Notes

The DataTable being being passed to the event in the first argument has already applied Column

Metadata.

Example

The following example shows how the fields could be displayed in reverse alphabetic order.

//this code example makes referens to System.Data.dll and System.xml.dll and uses the namespaces
Syste.Data, WebReports.Api.Reports and WebReports.Api.Data

DataTable dt = args[0] as DataTable;
DataView dv = dt.DefaultView;
dv.Sort = “column_name desc”;
return dv.ToTable();

OnGetUserPreferences

The OnGetUserPreferences Event is used to retrieve user preferences when entering the

application and when editing/executing reports.

Signature

For custom code the args array is structured as follows:

args[] is contains one object, a string with the user preference's id.

For .Net Assemblies the method signature is as follows:

string EventHandlerName(SessionInfo sessionInfo, string id)

Expected Return

Expects a string return value, which represents the user preference's value.

Notes

The event will only be called if the 'User Preference Storage Method' is set to Server Events in the

User Settings.

Example

Exago Technical Guide

105 Exago Inc.

The following example shows how the event can retrieve the user preference's value from a

database.

//this code retrieves user preferences from a database. This assumes two things:
// 1. A global variable exists called reportTableName which represents where the user preferencs
are stored
// 2. A method called ExecuteSQLCmd exists to execute sql statements

string stmt = String.Format("Select upValue From {0} Where id = @id", reportTableName);
List<SqlParameter> sqlParams = new List<SqlParameter>();
sqlParams.Add(new SqlParameter("@id", id));
Object queryResult;
queryResult = ExecuteSQLCmd(stmt, sqlParams);
return queryResult == null ? null : queryResult.ToString();

OnSetUserPreferences

The OnSetUserPreferences Event is used to store user preferences when setting startup reports or

saving Interactive Report Viewer changes as user reports.

Signature

For custom code the args array is structured as follows:

args[] is contains two objects, the first a string with the user preference's id and the second

a string with the user preference's value.

For .Net Assemblies the method signature is as follows:

void EventHandlerName(SessionInfo sessionInfo, string id, string value)

Expected Return

The event has a void return value.

Notes

The event will only be called if the 'User Preference Storage Method' is set to Server Events in the

User Settings.

Example

The following example shows how the event can retrieve the user preference's value from a

database.

//this code retrieves user preferences from a database. This assumes two things:
// 1. A global variable exists called reportTableName which represents where the user preferencs
are stored
// 2. A method called ExecuteSQLCmd exists to execute sql statements

string stmt = String.Format("Select upValue From {0} Where id = @id", reportTableName);
List<SqlParameter> sqlParams = new List<SqlParameter>();
sqlParams.Add(new SqlParameter("@id", id));

Exago Technical Guide

106 Exago Inc.

Object queryResult;
queryResult = ExecuteSQLCmd(stmt, sqlParams);
return queryResult == null ? null : queryResult.ToString();

OnLoadReportParameters

The OnLoadReportParameters event passes a list of Parameter elements that can be reordered or

modified before they are sent to the client for display. Called when report parameters are loaded,

but before any processing has occurred. By default, parameters are sorted alphabetically by name.

Signature

For custom code the args array is structured as follows:

args[] is contains one object, a list of Parameter elements.

For .Net Assemblies the method signature is as follows:

void EventHandlerName(SessionInfo sessionInfo, List<Parameter> parameters)

Expected Return

The event has a void return value.

Example

The following example sorts Parameters based on their dependencies on each other in custom

SQL.

List<Parameter> parameters = args[0] as List<Parameter>;
List<string> sortedParameters = new List<string>();

string paramPattern = @"@\w+@";

foreach(Parameter p in parameters) {
 int minPosition = 0;
 foreach (Match m in Regex.Matches(p.DropdownSqlStmt, paramPattern))
 {
 string matchedParamName = m.Value.Replace("@","");
 int matchIndex = sortedParameters.IndexOf(matchedParamName);
 Logger.Instance().Info("Found instance of " + matchedParamName + " (at index " +
matchIndex + ") in parameter " + p.Id);
 if(matchIndex >= minPosition)
 minPosition = matchIndex+1; //Needs to go after this since it is dependent upon it
 }
 sortedParameters.Insert(minPosition, p.Id);
}

parameters.Sort((a,b) => {

 int a_order = sortedParameters.IndexOf(a.Id);
 int b_order = sortedParameters.IndexOf(b.Id);

Exago Technical Guide

107 Exago Inc.

 if(a_order >= 0 && b_order >= 0)
 return (a_order - b_order);

 return 0;
});

for(int i=1; i<parameters.Count; i++) {
 parameters[i].IsEnabled = false;
}

return null;

OnExceptionThrown

Called when an application exception is thrown in the user interface. Generally used to pass

additional or different information to the Exago logfile.

Signature

For custom code the args array is structured as follows:

args[] is contains two objects, the System.Exception, and the

WebReports.Api.Common.Logger (which provides write access to the Exago logfile).

For .Net Assemblies the method signature is as follows:

bool EventHandlerName(SessionInfo sessionInfo, Exception exception, Logger logger)

Expected Return

The event expects a boolean return value, which if true, will not continue logging the error.

Example

var exception = args[0] as System.Exception;
var logger = args[1] as WebReports.Api.Common.Logger;

logger.Error(String.Format("User Id: {0}", sessionInfo.SetupData.Parameters.UserId), exception);

return true; // means not to continue logging (since we already did)

OnExportCsvCell

Called prior to exporting a CSV cell for the purpose of overriding the standard export results. If the

server event is defined, it is called for every visible cell in a report on CSV export. Allows for

customizing cell contents on a cell-by-cell basis.

Signature

Exago Technical Guide

108 Exago Inc.

For custom code the args array is structured as follows:

args[] contains two objects: The first argument args[0] is the Cell object in its entirety, which

contains a variety of cell attribute information including row and col indices, cell type,

format, convenience flags, linked report data, etc. The second argument args[1] provides

the raw text of the cell as a string.

For .Net Assemblies the method signature is as follows:

string EventHandlerName(SessionInfo sessionInfo, Cell cell, string rawCellText)

Expected Return

The event expects a string or null return value. If null is returned, the event will interpret this as a

flag indicating that no custom CSV data is being provided, and to return the report's CSV output. If

a string is returned (including an empty string), the cell will output the string as provided,

overriding the report data for that cell.

Example

string rawCellText = args[1].ToString(); // this is the raw cell text
return "\"" + rawCellText + "\""; // return the cell contents, INCLUDING surrounding quotes

OnParameterSqlStatementConstructed

Called after a parameter dropdown object is constructed. Allows for modifying the object SQL.

Signature

For custom code the args array is structured as follows:

args[] contains one object, the SQL string which is passed to the server to construct the

parameter dropdown.

For .Net Assemblies the method signature is as follows:

string EventHandlerName(SessionInfo sessionInfo, string sqlStatement)

Expected Return

The event expects a string return value: The (modified) SQL statement to be passed to the server

to construct the parameter dropdown.

Example

// Orders dropdowns as descending
string sql = args[0].ToString();
return sql.Replace("asc", "desc");

Exago Technical Guide

109 Exago Inc.

OnAfterLoadReportsList

Occurs after reports created in Exago have been loaded in the report tree object, for the purpose

of allowing additional items to be loaded in the report tree.

Signature

For custom code the args array is structured as follows:

args[] contains one object: A TreeNodeCollection, a list of TreeNode objects which are used

to populate the report tree.

NOTE. The TreeNodeCollection and TreeNode classes are defined in the WebReports.dll

library, which is not automatically referenced in the Admin Console. To use this server

event, add WebReports.dll as a reference, and include the WebReports.UI.Controls

namespace.

For .Net Assemblies the method signature is as follows:

void EventHandlerName(SessionInfo sessionInfo, TreeNodeCollection nodes)

Expected Return

The event expects a void return value.

Example

/* Disable a node */
TreeNodeCollection tree = args[0] as TreeNodeCollection;
string[] nodes = { "Sample Reports" };
TreeNode selected = tree.GetNode(nodes);
selected.Disabled = true;
return null;

Action Events

Action Events are a framework for adding custom extensions to Exago. They are a simple and

relatively straightforward way to customize the way the application responds to user input.

At their most basic, action events are custom code which activate when a certain condition in the

Exago application is met. They can be used for a variety of purposes, including adding interactivity

to reports and modifying the behavior of certain items in the Exago interface. Events can use only

client-side scripts or a combination of client and server-side interaction.

Action Events can be grouped into two general categories: Local and Global events.

 Local events have two sub-categories:

o Handlers attached to items in reports and set to fire automatically, or when the item

is interacted with in the Report Viewer.

Exago Technical Guide

110 Exago Inc.

o Handlers attached to items in the Exago UI and set to fire when that item is clicked.

 Global events are active throughout the application, and fire when specific events occur.

This chapter explains how to create Local and Global action events, describes the ways in which

action events can interact with the Exago application, and lays out examples for common usages.

Creating Event Handlers

Action event handlers are created using the Admin Console or by directly editing the

WebReports.xml config file. They can also be added or modified on a per-session basis in a .NET

configuration using the Api.SetupData.ActionEvents server call.

 To create a new Event Handler expand 'Extensions' in the Main Menu, select 'Action

Events', and click the add button ().

 To edit an Event Handler either double click it or select it and click the edit button ().

 To delete an Event Handler select it and click the delete button ().

The Action Events tab will open and display the selected event or a New Action Event dialog:

Each Event Handler has the following properties:

 Name – A unique identifier for each Event Handler.

 Function – Can either be Custom Code or a .Net Assembly method.

o Custom Code – To save code directly in Exago, select Custom Code from the first

function dropdown. Clicking on the second dropdown opens the custom code

menu.

See Writing Action Events for information on how to access the arguments for

Exago Technical Guide

111 Exago Inc.

each Event. Press the green check mark to verify the code executes properly ().

Custom Code has four properties:

 Language – Code can be written in C#, Javascript or VB.NET.

 References – A semicolon-separated list of any .NET Assembly dlls that need

to be referenced by the Event Handler.

NOTE. System.dll does not need to be listed as a reference as it is already

available.

 Namespaces – A semicolon-separated list of namespaces in the referenced

dlls or the Exago API library.

 Code – The code that will be executed.

o .NET Assembly Method – To utilize a .NET Assembly method first create a .NET

Assembly Data Source. Select the desired assembly from the first Function

dropdown. Clicking on the second dropdown will open a list of available methods.

See Writing Action Events for information on how to access the arguments for

each Event.

NOTE. The Assembly's dll will be locked by Exago when it is first accessed. To replace

the dll, unlock it by restarting the IIS App pool.

NOTE. If you want to utilize the sessionInfo object that is passed to all Event

Handlers the Assembly must include a reference to WebReportsApi.dll. For more

information see Exago Session Info.

NOTE. All methods used as Event Handlers must be static.

 Event Type – Select an option in this dropdown to create an event that will be executed

when certain client-side actions are taken.

o None – This event handler is a Global Event. You must specify a Global Event Type in

the following dropdown.

Exago Technical Guide

112 Exago Inc.

o Load – The event handler will execute when a report item is loaded in the Report

Designer, Viewer, or upon Export. This type of handler is typically used to interpret

and then apply alterations to report data, e.g. conditionally changing the colors on

charts or maps. Load events can affect Export formats (PDF, Excel, RTF, CSV).

o Click – The event handler will execute when a user clicks on an item in a report or in

the Exago UI. This type of handler is typically used to add additional interactive

elements to reports or to the Report Designer. Click events will not function

on Export formats.

 Global Event Type – Select an option in this dropdown to create an event that will be

triggered when a condition is met in the Exago application. See Description of Global

Events.

NOTE. Selecting a Global Event Type will cause Exago to ignore any selected Local Event

Type.

 Assigned UI Item(s) – This field designates a comma-separated list of UI item IDs for items

in the Exago interface. These elements can be intercepted and modified by assigning them

in this field. For a list of compatible UI items, see List of UI Elements.

NOTE. This selection field only applies when the Event Type is Click. This field will be

ignored when any other options are selected.

Adding Local Events to a Report Item

To enable an end-user to add Action Events to items in a report, the user must have access to the

Report Viewer and the Action Events toolbar option in the Report Designer. The options to enable

these features are located in the following sections of the Admin Console:

 Main Settings

 Feature/UI Settings > Standard Report Designer Settings

After a Local Action Event has been created, the event will be available to add to a report. In the

Report Designer, select the cell to which to add an event and click on the Linked Action Event ()

button. The Linked Action Events Menu will open:

Exago Technical Guide

113 Exago Inc.

Press Add () and select the event from the dropdown list. Press Delete () to remove the

selected event. Press OK () when finished.

If the event is a Load event, you will have to save and re-open the report to see the changes

applied in the Report Designer.

Writing Action Events

When an Action Event is fired, two primary parameter objects are passed: sessionInfo and

clientInfo. These are the main points of interaction with the Exago application.

 sessionInfo – Provides access to all the elements of the current Exago session. This is the

server-side information. For more information see Exago Session Info. The most relevant

elements are the following:

NOTE. To access the sessionInfo from a .NET Assembly, you must include a reference to

WebReportsApi.dll.

o SetupData – The Admin Console options and data.

o UserId and CompanyId parameters.

o Report – The current report object.

o JavascriptAction – This object is set when sessionInfo is called from an action

event. It is primarily used to load the client-side Javascript:

 JavascriptAction.SetJsCode(string JsCode) – Sets the javascript string.

NOTE. An action event must return the JavascriptAction object.

 clientInfo – A Javascript object that is called from within the client-side script. Provides

access to any specified client-side parameters and information about the item attached to

the event handler. For a breakdown of the elements in clientInfo, see List of ClientInfo

Elements.

Exago Technical Guide

114 Exago Inc.

arguments array – Action events can also access an array of input values called args[]. These

parameters can be set manually using a ServerCallback, but a few Global Events pass some

preset parameters related to their specific action.

Simple Example – Chart Formatting

A simple action event may look something like the following. This example is attached to a chart

object in a report. The code looks at the chart data to determine the highest and lowest values,

then sets custom colors and labels for the respective items.

This event requires no special references or namespaces. This event does not make any server

callbacks, and exclusively uses client-side scripts.

// First let's write the javascript.
string actionString = @"
 // Create variables for the lowest and highest values of the chart.
 var lowValueIdx = 0;
 var highValueIdx = 0;

 // Since we're attaching this action to a chart, the chartData object is set.
 // Cycle through the chart data items.
 for (var i = 1; i < clientInfo.chartData.data.length; i++)
 {
 // Determine the lowest and highest values.
 if (clientInfo.chartData.data[i].value < clientInfo.chartData.data[lowValueIdx].value)
 lowValueIdx = i;
 if (clientInfo.chartData.data[i].value > clientInfo.chartData.data[highValueIdx].value)
 highValueIdx = i;
 }

 // Set the colors and labels accordingly.
 clientInfo.chartData.data[lowValueIdx].color = "#FF0000";
 clientInfo.chartData.data[lowValueIdx].label += " (lowest)";
 clientInfo.chartData.data[highValueIdx].color = "#00FF00";
 clientInfo.chartData.data[highValueIdx].label += " (highest)";
";

// Finally, set the client script to the code we just wrote and return JavascriptAction.
sessionInfo.JavascriptAction.SetJsCode(actionString);
return sessionInfo.JavascriptAction;

Complex Example – Save Handling

Next, let's take a look at a more complex example. This example uses a global event to intercept

the standard save report functionality and prompt the user for some additional information,

which is then saved alongside the report. This example makes multiple server callbacks; in fact,

the action event itself is called multiple times with different arguments. Additionally, the event is

stored within a .NET Assembly.

NOTE. This example could be written in a variety of ways. The entire code could be saved within

the exago config file, for example. Or it could be split into multiple action events, each handling a

separate case. The format is flexible and completely up to you.

Exago Technical Guide

115 Exago Inc.

SaveReport.js

This is the client-side javascript responsible for creating and handling a Dialog prompt for the user.

// Called upon clicking the save report button
function ShowSaveReportWindow(clientInfo, reportId, reportName, description)
{
 // Can create raw Html or an Html DOM element. LoadHtmlDialog will handle both cases.
 var html = "<div style='padding:15px'>";
 html += "

Fill in the fields below, then click OK to continue.";
 html += "

";
 html += "Report Folder \\ Name <input id='reportName' type='text' />";
 html += "

";
 html += "Description <input id='description' type='text' />";
 html += "

";
 html += "Other Info <input id='other' type='text' />";
 html += "

";
 html += "</div>";

 // Create options argument; renderOnly tells Exago to keep visibility hidden, so that we
 can put html in DOM and set values as shown below.
 // Alternately, we could set values in our HTML above, and not set renderOnly to true.
 var options = {
 height: 300, width: 400, titleText: "Save Report", okCallback: function () {
 parent.OnOkSaveReport(clientInfo); },
 cancelCallback: function () { parent.OnCancelSaveReport(clientInfo); },
 renderOnly: true, showButtons: true
 };

 clientInfo.LoadHtmlDialog(html, options);

 // Set any values (for convenience).
 clientInfo.GetDialogElementById("reportName").value = reportName;
 clientInfo.GetDialogElementById("description").value = description;

 // Since we set renderOnly to true, we now need to show the dialog.
 clientInfo.ShowDialog();
}

// Called upon click of the OK button in the dialog.
function OnOkSaveReport(clientInfo)
{
 // Validate the data.
 var reportName = clientInfo.GetDialogElementById("reportName").value;
 var description = clientInfo.GetDialogElementById("description").value;
 var other = clientInfo.GetDialogElementById("other").value;

 // Additional (non-report) data can be saved either by ajax call in host application, or
 by passing data to server via server callback.
 // This demonstrates passing complex data via Exago interface:
 var oth = { x: 'xData', y: 7 };
 var arr = ['a', 'b', 'z'];
 // Objects are automatically converted to json; We'll need to deserialize on server side.
 var obj = { reportName: reportName, description: description, other: oth, array: arr };

 // Now call back to the server to save the data.
 clientInfo.ServerCallback("SaveReport", "save", obj);

 // We can close the dialog right away or when save is completed after server callback.

Exago Technical Guide

116 Exago Inc.

 clientInfo.CloseDialog();
}

// Called upon click of the Cancel button in the dialog.
function OnCancelSaveReport(clientInfo)
{
 clientInfo.CloseDialog();
}

ActionEvent.dll

This is the server-side code which tells Exago how to handle the user input. It's stored in an

assembly.

public class SaveReportDataOther
{

public string x;
public int y;

}

public class SaveReportData
{

public string reportName;
public string description;
public SaveReportDataOther other;
public string[] array;

}

public class ActionEvent
{

public static object SaveReport(SessionInfo sessionInfo, string actionType, string
jsonData)
{

JavascriptAction jsAction = sessionInfo.JavascriptAction;
switch (actionType)
{
case null:
// Initialization. Happens when Exago is first loaded in order to set the
javascript click event.

jsAction.SetJsCode("clientInfo.refreshDataOnReturn = false;
clientInfo.ServerCallback(\"SaveReport\", \"show\");");
break;

case "show":
// Happens when the save button is clicked. We're calling back to server since we
don't have all the following session values.

jsAction.SetJsCode(String.Format("parent.ShowSaveReportWindow(clientInfo,\"
{0}\",\"{1}\",\"{2}\");", sessionInfo.Report.Id,
jsAction.EncodeString(sessionInfo.Report.Name),
jsAction.EncodeString(sessionInfo.Report.Description)));
break;

case "save":
// Called when the OK button is clicked in our custom dialog. Exago has not saved
the report, but makes reportXml available to save as shown below.
// This describes how we can create complex data that gets mapped to a custom
class definition.

SaveReportData data = Json.Deserialize(jsonData, typeof(SaveReportData)) as
SaveReportData;

// Get the report xml to save.
string reportXml = sessionInfo.ReportObject.GetXml();

Exago Technical Guide

117 Exago Inc.

// Save the report. Report name and ID are embedded within reportXml, although we
can also pass them in seperate fields or within our combined jsonData.
// We can alert the user of something here.

sessionInfo.JavascriptAction.SetJsCode("clientInfo.Alert(\"Report has been
saved\");");
break;

default:
throw new Exception(String.Format("Invalid actionType: {0}", actionType));

}
return sessionInfo.JavascriptAction;

}
}

NOTE. For an additional action event example, see Responsive Dashboards.

Global Events

Global Events are actions that can be attached one of a specific list of events that will occur within

the Exago application. These events usually trigger in response to user input, but they are not

necessarily directly related to the input action, and thus will not transfer information about the

user input. However, global events are more reliable than capturing user clicks, especially in

response to actions that can be taken in a variety of ways, such as saving a report.

Please note that a subset of global events, namely the ones which are used to handle report tree

interaction, require a true or false return value in the client script. True indicates to Exago that we

don't want to continue with the "normal" course of action, which we have replaced with our

custom code. False indicates that we should continue with the normal action.

For example, when double-clicking on a third party (non-Exago) report, we may want to launch an

external editor instead of the Exago report designer. We would check the report type, and if it is a

third party report, we would insert our callout and then return True. If it is a regular Exago report,

we would continue with the normal course of action by returning False.

Also note that for these events to be able to have a return value, they must be enclosed within a

javascript function. This means that if you want to write the full client scripts in the admin console

(rather than calling out to a separate function) each event will need to be wrapped in an auto-

executing anonymous function, like so:

string jsCode = @"(function()
 {
 /* javascript stuff; */
 return true;
 }())";

sessionInfo.JavascriptAction.SetJsCode(jsCode);
return sessionInfo.JavascriptAction;

Exago Technical Guide

118 Exago Inc.

List of Global Events

Following is the full list of global events that can have an action event attached. Events which

require a true/false return value are labeled. This list applies to the current version of Exago, but it

is not final. Additional event triggers will be added in future releases.

OnSaveReport

Description Fires when a report is saved.

Remarks Passes the report object.

OnDuplicateReport

Description Fires when a report is duplicated.

Remarks Passes the report object.

OnEditReport

Description Fires when a report is opened for editing.

Remarks Passes the webReportsCtrl object, i.e. the application DOM, including the main UI
window, folders tree, main menu, etc. Returns true or false to indicate whether to
continue normal function. Must be enclosed in a function.

OnSelectReport

Description Fires when a report item in the folders tree is selected.

Remarks Passes the webReportsCtrl object, i.e. the application DOM, including the main UI
window, folders tree, main menu, etc. Returns true or false to indicate whether to
continue normal function. Must be enclosed in a function.

OnDeleteReport

Description Fires when a report is deleted from within the folders tree.

Remarks Passes the webReportsCtrl object, i.e. the application DOM, including the main UI
window, folders tree, main menu, etc. Returns true or false to indicate whether to
continue normal function. Must be enclosed in a function.

Exago Technical Guide

119 Exago Inc.

OnRenameReport

Description Fires when a report is renamed from within the folders tree.

Remarks Passes the webReportsCtrl object, i.e. the application DOM, including the main UI
window, folders tree, main menu, etc. Returns true or false to indicate whether to
continue normal function. Must be enclosed in a function.

OnExecuteReport

Description Fires when a report is executed from within the folders tree.

Remarks Passes the webReportsCtrl object, i.e. the application DOM, including the main UI
window, folders tree, main menu, etc. Returns true or false to indicate whether to
continue normal function. Must be enclosed in a function.

OnDoubleClickReport

Description Fires when report item in the folders tree is double-clicked.

Remarks Passes the webReportsCtrl object, i.e. the application DOM, including the main UI

window, folders tree, main menu, etc. Returns true or false to indicate whether to
continue normal function. Must be enclosed in a function.

OnRightClickReport

Description Fires when a report item in the folders tree is right-clicked.

Remarks Passes the webReportsCtrl object, i.e. the application DOM, including the main UI
window, folders tree, main menu, etc. Returns true or false to indicate whether to
continue normal function. Must be enclosed in a function.

OnAfterAddDataObject

 Description Fires after a data object is added to a report.

OnBeforeRemoveDataObject

 Description Fires before a data object is removed from a report.

OnChangeParameterValue

Exago Technical Guide

120 Exago Inc.

Description Fires when the value of a parameter in a prompt is changed

Remarks This is commonly used in conjunction with parameter drop-downs in order to
selectively enable, disable, and populate fields.

OnDashboardResize

Description Fires when a running dashboard has its container size changed, by either the web
page or the browser window

Remarks This is commonly used to enable dashboards to re-format their contents in response
to changing screen size.

OnBeforeCloseApiWindow

Description Called when the user clicks the cancel button in an iframe or modal window
containing a report wizard.

Remarks This can be used to provide a javascript callback to close the window automatically,
rather than returning to a blank page.

List of ClientInfo Elements

Following are brief descriptions of the properties and methods in the clientInfo object and what

they are commonly used for.

NOTE. If an element is not listed here, it is likely intended for internal use and should not be

accessed.

Properties

showHourglass

Description Set to false to disable the progress icon that appears when data is being saved or
loaded.

includeReportData

Description Set to false to prevent the client from passing the sessionInfo object to the server
whenever a server callback is done.

Remarks It may be useful to disable this to limit overhead if access to sessionInfo is not
needed for a specific callback.

includeReportSaveData

Exago Technical Guide

121 Exago Inc.

Description Set to false to prevent the client from passing the report save data to the server
whenever a server callback is done.

Remarks The SaveData is an additional set of data passed whenever a report is saved. This
information is only passed by an onSaveReport global event. It may be useful to
disable this to limit overhead if the save data is not needed for a specific callback.

refreshDataOnReturn

Description Set to false to prevent the client Viewer from refreshing the report whenever a
server callback alters report data.

Remarks If a SaveReport callback does not alter the appearance of the report, it may be
useful to disable this to limit overhead.

Utilities

Description Access to a large variety of utilities and controls.

Remarks Likely unnecessary in most cases. A pre-written action event provided to you by a
support analyst may make use of this.

webReportsCtrl

Description Access to the Exago Web Reports UI.

Remarks Often used in order to add or remove items from the report tree sidebar. Useful for
allowing Exago to handle third-party report objects.

contextObject

Description A generic class for the object which the action event call was attached.

Remarks The more specific context items below provide a superset of this class.

dashboard, dashboardItem, report, chartData, chartSeriesDataPoint, chartItemDataPoint,
reportWidgets, categoriesCtrl, parameterListCtrl

Description Specific classes which are set depending on the context of the call. Contain
information about the object for which the action event call was attached.

Remarks These are set contextually depending on the object of the call. E.g. chartData will
only be set if the action event was attached to a chart or gauge.

Exago Technical Guide

122 Exago Inc.

uiElement

Description Provides information about the UI element called by a "click" local action event. For
a list of supported elements, see List of UI Elements.

isSandboxMode

Description True if an action event is running in a non-interactive environment, i.e. any non-
html environment, where javascript interactivity is not permitted. Includes all export

types: PDF, Excel, RTF, CSV.

Methods

ServerCallback(args[])

Description Call back to the server with any given arguments.

GetLanguageData(id)

Description Returns the text and tooltip info from the language file for the specified UI item.

ExecuteParentFunction(func, args), GetParentFunction(func), GetParentByFunctionName(func)

Description If the Exago UI application is running in an iFrame these are helper functions to call
javascript functions in the parent frame.

Remarks These functions are for convenience and safety. They are generally the same as
calling Parent.FunctionName.

LoadHtmlDialog(html, options)

Description Creates and loads an html dialog box. Accepts an Html string or an Html element.
Accepts several options.

SetDialogValue(elementId, value)

Description Populates the given element of a dialog with a given value.

GetDialogElementById(elementID)

Description Finds and returns the element given by its ID.

Alert(alertText)

Exago Technical Guide

123 Exago Inc.

Description Creates and loads an html alert dialog with the given text.

UpdateChart(chartWidget, chartData)

Description Updates the given chart with the given data and re-renders it in the report.

GetDashboardReports(options)

Description Returns all the reports on the dashboard as report objects.

GetDashboardWidgets()

Description Returns all the widgets on the dashboard (i.e. all dashboard elements besides
embedded reports).

EditReport(reportName, options)

Description Opens the Report Designer for the given report with options. See .NET API.

ExecuteReport(reportName, options)

Description Executes the given report with options. See .NET API.

StartNewReportWizard(reportType)

Description Starts the New Report Wizard for the given report type.

GetClientReportObject(reportName)

Description Returns the given report object by name.

LoadUrlToNewTab(string url)

Description Opens a new tab with the provided URL as the contents.

Exago Technical Guide

124 Exago Inc.

List of UI Elements

This is an incomplete list of items in the Exago UI that can be captured by "Click"-type Local Action

Events. If an item is not on this list, you can use a Web Inspector to determine the ID of an UI item.

NOTE. You can capture clicks on arbitrary UI items as long as the item has an associated ID field.

For example, in Chrome press F12 to open the developer tools, press Ctrl-Shift-C to enable the

Inspect Element tool, and hover over the item for which you wish to find the ID:

The Element ID is usually going to be the text string situated in between the rightmost underscore

mark (_) and the leftmost period mark (.).

To attach an action event to UI elements, key the element IDs into the Assigned UI Item(s) text

field, separated by a comma:

NOTE. UI items do not yet support "Load"-type action events.

Toolbar MergeCellsBtn

ReportOptionsBtn SplitCellsBtn
SaveReportBtn WrapTextBtn
DesignNewReportBtn AutoSumBtn
UndoBtn SuppressDuplicatesBtn
RedoBtn InsertFileInput
FormatCellsBtn CrossTabWizardBtn
FormatPaintbrushBtn EditFormulaBtn
BoldBtn LinkedReportBtn
ItalicBtn LinkedActionBtn
UnderlineBtn ExportBtn
DropDownImage ExecuteBtn
FontNameList_DropDownContainer
FontNameList_DropDownText Main Menu
FontNameList_DropDownSelect NewReportBwn
FontSize_NumericEditContainer ManageFoldersBtn
FontSize_NumericEditTB ExecuteInteractiveBtn
FontSize_NumericEditUp DuplicateReportBn
FontSize_NumericEditDown DeleteReportBtn

Exago Technical Guide

125 Exago Inc.

AlignTopBtn ExportBtn
AlignLeftBtn ScheduleReportBtn
AlignMiddleBtn
AlignCenterBtn Tab Bar
AlignBottomBtn UserPreferencesBtn
AlignRightBtn HelpBtn
AlignJustifyBtn

Custom Options

This chapter explains how to create Custom Options. Custom Options provide a modifiable menu

for end users to set values that can be utilized by Custom Functions, Server Events or the API.

 To add a new Option select 'Custom Options' in the Main Menu then click the add button (

).

 To edit an existing Option either double click it or select it and click the edit button ().

 To delete an Option select it and click the delete button ().

Custom Options enable you to define settings that users can be modify on a per report basis in

the Report Designer. Options can be accessed during report execution by Server Events or Custom

Functions.

The name of each option can be controlled on a per-user basis using our multi-language feature.

Custom Options can store several types of data such as integer, boolean, text, etc. Each data type

provides an appropriate UI element for the user to select a value.

Creating Options

To create a Custom Option, select 'Custom Options' in the Main Menu and click the Add button (

). This will open a Custom Options tab.

Each Custom Option has the following properties:

Id – The unique id of the option. The Id is used in accessing the option and may be displayed in

the Custom Options Menu as the user sets its value on a report.

NOTE. To support multi-language functionality, create an element in the language file(s)

with an Id that matches the Option's Id. The string of that language element will be

displayed to the user in the Custom Options Menu. For more information see Multi-

Language Support.

Type – The data type the Option should display. Each data type will display an appropriate input

element in the Custom Options Menu. The following types are available.

o Int – Represents a whole number.

Exago Technical Guide

126 Exago Inc.

o Decimal – Represents a decimal.

o Bool – Represents a Boolean value. A checkbox is displayed.

o Text – Represents text and displays a text box.

o List – Represents a choice from among multiple values. Click the add button () to

define choices.

Setting Options

After Custom Options are created the Custom Options Menu will be available in the Report

Designer of Standard and Crosstab Reports. In the Custom Options Menu, options can be set

using the UI elements displayed above.

NOTE. The Custom Options Menu will only display if Custom Options exist.

Exago Technical Guide

127 Exago Inc.

Accessing Options

The .Net Api, Server Events and Custom Functions can access Custom Options values through the

SessionInfo object by using the following method:

string GetCustomOptionValue(string id)

Description Returns the value of the specified Custom Option as a string.

Remarks For Bool options the value returned will be “true” or “false”.

For List Options, the chosen Id is returned.

NOTE. List options will return the Id of the selected value and not the displayed
language string.

Example A Custom Function could use the following C# code to return the value of a Custom
Option. The Id of the Option is entered as an argument of the Custom Function.

return sessionInfo.GetReportCustomOptionValue(args[0].ToString());

Exago Technical Guide

128 Exago Inc.

Integration

The following chapter details how to integrate Exago into your host application.

This chapter will assume that you have already used the Administration Console to establish the

desired data structure, general settings and roles.

Exago is designed to be seamlessly integrated into the host application. Integration can entail

either styling Exago' interface to match the host or making API calls such as report execution

directly from the host application. To access the user interface, Exago can either be embedded in a

div or iframe or users can be directed to a separate page.

Whether you are exposing the provided interface or calling API methods it is important to:

 Ensure users are verified through the host application: Users should be signed in

through the API to access Exago. To ensure that this happens, disable direct access to

Exago by setting the parameter 'Allow direct access to Exago' to False in the Main Settings.

 Assure the correct permissions and features are available to the user: As the user is

signed in, activate the correct role and set values for any necessary parameters to assure

that the user can only access the data, features, folders and reports that he/she has

permission to use. For more information see Roles.

To further integrate Exago you can:

 Re-style the user interface to match the aesthetic of your application. See Styling.

 Translate or modify any text that appears in the user interface. See Multi-Language

Support.

 Customize the Getting Started Tab and/or create additional custom tabs. See Customizing

Getting Started Content.

 Integrate the Exago installer into the host application's installer. See Manual Application

Installation.

Exago Technical Guide

129 Exago Inc.

Styling

Visually modifying and rebranding the user interface is a simple but effective step toward

integrating Exago into the host application. For styling purposes Exago can be thought of as a

control that sits within a div on an .aspx page. Aesthetic changes can be made for single users or

groups of users by directing each user/group to different custom .aspx pages.

To visually integrate Exago make a copy of the.aspx example below and modify the elements

surrounding the Exago control or override the CSS of the user interface itself.

NOTE. Do not make changes directly to ExagoHome.aspx as they will be overwritten during

upgrades. Instead use the example below to create a custom .aspx page.

Exago Control Properties

Within each .aspx page several properties can be set on the Exago Control to modify various

settings and behaviors of Exago. The following properties can be set.

 ConfigFile – Loads a configuration file other than that created by the Administration

Console (ex. ConfigFile="NorthwindConfig.xml").

NOTE. If entering Exago through the Api this parameter is ignored.

 Language File - Specify which language file(s) to use in place of the 'Language File'

parameter of Main Settings in the configuration file. (ex. LanguageFile ="es-mx,

gettingstartedcustom").

 ForceIECompatMode – Setting to True will force certain JavaScript functions to working in

'compatibility' mode. Currently this property only needs to be set if dragging a Data Field

into a cell of the Report Designer does not work properly. (ex. ForceIECompatMode="true").

 XUaCompat – Setting that controls whether to remove the meta u-ax-comptaible tag

when running reports to PDF in IE8. The default is 'false' which removes the tag. If you are

experiencing issues downloading PDF reports in IE8 setting this flag to True may resolve

the issue. (ex. XUaCompat="true").

Changing CSS

All of the CSS used by Exago can be modified at the bottom of the .aspx page. This means that

every individual element or class of objects can be modified. To do make changes, add <style

type="text/css"></style> to your .aspx page in the line above </body>. Between these style tags

place the desired modifications to the CSS.

The following table details the recommend CSS classes for styling.

Exago Technical Guide

130 Exago Inc.

Class Feature Property Example

 Text Elements
.wrMain Modifies text throughout Exago. color .wrMain {color:Red;}
.wrInputText Modifies the text of input boxes and

dropdowns.
color .wrInputText {color:Blue;}

.wrTree Modifies the text of tree controls
such as the reports in the Main
Menu or the Data Fields in the
Report Designer.

color .wrTree {color:Green;}

.wrTreeItemSelected Modifies the selected item in a tree
control.

color .wrTreeItemSelected
{color:yellow;}

.wrDynamicTabItem Modifies the styling of tabs that can
be deleted and moved.

color .wrDynamicTabItem
{color:Orange;}

.wrDynamicTabItemSelect
ed

Modifies the styling of a selected
dynamic tab.

color .wrDynamicTabItemSelected
{color:Green;}

.wrStaticTabItem Modifies the styling of tabs that can
not be deleted and moved.

color .wrStaticTabItem {color:Orange;}

.wrStaticTabItemSelected Modifies the styling of a selected
static tab.

color .wrStaticTabItemSelected
{color:Green;}

.wrDialogTitle Modifies the text of the title of
dialog menus

color .wrDialogTitle {color:Orange;}

 Background Elements
.wrMainLeftPane

Modifies the background of the Main
Menu

background-
color

.wrMainLeftPane {background-
color Blue;}

.wrTabContent

Modifies the background of all Tabs background-

color

.wrTabContent {background-
color:Blue;}

.wrTabContentWizard

Modifies the background of all
Wizards (ex. the New Report
Wizard)

background-
color

.wrTabContentWizard {background-
color:Blue;}

.wrDialogShadow

Modifies the background of all
dialog menus (ex. the Filters Menu)

background

.wrDialogShadow
{background: -webkit-
gradient(linear, left top, left
bottom, from(white), to(Blue));}

.wrPopupMenu Modifies the background of all
popup menus (ex. the Folder
Management Menu)

background .wrPopupMenu {background: -
webkit-gradient(linear, left
top, left bottom, from(white),
to(blue));}

.wrDesignLeftPane

Modifies the background of the Data
Field Menu in the Report Designer

background-
color

.wrDesignLeftPane {background-
color:Blue;}

.wrDsgnTbContainer

Modifies the background of the
Report Designer

background-
color

.wrDsgnTbContainer {background-
color:Blue;}

.wrTabItem

Modifies the background unselected
tabs

background-
color

.wrTabItem {background-
color:Blue;}

.wrDsgnTbSection

Modifies the gradient behind the
buttons on the Report Designer

background

.wrDsgnTbSection {background: -
webkit-gradient(linear, left
top, left bottom, from(white),
to(Blue));}

Selected Elements
.wrTabItemSelected Modifies the selected tab background .wrTabItemSelected {background:

Exago Technical Guide

131 Exago Inc.

 -webkit-gradient(linear, left
top, left bottom, from(white),
to(Blue));}

.wrTreeItemSelected Modifies the selected item in a tree

control

background-

color

.wrTreeItemSelected {background-
color:Purple; }

.wrPopupMenuItemHover,
wrPopupMenuItem:hover

Modifies the selected item popup
menu (ex. the Report Folder
Management)

background-
color

.wrPopupMenuItemHover,

.wrPopupMenuItem:hover
{background-color:Purple; }

.wrTbImgHover,

.wrMainTbImgHover,

.wrTbImg:hover

Modifies the background of tool bar
images when they are hovered
over.

background-
color

.wrTbImgHover,

.wrMainTbImgHover,

.wrTbImg:hover {background-
color:Orange;}

Other Elements
.wrImageButton,
.wrButton1

Modifies the buttons (ex. Ok,
Cancel)

background .wrImageButton, .wrButton1
{background: -webkit-
gradient(linear, left top, left
bottom, from(white), to(Blue));}

.wrDialogDragBar

Modifies the bar atop all dialog
menus (ex. the Filters Menu)

background .wrDialogDragBar {background: -
webkit-gradient(linear, left
top, left bottom, from(white),
to(Blue));}

.wrMainReportDescription
Container

Modifies the report description in
the Main Menu

border .wrMainReportDescriptionContaine
r {border: solid 1px blue;}

The following code demonstrates an example of custom CSS styling:

 <style type="text/css">
 .wrMain { color:Red; }
 .wrInputText { color:Blue; }
 .wrTree { color:Green; }
 .wrTreeItemSelected { background-color:Purple; }
 .wrDynamicTabItemSelected { color: Pink; }
 .wrDialogTitle { color: Orange; }
 .grRh { color: mediumaquamarine; }
 .grNum { color: sandybrown; }
 .wrGridTbl thead th { color: cadetblue; }
 .wrTabText { color: dodgerblue; }
 </style>

Changing Icon Images

To further Exago's integration capabilities, any icon in Exago can be changed on a per-company or

per-user basis.

To change the icons of Exago:

1. Create the custom images you would like to display.

2. Identify the Id of the image you want to change. See Finding Image Ids for more details.

Exago Technical Guide

132 Exago Inc.

3. Create a language file that maps the Ids to the location of the custom images. See Multi-

Language Support for more information.

Ex. <element id="ExportTypeMenuHtml" image=
"Config\Images\Custom\HTMLExecutIconLarge.png"></element>

Hovering Images

For icons that have hover effects (ex. the next page button on report output) there is a special

naming convention.

To change cusom icons with hover effects:

1. Follow the steps above to create the non-hover icon.

2. Create the custom icon with the hover effect. Save it to have the same name as the non-

hover icon and append “_h” to its name.

Image Ids

See List of UI Elements for a list of image IDs, and for instructions on how to determine an

image's ID using a web browser.

Styling the Administration Console

Though we strongly recommend against exposing the administration console to end-users or

clients, it can be stylized much like the Exago interface.

To style the administration console:

1. Make a copy of ExagoHome.aspx and give it a unique name (ex. CompanyAdmin.aspx)

2. At the top of this copy change the source from WebReportsCtrl.ascx to WebAdminCtrl.ascx

(see example below.

<%@ Page Language="C#" EnableViewState="false" %>
<%@ Register src="WebAdminCtrl.ascx" tagname="WebAdminCtrl" tagprefix="wr" %>

3. Modify surrounding styles and css in the same manner described in the sections above.

Exago Technical Guide

133 Exago Inc.

Multi-Language Support

NOTE. The language elements discussed in this section do not include those created by users or

administrators such as reports, folders, express report/crosstab themes or Data Field names. To

modify Data Field names please see Column MetaData. To modify theme names please see

Express Report and Crosstab Themes.

To help localize Exago, any text in the application can be translated or modified. This can be

accomplished by creating xml files in the Language folder that map ID's to strings. Any place within

Exago that displays text has an associated ID. When a text element is required in the application

Exago will read the file(s) specified in the 'Language File' parameter of Main Settings and use the

string that is mapped to the ID.

Exago comes with both a standard English file 'en-us.xml' and a Spanish translation 'es-mx.xml'.

Below is an example of the multi-language functionality. Notice that the prompt text in the New

Report Wizard can be set by changing the string associated with the id NewReportLb1.

En-us.xml:

<NewReport>
<element id="NewReportLbl">Complete the steps in the wizard below to create a new
report</element>

</NewReport>

Es-mx.xml:

<NewReport>
<element id="NewReportLbl">Complete los pasos en el asistente para crear un nuevo
informe</element>

</NewReport>

Exago Technical Guide

134 Exago Inc.

NOTE. Some language strings contain special place holders between curly brackets (ex. {0}). These

hold the place of elements that must be filled in dynamically by Exago. Do not translate anything

inside curly brackets. The place holders may be moved within the string but do not delete them.

The example below demonstrates three place holders that will be replaced by dropdown menus in

the Scheduling Wizard.

<element id="ScheduleRecurrenceRelativeMonthlyTxt">The {DayPosition} {DayOfWeek} of every
{MonthNumber} month(s)</element>

Translating Exago

To translate the entire interface, make a copy of the file 'en-us.xml' and give it a different name.

Make sure this copy is in the folder '<webapp_dir>/Config/Languages'. Without changing the IDs

translate the strings as desired (see example above). Then set the 'Language File' parameter of

Main Settings to specify the desired translation.

NOTE. If you are using the Exago Scheduler Service be sure to copy all custom language xml files

to the '<scheduler_dir>/Languages' folder of the Scheduler Service.

Modifying Select Language Elements

To change specific language elements without copying the entire mapping you can use a base file

and specify changes in separate language files. When you set the parameter 'Language File' list the

all of the files you want to load separated by comas or semicolons. Exago will load the files from

left to right, meaning the first file listed will be used as a base and can be changed by the files

loaded after it.

As an example you can create the file en-custom.xml which only contains the lines:

<?xml version="1.0" encoding="utf-8" ?>
<element id="GettingStartedTab">Home</element>

Exago Technical Guide

135 Exago Inc.

Set the 'Language File' parameter to 'en-us, en-custom' and the Getting Started tab will reflect the

change made in the custom file:

NOTE. Begin all language xml files with the line '<?xml version="1.0" encoding="utf-8" ?>'

Text of Prompting Filters and Parameters on Dashboards

When adding a Report to a Dashbaord a user can specify text for any prompting Filters or

Parameters. By default this text will match the strings associated with the ids

CompositeReportOptionsFilterDefaultPromptText and

CompositeReportOptionsParameterDefaultPromptText respectively.

If a user changes the default and enters a different language Id then the associated text for that

new Id will display when the dashboard is executed.

If a user enters text that does not match any language Id the text will be displayed when the

dashboard is executed.

Exago Technical Guide

136 Exago Inc.

Customizing Getting Started Content

The Getting Started tab is displayed as a user enters Exago. This tab can be customized by loading

custom HTML. This is done by modifying the language element 'GettingStartedContent' in the file

'en-us-getting-started.xml'. To assist in customizing the Getting Started tab, Exago provides several

JavaScript functions to open the New Report Wizard, run reports, open other custom tabs and

display reports as dashboards.

The following example demonstrates a custom tab with links to the New Report Wizard and

Dashboards.

NOTE. It is recommended to make custom tabs in a separate language file to make it easy to

change tabs by user or groups of users. See Modifying Select Language Elements.

Creating Additional Custom Tabs

Additional custom tabs can be created by creating two language elements with unique names.

One element specifies the title of the custom tab and the second contains the html content.

Custom tabs can be opened with the JavaScript function wrAddTabbedContent (see Available

JavaScript Functions).

Exago Technical Guide

137 Exago Inc.

The example below demonstrates a custom tab that has buttons to launch reports.

<element id="QuickReportsTabName">Quick Reports</element>
<element id="QuickReportsTab">

<style type="text/css">
 .Button
 {
 height:20px;
 width: 60px;
 color: black;
 font-size:8pt;
 margin-right:5px;
 }
 .divProductDescription
 {
 margin-bottom:3px;
 }
 </style>
 <p style="font-family:Arial; font-size:12pt; font-weight:bold; text-decoration:underline;
text-align:center; margin-bottom:10px;">Click the format below the report you want to run. </p>

 <div class="divProductDescription">
 Revenue by Category (with drilldown) - Complete list of revenue generated
by each category of products.
 </div>
 <div class="divProductButtons">
 <input type="button" class="Button" value="HTML" onclick="wrExecuteReport('Sales
Reports\\Revenue by Category','html')" />
 <input type="button" class="Button" value="EXCEL" onclick="wrExecuteReport('Sales
Reports\\Revenue by Category','excel')" />
 <input type="button" class="Button" value="PDF" onclick="wrExecuteReport('Sales
Reports\\Revenue by Category','pdf')" />
 <input type="button" class="Button" value="RTF" onclick="wrExecuteReport('Sales
Reports\\Revenue by Category','rtf')" />
 <input type="button" class="Button" value="CSV" onclick="wrExecuteReport('Sales
Reports\\Revenue by Category','csv')" />
 </div>
</element>

Available JavaScript Functions

To assist with the creation of custom tab content, Exago provides a small number of JavaScript

functions to allow custom html to call features of Exago.

void wrStartNewReportWizard()

Description Opens the New Report wizard in a new tab.

Example Ex. Click <span style="text-decoration:underline; cursor:pointer;"
onclick="wrStartNewReportWizard();">here to create a new
report.

void wrStartDuplicateReportDialog(string reportFolder\\reportName):

Exago Technical Guide

138 Exago Inc.

Description Opens the Duplicate Report dialog.

Remark If the report name is null or blank Exago will use the report selected in the Main
Menu.

Example Ex. Click <span style="text-decoration:underline; cursor:pointer;" onclick="
wrStartDuplicateReportDialog();">here to create a duplicate this
report.

void wrExecuteReport(string reportFolder\\reportName, string format)

Description Executes the specified report in the specified format.

Example Ex. <input type="button" class="Button" value="HTML"
onclick="wrExecuteReport('Sales Reports\\Revenue by Category','html')

string wrGetSelectedReportName()

Description Returns the name of the report that is selected in the Main Menu.

Remark The returned string will include the folder structure of the report separated by

slashes.

void wrAddTabbedContent(string ContentID, string TabName)

Description Opens a new tab and loads the html stored in the element of the Language file that
corresponds to the Content ID.

Remark The ContentID should match the element ID of the html you want to load.

The TabName should make the element ID of the name you want the tab to display.

data-onloadreportname= “ReportFolder\\ReportName”

Description Executes a report as HTML and loads it into a div or iframe.

Remark The report string should be formatted as Report Folder \\ Report Name.

NOTE. When using this function make sure the setting Enable Debugging in Other
settings is False.

Example Ex. <div class="Report" data-onloadreportname="Employee
Reports\\Number of Sales by Employee"></div>

data-useviewer ="True/False"

Exago Technical Guide

139 Exago Inc.

Description Specifies to load a report as raw html or utilize Exago dynamic report viewer.

Remark Default value is True. In cases where the dynamic capabilities of the Exago viewer is
not need set to False to load raw html.

Example Ex. <div class="Report" data-onloadreportname="Employee
Reports\\Number of Sales by Employee" data-useviewer= “False”></div>

data-enablescrolling ="True/False"

Description Specifies whether or not to show scroll bars.

Remark Default value is True. This can helpful for certain reports that may not fit exactly
within the startup content.

Example Ex. <div class="Report" data-onloadreportname="Employee
Reports\\Number of Sales by Employee" data-enablescrolling=
“False”></div>

data-reloadinterval="n"

Description Reloads a report every n seconds.

Remark This function is used in conjunction with data-onloadreportname.

Example Ex. <div class="Report" data-onloadreportname="Employee
Reports\\Number of Sales by Employee" data-reloadinterval="2"></div>

data-allowexport="0/1"

Description Specifies wether or not to show the re-export menu for the report.

Remark The default value is 0 (does not show the menu). Set to 1 to have the re-export
options display.

Example Ex. <div class="Report" data-onloadreportname="Employee
Reports\\Number of Sales by Employee" data-reloadinterval="1"></div>

Exago Technical Guide

140 Exago Inc.

Themes: Charts, Crosstabs, Express Reports & Maps

Themes allow a user to quickly stylize reports or elements of reports such as maps and charts.

Exago comes with several themes pre-installed. Additional custom themes can also be created.

Pre-installed themes are saved in the Themes folder of Exago. By default custom themes are

saved in the Report Path, which is specified in Main Settings. Alternatively the host application

can manage theme storage by implementing the GetTemplate, GetTemplateList, and

SaveTemplate functions. See Report and Folder Management for more information.

NOTE. To support multi-language functionality, if the theme name concatenated with

'_wrThemeId' matches the id of any element in the language files then the string of that

language element will be displayed to the user instead of the theme name.

Ex. For the Basic theme that is installed with Exago, there exists a language id

'Basic_wrThemeId'. The string associated with this id is displayed. For more information see

Multi-Language Support.

Chart Themes

A user can quickly select colors for Charts by applying a chart theme.

To create custom Chart themes:

1. In folder specified in the Report Path of Main Settings create a text file containing a

comma separated list of the css values of the desired colors. Save the file and change the

extension to 'wrth'.

NOTE. The file name will be displayed to the end user. To translate the name of a custom

theme, see the note above section.

Ex: The theme 'Cocktails In Miami.wrth' contains the list: Navy, #00ff00,Yellow,Orange,Red.

Crosstab Themes

A user can quickly style Crosstabs by applying a crosstab theme. Crosstab themes can specify

background color, foreground color, section shading, borders, fonts and text size.

To create custom Crosstab themes:

1. Create a Crosstab with as several Tabulation Data, Row Headers, Column Headers as well

as sub-totals and grand totals.

NOTE. If a user adds more Tabulation Data, Row Headers or Colum Headers than existed

on the theme they will appear without styling. We recommend Crosstab Themes have five

Row Headers, Column Headers, Tabulation Data, sub-total rows, and sub-total columns as

well as a grand total row and a grand total column.

Exago Technical Guide

141 Exago Inc.

2. In the Report Designer stylize each cell of the Crosstab as desired.

3. Move your cursor over the Crosstab. Notice a dropdown menu appears in the bottom left

corner.

4. Hold Alt+Ctrl+Shift and click on the dropdown.

5. Click 'Save as Theme'.

6. Enter a name for the Theme. This name will be displayed to the end-users.

Express Report Themes

A user can quickly style Express Reports by applying an express report theme. Express report

themes can specify background color, foreground color, section shading, borders, fonts and text

size.

Exago Technical Guide

142 Exago Inc.

To create custom Express Report themes:

1. Create an Express Report with Headers, Footers and a Page Header/Footer and a Grand

Total.

NOTE. If a user adds more Columns, Headers, or Footers than existed on the theme they

will appear without styling. We recommend Express Report Themes utilize many Columns,

Headers and Footers.

2. In the Layout tab stylize the report as desired.

3. Hold Alt+Ctrl+Shift and click on the save button ().

4. Enter a name for the theme. This name will be displayed to the end-users.

Map Themes

A user can quickly select colors for Maps by applying a map theme.

To create custom Map themes:

1. In folder specified in the Report Path of Main Settings create a text file containing a

comma separated list of the css values of the desired colors. Save the file and change the

extension to 'wrtm'.

NOTE. The file name will be displayed to the end user. To translate the name of a custom

theme, see the note above section.

Ex: The theme 'Cocktails In Miami.wrtm' contains the list: Navy, #00ff00,Yellow,Orange,Red.

Exago Technical Guide

143 Exago Inc.

Using Exago within a WinForm

To embed Exago within a WinForm application the following properties should be set within the

WebReportsCtrl line of the .aspx page that contains Exago (default is Exagohome.aspx).

 WinFormsApp – Set to True to ensure proper functionality within Exago.

 BrowserEmulation – Forces Exago to emulate the behavior of a specific browser. Valid

Values are as follows: IE7, IE8, IE9, Firefox, Chrome, and Safari.

The example below shows these properties being set to force emulation of IE9 and make Exago

aware that it is running within a WinForms application.

<wr:WebReportsCtrl ID="WebReportsCtrl" runat="server" BrowserEmulation="IE9" WinFormsApp="true"
/>

NOTE. The Host application can disable right clicking within Exago by setting the property

IsWebBrowserContextMenuEnabled on the browser control to False.

Exago Technical Guide

144 Exago Inc.

Cloud Environment Integration

By default, Exago stores all files on the server where it is installed, however, Exago can be

deployed in cloud environments. This can be accomplished through either direct support of

Microsoft Azure or by building a .NET Assembly or Web Service to handle the storage and

retrieval of reports, folders, themes, document templates, images and temporary files.

Cloud Support

To deploy Exago within a cloud environment the storage of 3 file-groups must be handled.

 Configuration files

 Reports, folders, themes, and document templates

 Temp files and and images

Configuration File Storage

Configuration files are the xml and encrypted xml that is created by the Admnistration Console.

Instead of being stored in the default ./Config folder, these files can be stored in a cloud drive.

This can be accomplished in one of two ways:

 Within the root directory of Exago modify the file 'appSettings.config' and add the

connection information as shown in the example below.

Ex: <appSettings>

<add key="ExagoConfigPath" value="pathtype=azure;credentials='My Azure
Credentials Connection String';storagekey=config"/>
</appSettings>

Then when the host application instantiates the Api use the api constructor that includes

the cloud path using the same connection string as above.

o For the .Net Api use Constructor(string appVirtualPath, string configFile, string

cloudPath)

 Within the host application add the xml below to either the web.config or app.config file to

specify the connection information.

Ex: <appSettings>

<add key="ExagoConfigPath" value="pathtype=azure;credentials='My Azure
Credentials Connection String';storagekey=config"/>
</appSettings>

NOTE. For details on the format of connection strings please see the section Report Storage

below.

Exago Technical Guide

145 Exago Inc.

Report Storage

Exago has direct support for the storage and retrieval of reports, folders, themes, and templates

using a cloud drive. To enable this set the Report path of Main Settings in the Administration

Console to a path that follows the format below.

Microsoft Azure

pathtype=azure;credentials='Credentials String';storagekey='';usefilestorage=false

 Pathtype: Azure

 Credentials: Indicates the credentials to the Azure account.

 Storagekey: (optional) Defaults to 'wrreports'. This is prefix for a blob container or fileshare

used to store report files and can be used to allow different sets of report storage based on

the end-user client. For example: If the value for storagekey = 'user1' all reports will be

stored in the container or fileshare 'user1-reports', templates will be stored in 'myreports-

templates', and themes will be stored in 'user1-themes'.

 Usefilestorage: (optional) Defaults to 'false' which uses Azure blob storage. If set to 'true',

Exago will use Azure file storage.

o Templates and themes always use blob storage.

o Templates are automatically stored in blobs when using the template upload

button.

o Themes must be uploaded manually via an external application.

Amazon S3

pathtype=s3;region='region'accesskey='accesskey';secretkey='secretkey'bucketname='bucketname'

 Pathtype: s3

 Region: Indicates the region of the cloud server.

 Accesskey: Amazon access key credential.

 Secretkey: Amazon secret key credential.

 Bucketname: This is the directory location used to store report files.

Temporary Files Storage

For Exago to store temp files and images in Azure set a path with the following format in the 'Temp

Cloud Service' Main Settings of the Administration Console.

pathtype=azure;credentials='Credentials String';

Temp files can only be saved to a blob container.

Exago Technical Guide

146 Exago Inc.

.Net Assembly/Web Service Cloud Support

To integrate Exago into a non-azure cloud environment two things are required.

 Report/Folder Management must be used to store and retrieve reports, folders, themes

and tempaltes. See Report and Folder Management for more information

 A .Net Assembly or Web Service must be implemented to handle the storage and retrieval

of Temp files and Images. See below for more details.

To handle temp file storage create and specify a .Net Assembly or Web Service in the Temp Cloud

Service of the Main Settings in the Administration Console.

NOTE. .NET Assembly format should be 'assembly = AssemblyFullPath.dll;class-

Namespace.ClassName'. Web Service should be formatted as

'url=http://WebServiceUrl.asmx'.

The .Net Assembly/Web Service must have the following functions:

void SetValue (string companyId, string userId, string key, byte[] value)

Description Provides the byte content of the temp file to be saved.

Remark The key is the name of the file being stored.

byte[] GetValue (string companyId, string userId, string key)

Description Returns the byte content of the temp file.

Remark The key is the name of the file being retrieved.

void CleanUp (string companyId, string userId, int maxFileAge)

Description Optional function to delete old temp files.

Example

using System;

using System.IO;

namespace Exago.Services

{

public class TempStorage

{

Exago Technical Guide

147 Exago Inc.

public static void SetValue(string companyId, string userId,

string key, byte[] value)

{

File.WriteAllBytes(@"c:\Exago\AssemblyDataSource\Temp\" +

key, value);

}

public static byte[] GetValue(string companyId, string userId,

string key)

{

return

File.ReadAllBytes(@"c:\Exago\AssemblyDataSource\Temp\" +

key);

}

public static void Cleanup(string companyId, string userId, int

maxFileAge)

{

try

{

DateTime expiredTime =

DateTime.Now.AddMinutes(maxFileAge * -1);

DirectoryInfo dirInfo = new

DirectoryInfo(@"c:\Exago\AssemblyDataSource\Temp");

FileInfo[] files = dirInfo.GetFiles();

foreach (FileInfo file in files)

{

if (file.LastWriteTime < expiredTime)

{

try { file.Delete(); }

catch { /* not critical */ }

}

}

}

catch { /* not critical */ }

}

}

}

Exago Technical Guide

148 Exago Inc.

Multi-Tenant Environment Integration

Exago supports a variety of approaches to make sure that users can only access the data that is

assigned to them. These approaches can eliminate the need to create different reports for each

user. This can be done in one of four ways. Using either column, schema, database, or custom SQL

based tenancy.

Column Based Tenancy

The most basic multi-tenant environment is when each table, view and stored procedure has one

or more columns that indicate which user(s) has access to each row.

To set column based tenancy in Exago:

1. Create a Parameter for each tenant column.

NOTE. For these parameters set Hidden to False.

2. For each Data Object click the Tenant Columns dropdown. Use the Tenant Columns menu

to match each tenant column in the Data Object with its corresponding Parameter.

3. When initializing Exago through the Api, set the value of each tenant parameter for the

current user.

Exago Technical Guide

149 Exago Inc.

Schema Based Tenancy

Some multi-tenant environments create multiple tables/views/stored procedures with the same

name and columns but different database schema. Information is then stored in the appropriate

table based on database schema.

To set schema based Tenancy in Exago:

1. On the Data Source set 'Schema/Owner Name (blank for default)' to any valid value.

2. For each table/view/stored procedure create a Data Object. In the Name dropdown select

the object that utilizes the schema value used in step 1. This will tell Exago that for this Data

Object it should retrieve the schema from the Data Source.

3. When initializing Exago through the Api, set the schema on the Data Source for the current

user.

Database Based Tenancy

Another way to assure that each user can only access their data is to provide a separate database

for each user. In this situation each database should have the same tables, views and stored

procedures.

To support database based tenancy in Exago:

1. Create a Data Source and corresponding Data Objects using any one of the Databases.

2. When initializing Exago through the Api, set the connection string on the Data Source to

access the appropriate database for the current user

Exago Technical Guide

150 Exago Inc.

Custom SQL Based Tenancy

Multi-Tenant security can also be assured by using Custom SQL for all Data Objects. Exago can

pass parameter values into each SQL statement to filter data based on user.

To set Custom SQL based tenancy in Exago:

1. For each Data Object open the Custom SQL menu and create the desired SQL utilizing

parameters to assure only appropriate information is available.

NOTE. Parameters should be surrounded by single quotes.

2. When initializing Exago through the Api, set the value of any parameters utilized in the SQL

for the current user.

Exago Technical Guide

151 Exago Inc.

Manual Application Installation

If the host application is deployed on site it may prove convenient and advantageous to integrate

the installation of Exago into the host's installer. This section will detail how to integrate the

installation. To accomplish this task there must be an existing installation of Exago, Exago Web

Service Api and Exago Scheduler from which to copy files and directories.

This section will show how to integrate the installation of:

Exago and Exago Web Service Api

Exago Scheduler Service

NOTE. Due to significant differences in IIS before and after version 7, some sections will provide

separate explanations for versions prior to IIS 7 and after IIS 7.

Exago and Exago Web Service Api Installer Integration

Summary

The installer integration of Exago and/or the Exago Web Service Api has four steps:

1. Copy the Exago and/or the Exago Web Service Api files to installation folders.

2. Create IIS Virtual Directory to point to Exago/Exago Web Service Api.

3. Configure IIS as required for Exago/Exago Web Service Api setup.

4. Modify the system registry (optional).

NOTE. The installation of Exago Web Service Api is only used for clients who wish to develop using

the Web Service Api instead of the .NET Assembly.

Directory Structure

The directory structure should be preserved as follows:

Exago:

 [Exago Physical Directory]

o /Bin

o /Config

o /Images

o /Temp

Exago Web Service API:

 [ExagoApi Physical Directory]

o /Bin

Exago Technical Guide

152 Exago Inc.

o /Config

File Installation

The host installer should create a copy of all the files that are initially created by the Exago/Exago

Web Service Api Installer.

NOTE. (optional)

The following configuration files are not part of the initial Exago/Exago Web Service Api

installation. Including the configuration files with the installation will help to minimize manual

configuration. The files are stored in the following directory tree:

Exago:

 /Config/

o WebReports.xml and/or WebReports.xml.enc

Exago Web Service Api:

 /Config

o WebReportsApi.xml

IIS Configuration

The method of creating new web applications and services differs depending on what version of

IIS the server is using. Microsoft made significant changes to IIS versions 7+ which simplified

creating new Web Sites, Virtual Directories, etc.

NOTE. Verify that the Virtual Directory does not exist before attempting to create the new one.

IIS Version 5.0-6.0

Create Virtual Directory

A virtual directory requires the following input:

 siteName – Name of the IIS Web Site where it will be installed. (ex. 'Default Web Site')

 vDirName – Name of Virtual Directory for the installation (ex. 'Exago' or 'ExagoApi')

 physicalPath – Physical installation path. (ex. 'C:\Program Files\Exago\Exago')

The following C# code provides an example of how to set these properties.

public void CreateVDir(string siteName, string vDirName, string physicalPath)
{

System.DirectoryServices.DirectoryEntry oDE;
System.DirectoryServices.DirectoryEntries oDC;
System.DirectoryServices.DirectoryEntry oVirDir;

oDE = new DirectoryEntry(siteName + "/Root");

Exago Technical Guide

153 Exago Inc.

//Get Default Web Site

 oDC = oDE.Children;

// Delete before it re-create
bool isVDirExists = true;
try
{

DirectoryEntry dirEnt = oDC.Find(vDirName, oDE.SchemaClassName.ToString());

if (dirEnt != null)
{

//Changed to Update virtual directory physical path.
//If virtual directory already exist do not delete and
//recreate.
dirEnt.Properties["Path"].Value = physicalPath;
dirEnt.CommitChanges();

}
}
catch (DirectoryNotFoundException)
{

isVDirExists = false;
}
catch (COMException comEx)
{

if (comEx.Message == "Exception from HRESULT: 0x80005008")
return;

else
throw;

}

if (isVDirExists)

return;

//Add row
oVirDir = oDC.Add(vDirName, oDE.SchemaClassName.ToString());

//Commit changes for Schema class File
oVirDir.CommitChanges();

//Create physical path if it does not exists
if (!Directory.Exists(physicalPath))
{

Directory.CreateDirectory(physicalPath);
}

//Set virtual directory to physical path
oVirDir.Properties["Path"].Value = physicalPath;

//Set read access
oVirDir.Properties["AccessRead"][0] = true;

//Create Application for IIS Application (as for ASP.NET)
oVirDir.Invoke("AppCreate", true);
oVirDir.Properties["AppFriendlyName"][0] = vDirName.Substring(vDirName.LastIndexOf('/') +
1);
oVirDir.Properties["DefaultDoc"][0] = "Home.aspx";
oVirDir.Properties["EnableDefaultDoc"][0] = false;
oVirDir.Properties["AppIsolated"][0] = 2;

Exago Technical Guide

154 Exago Inc.

//Save all the changes
oVirDir.CommitChanges();

}

Configure Framework

All Exago components require .NET Framework 4.0. Thus, IIS needs to be set to an app pool that

also uses .NET Framework 4.0. The host installer should verify that this Framework is currently

installed on the web server.

The following C# code provides an example of how to check and set the proper Framework.

public static void SetFramework(string webSitePath)
{

try
 {

string frameworkPath = Environment.GetEnvironmentVariable("WINDIR") +
@"\microsoft.net\framework";

 // Check to see if the system has the 64 bit version of .NET
 if (Directory.Exists(frameworkPath + "64"))
 {
 frameworkPath += "64";
 }

 // Set the .NET Framework to .NET 4.0
 string strExe = frameworkPath + @"\v4.0.30319\aspnet_regiis.exe";
 if (File.Exists(strExe))
 {
 ProcessStartInfo pi = new ProcessStartInfo();
 pi.FileName = strExe;
 pi.Arguments = "-s " + webSitePath.Replace(@"IIS://localhost/", "");
 pi.UseShellExecute = false;
 pi.CreateNoWindow = true;
 Process proc = Process.Start(pi);
 proc.WaitForExit();
 }
 }
 catch
 {

 throw;
 }
}

IIS Version 7+

The following is a C# code sample of how to create a new IIS installation of Exago/Exago Web

Service API, using Microsoft.Web.Administration.dll. The code requires the following input:

 siteName – Name of the IIS Web Site where it will be installed. (ex. 'Default Web Site')

 vDirName – Name of Virtual Directory for the installation (ex. 'Exago' or 'ExagoApi')

Exago Technical Guide

155 Exago Inc.

 physicalPath – Physical installation path. (ex. 'C:\Program Files\Exago\Exago')

public new void CreateVDir(string siteName, string vDirName, string physicalPath)
{

try
{

ServerManager iisManager = new ServerManager();
string virtDirName = @"/" + vDirName;

// Check if Application/Virtual Directory exists
if (iisManager.Sites[siteName].Applications[virtDirName] != null)
{

iisManager.Sites[siteName].Applications[virtDirName].VirtualDirectories[@"/
"].PhysicalPath =

 physicalPath;
}
// Create new Application/Virtual Directory
else
{

iisManager.Sites[siteName].Applications.Add(virtDirName, physicalPath);

Microsoft.Web.Administration.Application app =
iisManager.Sites[siteName].Applications[virtDirName];

app.ApplicationPoolName = "DefaultAppPool";

}

// Commit changes to the webserver
iisManager.CommitChanges();

}
catch
{

throw;
}

}

Exago Scheduler Installer Integration

Summary

The installer integration of the Exago Scheduler has six steps:

1. Check to see if the Exago Scheduler is running as a Windows Service (if so stop this service).

2. Copy the Exago Scheduler files to installation folders.

3. Modify the system registry (optional).

4. Modify the security settings on the Exago Scheduler directory.

5. Create a new Windows Service for the Exago Scheduler

Exago Technical Guide

156 Exago Inc.

6. Enable the Exago Scheduler service.

File Installation

Before running the installation, the Windows Services should be checked to see if the Exago

Scheduler is currently installed and/or running as a service. If the Exago Scheduler is currently

installed and/or running as a service it should be shut down. The host installer should then create

a copy of all the files that are initially created by the Exago Scheduler Installer.

NOTE. Overwrite the file ExagoScheduler.xml with a version configured for the host application.

The following C# code provides an example of how to stop the scheduler service if it is running.

ServiceState serviceSt = WindowsServiceInstaller.GetServiceStatus(“ExagoScheduler”);

// check to see if the Exago Scheduler service exists
if (serviceSt != ServiceState.NotFound && serviceSt != ServiceState.Unknown)
{

CreateServiceDelegate stDel = new
CreateServiceDelegate(WindowsServiceInstaller.StopService);

stDel(“ExagoScheduler”);

for (int ProgCtr = 0; ProgCtr <= 120; ProgCtr++)
{

Thread.Sleep(1000);
serviceSt = WindowsServiceInstaller.GetServiceStatus(“ExagoScheduler”);

if (serviceSt == ServiceState.Stop)

break;

if (InvokeRequired)
Invoke(new Change(OnChange), ProgCtr);

(sender as BackgroundWorker).ReportProgress(ProgCtr);

}
}

Directory Security Settings

The Exago Scheduler service will require changes to the security settings of the installation

directory to enable Windows to run the program scheduler.exe as a Windows Service.

The following C# code provides an example of how to make the necessary security changes. It

requires the following input.

 dirName – Physical path to Exago Scheduler (ex. 'c:\Program Files\Exago\ExagoScheduler\')

private void SetDirSecurity(string dirName)
{

try
{

if (dirName == null)
return;

Exago Technical Guide

157 Exago Inc.

if (!Directory.Exists(dirName))
return;

DirectoryInfo dirInfo = new DirectoryInfo(dirName);

// get a DirectorySecurity object that represents the current
// security settings
DirectorySecurity dirSecurity = dirInfo.GetAccessControl();

// Add the FileSystemAccessRule to the security settings
dirSecurity.AddAccessRule(new FileSystemAccessRule("LOCAL SERVICE",

FileSystemRights.FullControl, AccessControlType.Allow));
dirSecurity.AddAccessRule(new FileSystemAccessRule("LOCAL SERVICE",
 FileSystemRights.FullControl,

InheritanceFlags.ContainerInherit | InheritanceFlags.ObjectInherit,
PropagationFlags.InheritOnly, AccessControlType.Allow));

// Set the new access settings
try
{

dirInfo.SetAccessControl(dirSecurity);
}
catch (Exception ex)
{

MessageBox.Show(ex.Message);
}

}
catch (Exception ex)
{

MessageBox.Show(this,"Unable to set privileges on install directory: " + dirName +
 ". Please set 'LOCAL SERVICE' privileges.\n\nException: " + ex.Message,

"Error");
}

}

Windows Service Creation

Before installing the Exago Scheduler as a new service, verify that it is not installed and/or running.

If the Exago Scheduler is not installed, install the software and make sure it is running.

The following C# code provides an example of how to make this check.

serviceSt = WindowsServiceInstaller.GetServiceStatus(“ExagoScheduler”);
// is Exago Scheduler already installed as a service

if (serviceSt == ServiceState.NotFound || serviceSt == ServiceState.Unknown)
{

// install Exago as a new Windows Service
WindowsServiceInstaller.Install(“ExagoScheduler”,“ExagoScheduler”,

filePath + “ExagoScheduler.exe”);

for (int timeCtr = 0; timeCtr <= 120; timeCtr++)
{

serviceSt = WindowsServiceInstaller.GetServiceStatus(“ExagoScheduler”);

if (serviceSt == ServiceState.Stop)
{

break;
}

if (InvokeRequired)

Exago Technical Guide

158 Exago Inc.

Invoke(new Change(OnChange), timeCtr);

(sender as BackgroundWorker).ReportProgress(timeCtr);
}

RegistryKey key = Registry.LocalMachine.OpenSubKey("SYSTEM\\CurrentControlSet\\Services\\" +
 “ExagoScheduler”, true);

if (key != null)
{

key.SetValue("Description", "Exago Scheduler Windows Service");
}
}

// found service already installed, check to see if it is running

else
{

// if the service is not running, attempt to start it
if (this.initialStatus != ServiceState.Stop)
{

CreateServiceDelegate stDel = new CreateServiceDelegate(WindowsServiceInstaller.StartService);
stDel(“ExagoScheduler”);

for (int timeCtr = 0; timeCtr <= 120; timeCtr++)
{

serviceSt = WindowsServiceInstaller.GetServiceStatus(“ExagoScheduler”);

if (serviceSt == ServiceState.Starting || serviceSt == ServiceState.Run)
{

break;
}

if (InvokeRequired)

Invoke(new Change(OnChange), timeCtr);

(sender as BackgroundWorker).ReportProgress(timeCtr);
}

}
}

Optional Setup Information

Registry keys may be added to better enable reinstallation functionality (ex. pre-selecting values

such as installation path, virtual directory name, etc.). These keys are optional and are not

required for installer integration.

Creating a Registry

A new registry item will need to be created in the path HKEY_LOCAL_MACHINE/SOFTWARE. Below

are examples of such paths for the application, the Api and the scheduler.

Exago:

 HKEY_LOCAL_MACHINE

o SOFTWARE

 Exago

 Exago

o Default Web Site/WebReports

Exago Web Service Api:

 HKEY_LOCAL_MACHINE

Exago Technical Guide

159 Exago Inc.

o SOFTWARE

 Exago

 ExagoAPI

o Default Web Site/WebReportsAPI

Exago Web Service Api:

 HKEY_LOCAL_MACHINE

o SOFTWARE

 Exago

 ExagoScheduler

Values in a Registry

The following values can be added to the appropriate registry folders:

 CreateDate – Initial Installation date (ex. 6/17/2012 12:35:60)

 DisplayName – Has two possible values

o Exago/Exago Web Service Api – Set to the Installation Web Site followed by the

Virtual Directory Name (ex. Default Web Site/Exago).

o Exago Scheduler – Set to the directory name where the Exago Scheduler was

installed (ex. Exago).

 Location – Physical installation path (ex. c:\Program Files\Exago\Exago).

 UpdateDate – Initially set to the installation date. Should be updated whenever Exago is

reinstalled.

 Version – Set to the version of Exago being installed (ex. 2012.1.1). This value can be found

by pressing 'Ctrl + Shift+ V' in Exago.

Example of Registry

The following C# code provides an example of how to add items to the registry. It requires the

following input.

 application – Set to 'ExagoScheduler', 'Exago' or 'ExagoApi'.

 path – Set to the installation path.

 website – Set to the IIS Web Site where Exago is installed. Leave blank for the Exago

Scheduler.

 vdir – Set to the virtual directory that Exago is set up as. Leave blank for the Exago

Scheduler.

public static void AddRegistryKey(string application, string path, string webSite, string vdir)
{

try
{
 string ExagoRegKey = application;

Exago Technical Guide

160 Exago Inc.

 if (application != “ExagoScheduler”)
{
 vdir = vdir.Replace(@”\”, @”/”);

 ExagoRegKey += @”\” + webSite + @”/” + vdir;
 }

RegistryKey registryKey = Registry.LocalMachine.OpenSubKey(REGISTRY_KEY_ROOT +
 ExagoRegKey, true);
if (registryKey == null)
{

registryKey = Registry.LocalMachine.CreateSubKey(REGISTRY_KEY_ROOT
+ ExagoRegKey);

if (registryKey == null)
throw (new Exception("Error creating RegistryKey"));

else
registryKey.SetValue("CreateDate",
 System.DateTime.Now.ToString(CultureInfo.InvariantCulture));

}
using (registryKey)
{

registryKey.SetValue("DisplayName", ExagoRegKey);
registryKey.SetValue("UpdateDate",

System.DateTime.Now.ToString(CultureInfo.InvariantCulture));
registryKey.SetValue("Location", path);
registryKey.SetValue("Version",

System.Reflection.Assembly.GetExecutingAssembly().GetName().Version)
;

}

return;
}
catch
{

throw;
}

}

Exago Technical Guide

161 Exago Inc.

Extensibility

The following chapter details features of Exago that can be enhanced or extended by the host

application to provide additional functionality.

Exago Technical Guide

162 Exago Inc.

Load Balancing Execution

Report execution can be balanced across servers to improve performance. As one execution is

being processed subsequent report execution calls will be sent to different servers. For each new

job, Exago will prioritize the server with the lowest load (according to CPU and memory load) and

ratio of running jobs to max jobs allowed. The number of jobs on a server will not exceed the

value specified by the simultaneous_jobs_max setting.

The following instructions provide an overview for setting up report execution on remote servers:

On each remote server:

 Install the Exago Scheduler Service. For detailed instructions see: Scheduler Service

Installation.

 The following conditions must be met:

o The Scheduler version must match the Exago Application version.

o The Scheduler's language files and the Exago Application's language files must

match.

o Any custom assemblies must be present in the Scheduler directory.

 Configure the Exago Scheduler. For detailed instructions see: Configuring Scheduler

Services.

o By default the execution host will pass the reports back to the Exago Application. In

order to save reports to an external repository, see: Saving Scheduled Reports to

External Repository.

NOTE. Multiple scheduler services can point to the same repository.

In the Exago Application:

1. Using the Admin Console, open the Scheduler Settings menu.

o Set 'Enable Remote Report Execution' to True in the Report Scheduling Settings.

o In 'Remote Execution Remoting Host' list the servers you want to use delineated by

commas or semicolons (ex. http://MyHttpServer1:2001, tcp://MyTcpServer:2121).

The servers will be prioritized based on the listed order.

NOTE. When multiple remote execution hosts are enabled, the Exago application will prioritize the

one with the lowest machine load.

NOTE. When an execution host is used for both scheduling and remote execution, the Exago

application will place immediate priority on Remote Execution tasks.

Exago Technical Guide

163 Exago Inc.

Multiple Data Models

In some cases a user may want the same Data Objects to be joined together differently.. To

accomplish this, Data Objects and Joins can be placed into Categories to create multiple data

models. When an end user selects a Data Object from a Category it indicates which joins to use.

The following steps detail how to create multiple data models.

1. In the Administration Console open Other Settings and set 'Limit Report to One Category'

to True.

2. Open the configuration file (WebReports.xml) in the Config folder.

3. In the <webreports> section, begin by creating a <category> for each data model.

NOTE. Each xml tag must be closed (ex. <category> must be closed with </category>).

4. For each data model:

5. Specify an ID with the <category_id> tag. The ID should be a unique identifier for the data

model and will be utilized by the Data Objects and Joins.

6. Give the model a name that will be displayed to the end user using the <category_name> tag.

NOTE. The <category_name> tag - acts as a 'folder' to group Data Objects. Sub-'folders' can be

created by entering the category name followed by a backslash then the sub-category

name. Ex. 'Sales\Clients'.

Example:

<category>
 <category_name>Exago University\Advisors</category_name>
 <category_id>advisorModel</category_id>
</category>

 For each Data Object (<entity> tag):

o With the <category> tag, create a comma separated list of IDs for each data

model in which you want the Object to be available. In the example below two

data models are specified by their IDs (advisorModel & classesModel).

Example:

<entity>

 <entity_name>Professors</entity_name>
 <db_name>Professor</db_name>
 <category> advisorModel,classesModel</category>
 <datasource_id>7</datasource_id>
 <object_type>xmltable</object_type>
 <key>

Exago Technical Guide

164 Exago Inc.

 <col_name>ID</col_name>
 </key>
 </entity>

 For each Join (<join> tag):

o With the <category> tag, create a comma separated list of IDs for each data

model in which you want the Join to be utilized. In the example below a Join

between two Data Objects is being set to one data model (advisorModel).

Example:

<join>
 <entity_from_name>Professor</entity_from_name>
 <entity_to_name>Student</entity_to_name>
 <join_type>rightouter</join_type>
 <relation_type>1M</relation_type>
 <weight>0</weight>
 <category>advisorModel</category>
 <joincol>
 <col_from_name>ID</col_from_name>
 <col_to_name>Advisor</col_to_name>
 </joincol>
</join>

Example

The following configuration example demonstrates how three Data Objects are made available in

two different relational models. In the advisorModel model Students are joined directly to

Professors, while in the classesModel model Students are joined to Professors indirectly through

Classes.

Models:

<category>
 <category_name>Exago University\Advisors</category_name>
 <category_id>advisorModel</category_id>
 </category>
 <category>
 <category_name>Exago University\Classes</category_name>
 <category_id>classesModel</category_id>
 </category>

Data Objects:

 <entity>
 <entity_name>Classes</entity_name>
 <db_name>Class</db_name>
 <category>advisorModel,classesModel</category>
 <datasource_id>7</datasource_id>
 <object_type>xmltable</object_type>
 <key>
 <col_name>ID</col_name>
 </key>

Exago Technical Guide

165 Exago Inc.

 </entity>
 <entity>
 <entity_name>Students</entity_name>
 <db_name>Student</db_name>
 <category> advisorModel,classesModel </category>
 <datasource_id>7</datasource_id>
 <object_type>xmltable</object_type>
 <key>
 <col_name>ID</col_name>
 </key>
 </entity>
 <entity>
 <entity_name>Professors</entity_name>
 <db_name>Professor</db_name>
 <category>advisorModel,classesModel</category>
 <datasource_id>7</datasource_id>
 <object_type>xmltable</object_type>
 <key>
 <col_name>ID</col_name>
 </key>
 </entity>

Joins:

NOTE. The Professors => Classes join is utilized by both Data Models because no <category> is

set.

 <join>
 <entity_from_name>Professor</entity_from_name>
 <entity_to_name>Student</entity_to_name>
 <join_type>rightouter</join_type>
 <relation_type>1M</relation_type>
 <weight>0</weight>
 <category>advisorModel</category>
 <joincol>
 <col_from_name>ID</col_from_name>
 <col_to_name>Advisor</col_to_name>
 </joincol>
 </join>
 <join>
 <entity_from_name>Professor</entity_from_name>
 <entity_to_name>Class</entity_to_name>
 <join_type>inner</join_type>
 <relation_type>1M</relation_type>
 <weight>0</weight>
 <joincol>
 <col_from_name>ID</col_from_name>
 <col_to_name>Professor</col_to_name>
 </joincol>
 </join>
 <join>
 <entity_from_name>Student</entity_from_name>
 <entity_to_name>Class</entity_to_name>
 <join_type>inner</join_type>
 <relation_type>1M</relation_type>
 <weight>0</weight>
 <category>classesModel</category>
 <joincol>
 <col_from_name>Enrolled in</col_from_name>

Exago Technical Guide

166 Exago Inc.

 <col_to_name>Title</col_to_name>
 </joincol>
 </join>

Exago Technical Guide

167 Exago Inc.

External Interface

There are certain features of Exago that the host application may want to control directly. In some

cases Exago provides the ability for the host application to do this by calling out to a specified Web

Service or .NET Assembly with specific methods.

To utilize the External Interface:

1. Create a Web Service or .Net Assembly that contain the functions described below.

2. Specify the Web Service or .NET Assembly in the External Interface property of Other

Settings.

NOTE. A different external interface can be specified within the Scheduling Service

configuration. For more details see Configuring Scheduler Settings.

NOTE. The Web Service should be formatted as 'url=http://WebServiceUrl.asmx'. The .NET

Assembly should be formatted as 'assembly =

AssemblyFullPath.dll;class=Namespace.ClassName'. For a .NET Assembly all methods

should be static.

The functions below will use the parameters 'companyId', and 'userId' which should be set

through the Api as users enter Exago.

Report Execution Start Event

To enable the host to track report executions, Exago and the Exago Scheduling Service will fire an

event at the start of each report execution. The following method will be used.

void ReportExecuteStart(string companyId, string userId, string reportName)

Description Used to track report execution by user.

Remark Should not return any value.

User Preference Management

By default Exago will store User Preferences such as which Dashboard Reports to execute on

startup in a browser's cookie. While convenient this means if a user switches browsers or

machines their preferences will be lost. Instead the host application can manage how these User

Preferences are stored using the External interface.

To handle the storage of User Preferences:

1. In the User Settings, set User Preference Storage Method to “External Interface”

Exago Technical Guide

168 Exago Inc.

2. Implement the following methods:

void SetUserPreference(string companyId, string userId, string id, string value)

Description Used to set a particular user preference value. The id is a unique identifier for the
user preference, and the value is the user preference value (may be null).

Remark Should not return any value.

string GetUserPreference(string companyId, string userId, string id)

Description Used to retrieve the value parameter of most recent SetUserPrefernce call for the
companyId and userId.

Remark Returns a string

Handling Time Zones

A server in one time zone may be utilized by users around the globe. This presents problems

when handling functions that run on the server such as Now(). There are two ways to handle such

a situation: Use the Culture Setting, Server Time Zone Offset, or use the external interface

functions below.

NOTE. For these functions to be called the Culture setting Sever Time Zone Offest must be blank.

DateTime ConvertToServerDateTime(string companyId, string userId, DateTime clientDateTime)

Description Used to adjust clients time to server's time zone.

Remark Returns a DateTime.

DateTime ConvertToClientDateTime(string companyId, string userId, DateTime serverDateTime)

Description Used to adjust server time to client's time zone.

Remark Returns a DateTime.

Email List for Report Scheduling

Through the external interface, the Exago Scheduling Service can retrieve email distribution

groups from the host application. This prevents having to maintain separate lists of email

addresses within Exago.

Exago Technical Guide

169 Exago Inc.

When a report is scheduled, a call out is made to the host application to get the list of email

addresses and distribution groups for the user to select from. This is done with the following

method.

string GetEmailListXml(string companyId, string userId)

Description Returns a string listing folders and report names in xml format (see example).

Remark Leave the tag <email> blank for an entry to indicate it is a distribution group.

Example

<emailAddressList>
 <item>
 <name>John Smith</name>
 <email>jsmith@mycompanydomain.com</email>
 </item>
 <item>
 <name>Sales Group</name>
 <email></email>
 </item>
</emailAddressList>

If a scheduled report uses a distribution list then the following method will be called at the time

the report is executed.

string GetEmailDistributionListXml(string companyId, string userId, string listName)

Description Returns a string listing folders and report names in xml format (see example).

Remark Do not leave the <email> tag blank. The name item does not need to be returned for

this method.

Example

<emailAddressList>
 <item>
 <email>jsmith@mycompanydomain.com</email>
 </item>
 <item>
 <email>ajones@mycompanydomain.com</email>
 </item>
</emailAddressList>

Custom Scheduler Recipient Window

To utilize the Custom Scheduler Recipient Window feature the following function may exist in the

External Interface. See Custom Scheduler Recipient Window for more information.

string GetEmailList(string controlData)

Description Sends the external interface the Control Data previously provided by host application
when a user clicks OK in the Custom Scheduler Recipient window.

Exago Technical Guide

170 Exago Inc.

Remark Returns a string of email addresses separated by commas or semi colons.

Scheduler Repository Notification

When 'Email Scheduled Reports' is set to False in the Administration Console the following

method will call the External Interface to let the host application know when a scheduled report

has been saved in the Scheduler Repository.

See Saving Scheduled Reports to External Repository for more information.

void ScheduledReportExecutionComplete(string companyId, string userId, string reportName,

string exportFileName, int statusCode, string statusMsg)

Description Sends the external interface a notification that a scheduled report has been saved to
the Scheduler Repository.

Remark statusCode is 0 if the execution was successful, 1 if an error occurred or no data
qualified.

statusMsg details the result of the execution (eg. "Report has successfully executed",
or "There were errors in the report layout; please edit or contact your administrator").

Return value is void.

Exago Technical Guide

171 Exago Inc.

Custom Scheduler Recipient Window

When the functions GetEmailListXml and GetEmailDistributionListXml exist in the External

Interface the To and Cc buttons on the Schedule Report Wizard become clickable and open a

dialog for users to select email addresses or groups. This dialog can be replaced with a custom

window created by the host application.

To utilize a Custom Scheduler Recipient Window:

1. Set a URL, height and width in the Custom Scheduler Recipient Window parameter in the

Scheduler Settings. Ex url=www.CustomScheduler.com;height=100;width=300;

NOTE. Height and Width are numbers that represent the dimensions of the window in

pixels.

2. In the custom window utilize the following JavaScript functions:

wrGetScheduleRecipientWindowEmailAddressData ()

Description Use this function to retrieve any existing email address data the user has entered into
the Schedule Report Wizard.

wrSetScheduleRecipientWindowEmailAddressData (string displayData, string controlData)

Description Call this function when the user clicks OK to tell Exago the email address data.

Remark The displayData will appear in the To or Cc box of the Recipients window.

The controlData will be passed back to the Host application when the Scheduled
report is run and sent out.

wrCancelScheduleRecipientWindow ()

Description Call this function to close the custom window.

3. Create the function GetEmailList(string controlData) in the External Interface to convert

the control data into the actual email addresses when the scheduled report has been run

and is ready to be sent.

Exago Technical Guide

172 Exago Inc.

Custom Filter Execution Window

When a report is executed, a filter execution dialog will appear if any of the filters on the report are

set to 'Prompt for Value'. This dialog can be replaced with a custom window created by the host

application. The custom window can be either a control saved within Exago or a separate webpage

outside of Exago

To create Custom Filter Execution Window as a control within Exago:

1. Create an ascx file in the installation directory of Exago. Ex CustomFilterWindow.ascx

2. Set the control, height and width in the Custom Filter Execution Window parameter in the

Filter Settings. Ex control=CustomFilterWindow.ascx;height=100;width=300;

NOTE. Height and Width are numbers that represent the dimensions of the window in

pixels. These settings are optional. If omitted, the dialog is sized to the value in the

wrDialogMasterContainerCentered css class, which is currently 70%.

3. In the control use the JavaScript functions described below to show the custom filter

window and create or modify filters before report execution begins.

To create Custom Filter Execution Window as a web page:

1. Set a URL, height and width in the Custom Filter Execution Window parameter in the Filter

Settings. Ex url=www.CustomFilterExecution.com;height=100;width=300;

NOTE. Height and Width are numbers that represent the dimensions of the window in

pixels.

NOTE. To notify the host application the user's language the URL will be appended with the

'Language File' of Main Settings and a context parameter (listed below). Ex.

www.CustomFilterExecution.com?language=en-us

2. In the custom webpage use the JavaScript functions described below to show the custom

filter window and create or modify filters before report execution begins.

NOTE. all the JavaScript functions must begin with 'parent.' as the page is placed inside an

iFrame by Exago.

Available JavaScript Functions

The following JavaScript functions are available for the Custom Filter Execution Window.

object[] wrGetFilterWindowData()

Description Gets the report's existing filters created in Exago as an array.

Exago Technical Guide

173 Exago Inc.

Remark Returns an array of filter objects. For more information on the filter objects see
wrReportFilter().

object[] wrGetFilterWindowDataObjects()

Description Gets the Data Categories of the report and their associated Data Fields.

Remark Returns an array of representing the available Data Categories.
Each Data Category has a string providing its Name and a sub array representing the
Data Fields.
Each Data field has a string providing its Name and an integer representing its Data
Type. This integer uses the Data Type Constant described below.

DataType Constants:
0 - String
1 – Date
2 – Integer
3 - Bit

4 - Numeric
5 - Float
6 - Decimal
7 - Guid
8 - DateTime
9 – Time - not currently used
10 - Image

NOTE. All the Categories names being passed are the Alias for each Data Object.

Similarly the Data Fields will return the name specified in column metadata if
provided.

string wrGetActiveReportName()

Description Returns the name of the report being executed.

Remark The returned string includes the folder path of the report separated by slashes.

bol wrShowFilterWindow()

Description Displays the custom filter execution window.

void wrReportFilter()

Description Creates a Filter object that can be added to the Filters array returned by
wrSetFilterWindowData().

Remark Filter Objects have the following properties:

Name – The name of the data field being used.
Operator – Operator for filter. Uses enumeration wrFilterOperator

Values – Value(s) of filter
AndFlag – Boolean to set And/Or with next filter.
GroupWithNext – Boolean to group with next filter.

Exago Technical Guide

174 Exago Inc.

GroupStartCount – The number of opening parentheses that were manually added to
the filter using ctrl + [.
GroupEndCount – The number of closing parentheses that were manually added to
the filter using ctrl +].

DataType – the type of data being filtered. Uses constants DataType (see below.

DataType Constants:
0 - String
1 – Date
2 – Integer
3 - Bit
4 - Numeric
5 - Float
6 - Decimal
7 - Guid
8 - DateTime
9 – Time - not currently used

10 - Image

bol wrSetFilterWindowData(object[] filters)

Description Sets the filters for the report, closes the custom filter execution window, and then
begins report execution.

Remark Returns a Boolean to indicate success.

This or wrCancelFilterWindow() should be the last function called by the custom filter
execution window.

bol wrCancelFilterWindow()

Description Closes the custom filter execution window without changing the report's filters.

Remark Returns a Boolean to indicate success.

This or wrSetFilterWindowData() should be the last function called by the custom
filter execution window.

Example Custom Filter Execution Control

<%@ Control Language="C#" ClassName="MyCustomFilterDialog" EnableTheming="false" %>
Hello Custom Filter Dialog
<input type="button" value="Ok" onclick="OnOk();" />
<input type="button" value="Cancel" onclick="OnCancel();" />
<script type="text/javascript">
 OnOk = function()
 {
 // create array of wrReportFilter objects to send back to parent
 var filters = new Array();
 var filter = new wrReportFilter();
 filter.Name = "Employee.First Name";
 filter.Operator = wrFilterOperator.OneOf;
 filter.Values.push("Travis");
 filter.Values.push("Stew");
 filters.push(filter);
 wrSetFilterWindowData(filters); // also continues execution

Exago Technical Guide

175 Exago Inc.

 }
 OnCancel = function()
 {
 wrCancelFilterWindow();
 }
 // initialize custom window with values from the parent
 var filters = wrGetFilterWindowData();
 var dataObjects = wrGetFilterWindowDataObjects();
 wrShowFilterWindow();
</script>

Example Custom Filter Execution WebPage

<%@ Page Language="C#" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<script runat="server"></script>
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title></title>
 <script type="text/javascript">
 window.onload = function() { Initialize(); };
 function Initialize()
 {
 // initialize custom window with values from the parent
 var filters = parent.wrGetFilterWindowData();
 var dataObjects = parent.wrGetFilterWindowDataObjects();
 parent.wrShowFilterWindow();
 }
 function OnOk()
 {
 // create array of wrReportFilter objects to send back to parent
 var filters = new Array();
 var filter = new parent.wrReportFilter();
 filter.Name = "Employee.First Name";
 filter.Operator = parent.wrFilterOperator.OneOf;
 filter.Values.push("Travis");
 filter.Values.push("Stew");
 filters.push(filter);
 parent.wrSetFilterWindowData(filters); // also continues execution
 }
 function OnCancel()
 {
 parent.wrCancelFilterWindow();
 }
 </script>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <input type="button" value="Ok" onclick="OnOk();" />
 <input type="button" value="Cancel" onclick="OnCancel();" />
 </div>
 </form>
</body>
</html>

Exago Technical Guide

176 Exago Inc.

Saving Scheduled Reports to External Repository

When using the Exago Scheduling Service you may specify for reports to be saved to a repository

instead of having them emailed as attachments. When a Scheduled report is run and saved a

callout to the External Interface will be made to notify the host application. This will allow the

host application to notify the appropriate users their report is available.

To utilize the Repository:

1. Set 'Email Scheduled Reports' in the Scheduler Settings to False.

2. In the Exago Scheduling Service installation open the file ExagoScheduler.xml.

3. Set the parameter “<report_path>” to specify the repository you want to use.

4. Create the function ScheduledReportExecutionComplete(string companyId, string userId,

string reportName, string exportFileName, int statusCode, string statusMsg) in the External

Interface to notify the host application the report execution is complete.

Exago Technical Guide

177 Exago Inc.

Custom Context Sensitive Help

Exago is installed with context sensitive help. When a user clicks the help button a tab appears

displaying the appropriate section of the Exago User Guide. The content of this tab can be

replaced with custom content managed by the host application.

To implement Custom Context Sensitive Help:

1. Create a webpage for the custom help.

2. Set the URL of the webpage in the Custom Help Source parameter in Feature/UI Settings.

Ex url=http://www.Customhelp.com/Exago;

NOTE. When a user clicks the help button Exago will populate a tab with the content

received from the URL. To notify the host application the user's language the URL will be

appended with the 'Language File' of Main Settings and a context parameter (listed

below). Ex. http://www.customhelp.com/Exago?helpKey= newreport&language=en-us

Context Parameter Details

tabexecute The user has Report Viewer active.

Express Report Wizard

tabExpressName The user has the Name tab of the Express Report Wizard active.

tabExpressCategories The user has the Categories tab of the Express Report Wizard active.

tabExpressSorts The user has the Sorts tab of the Express Report Wizard active.

tabExpressFilters The user has the Filters tab of the Express Report Wizard active.

tabExpressLayout The user has the Layout tab of the Express Report Wizard active.

tabExpressOptions The user has the Options tab of the Express Report Wizard active.

New Crosstab Wizard

tabCrosstabName The user has the Names tab of the New Crosstab Report Wizard active.

tabCrosstabCategories The user has the Categories tab of the New Crosstab Report Wizard active.

tabCrosstabFilters The user has the Filters tab of the New Crosstab Report Wizard active.

tabCrosstabLayout The user has the Layout tab of the New Crosstab Report Wizard active.

dialogCrosstabOptions The user has the Options menu open in the Layout Tab of the Crosstab Wizard.

New Report Wizard

tabStandardName The user has the Names tab of the New Standard Report Wizard active.

tabStandardCategories The user has the Categories tab of the New Standard Report Wizard active.

tabStandardSorts The user has the Sorts tab of the New Standard Report Wizard active.

tabStandardFilters The user has the Filters tab of the New Standard Report Wizard active.

tabStandardLayout The user has the Layout tab of the New Standard Report Wizard active.

Chained Report Wizard

tabChainedName The user has the Names tab of the New Chained Report Wizard active.

tabChainedReports The user has the Reports tab of the New Chained Report Wizard active.

tabChainedOptions The user has the Options tab of the New Chained Report Wizard active.

Report Designer

tabDesign The user is editing a standard or crosstab report and has the design grid active.

dialogName The user has the Rename Menu active.

dialogDescription The user has the Description Menu active.

dialogCategories The user has the Categories Menu active.

dialogSorts The user has the Sorts Menu active.

dialogFilters The user has the Filters Menu active.

dialogGeneralOptions The user has the General Options Menu active.

dialogHtmlOptions The user has the Report Viewer Options menu active.

listItemReportHtmlOptionsG

eneral

The user has the General section of the Report Viewer Options active.

Exago Technical Guide

178 Exago Inc.

listItemReportHtmlOptionsFi
lters

The user has the Filter section of the Report Viewer Options active.

listItemReportHtmlOptionsS
orts

The user has the Sorts section of the Report Viewer Options active.

dialogTemplates The user has the Template Menu active.

dialogJoins The user has the Advanced Menu active.

dialogJoinEdit The user has the Report Join Menu active.

dialogFormulaEditor The user has the Formula Editor active.

dialogLinkedReport The user has the Linked Report Menu active.

tabCellFormatNumber The user has the Number tab of the Cell Format Menu active.

tabCellFormatBoder The user has the Border tab of the Cell Format Menu active.

tabCellFormatConditional The user has the Conditional tab of the Cell Format Menu active.

dialogCrosstabDesign The user has the Crosstab Menu active.

dialogGroup The user has the Group Section Menu active.

dialogSectionShading The user has the Section Shading Menu active.

dialogChartBenchmarkLine The user has the Benchmark Lines menu in the Appearance tab active.

tabChartType The user has the Type tab of the Chart menu active.

tabChartDataFormat The user has the Data Format tab of the Chart menu active.

tabChartAppearance The user has the Appearance tab of the Chart menu active.

tabChartData The user has the Data tab of the Chart menu active.

tabChartSizeAndPreview The user has the Size and Preview tab of the Chart menu active.

tabMapType The user has the Type tab of the Map menu active.

tabMapLocations The user has the Locations tab of the Map menu active.

tabMapData The user has the Data tab of the Map menu active.

tabGaugeType The user has the Appearance tab of the Gauge menu active.

tabGaugeData The user has the Data tab of the Gauge menu active.

Dashboards

tabDashboardDesigner The user has the Dashboard designer active.

dialogDashboardUrlOptions The user has the Insert Url menu active.

dialogDashboardName The user has the Dashboard Rename menu active.

dialogDashboardDescription The user has the Dashboard Description menu active.

dialogDashboardOptions The user has the Dashboard Options menu active.

tabDashboardReportOptions The user has the Report tab of the Insert Report menu active.

tabDashboardReportOptions
FilterPrompts

The user has the Filters tab of the Insert Report menu active.

tabDashboardReportOptions
ParameterPrompts

The user has the Parameters tab of the Insert Report menu active.

tabDashboardReportOptions
Options

The user has the Options tab of the Insert Report menu active.

tabDashboardFilterOptionsR
eports

The user has the Reports tab of the Insert Filter menu active.

tabDashboardFilterOptionsFi
lter

The user has the Filter tab of the Insert Filter menu active.

dialogDashboardVisualizatio

nOptions

The user has the Options menu of a Data Visualization active.

Scheduler

tabScheduleReportManager The user has the Schedule Report Manager active.

tabScheduleRecurrence The user has the Recurrence tab of the New Schedule Wizard active.

tabScheduleParameters The user has the Parameter tab of the New Schedule Wizard active.

tabScheduleFilters The user has the Filter tab of the New Schedule Wizard active.

tabScheduleRecipients The user has the Recipients tab of the New Schedule Wizard active.

NOTE. Create a default page to handle any cases where an undocumented or null context

parameter is passed. This guarantees that a valid help page will always be shown.

Exago Technical Guide

179 Exago Inc.

Report Templates Setup

Exago can map data onto PDF, RTF and Excel templates. To utilize this feature the templates must

be properly set up in order to accept data from Exago. After being configured (see below)

templates should be saved in the report path and these templates will be detected

automatically by Exago.

NOTE. Configuring templates varies slightly by format.

PDF Templates

On the PDF Template file create Form Fields where you want to map data. Remember that the

name of the field will be displayed to users in Exago.

For items that repeat (those that will be mapped to cells in a 'detail section') give each form field

the same name followed by a period and a number starting with 0. (ex. item.0, item.1, item.2, etc.)

Check the Multiline property on any PDF field where data may need to wrap to fit inside the field.

NOTE. Although you can use any program you would like to create and edit PDF templates we

recommend Adobe Acrobat Professional or http://www.pdfescape.com.

Check Boxes in PDF Templates.

Checkboxes are not currently supported in PDF templates. However the steps below detail how to

have Exago populate a text field with a check mark.

1. For the PDF text field you want to contain checks set the font to wingdings. Do not put a

border on the field. Save the template and place it in the report path.

2. In a cell on the report use an IF function whose results are char(254) for a checked box and

char(111) for an unchecked box [ex. =if({Employees.Title} = 'Sales Representative' ,

char(254), char(111))]

3. In the Template menu assign the cell to the pdf field.

RTF Templates

For RTF Template files create Bookmarks where you want to map data. Bookmark names do not

display on the document, so we suggest typing the bookmark name in the document where the

field will go, then select the text and make it a bookmark. The typed text within the bookmark will

be replaced by mapped data when the report is executed.

There are two ways to display content that repeats on an RTF Template (those that will be mapped

to cells in a 'detail section').

 If there will be a limited number of repetitions. Give each bookmark the same name

followed by an underscore and a number starting with 0. Ex. item_0, item_1, item_2, etc.

http://www.pdfescape.com/

Exago Technical Guide

180 Exago Inc.

 For content that may need to repeat an indefinite number of times. Create a single line of

content and create a bookmark with the name structure RepeatForEach_bookmarkname.

Dynamic content with RTF Templates

RTF Templates may also use Bookmarks to dynamically hide/display text or entire paragraphs.

To do this:

1. Select the text/paragraph you want to Enable/Disable.

2. Make a bookmark using the naming convention KeepIF_name

3. In Exago make a formula that as that returns 1 if the text should be displayed and 0 if it

shouldn't (ex. '=if({Products.ProductName} = 'Chai', 1, 0)')

4. In the Document Template menu set the cell with the if condition to the bookmark.

5. Run the report as RTF.

Excel Templates

The first worksheet of the Excel template should be left blank (except for the first row) as this is

where Exago will populate the data. In the top row of this sheet place the name of the column that

will be seen by the end user. All the other worksheets in the template will remain unchanged by

Exago.

Referencing Data in Excel Templates

When using an Excel Template there are two ways for Charts or Pivot Tables to reference the data

populated by Exago: Named Ranges or referencing specific rows.

Named Ranges

Excel has a concept of a Named Range which can be used by Charts or Pivot Tables to refer to a

range of cells.

When creating the Template utilize Named Ranges by:

1. In the formula tab open the Name Manager

2. Add a new Named Range whose name matches the name of the first Worksheet. In the

“Refers To” property select the upper left and upper right boundaries of the desired range.

(Ex. If you want all the data from columns A – J, select cells 'Sheet1!A1:J1'.)

Exago Technical Guide

181 Exago Inc.

NOTE. When the report is executed Exago will modify this range to include all of the rows in

these columns that include data. (In the previous example if the report had 100 rows the

range would be updated to 'Sheet1!A1:J100'.)

3. Set the Chart or Pivot Table to use the Named Range as its Data Source.

Row Selection

Instead of using Name Ranges each Chart or Pivot Table can be set to reference the first two rows

on the first worksheet. (Ex. For a template with 5 columns the reference would be

'=Sheet1!A1:E2'.) When the data is populated by Exago rows are inserted in a fashion that

these references will automatically expand to incorporate each row of data.

Exago Technical Guide

182 Exago Inc.

Report and Folder Storage/Management

By default, Exago stores the reports in a file system folder. The location of this folder is specified in

the 'Report Path' property set in the Administration Console. Alternatively, report, template and

folder storage, and retrieval can be handled by building a Web Service or .NET Assembly. This

would allow for reports, folders and templates to be stored in a database. To do this, specify the

Web Service or .NET Assembly in the Report Path of Main Settings. The Web Service or .NET

Assembly should contain all of the methods specified in List of Methods.

List of Methods

NOTE. The methods will use the parameters 'companyId', and 'userId' which should be set

through the Api as users enter Exago from the host application.

NOTE. If using a .Net Assembly, the folder management code can use alternative method

signatures to be passed Exago's SessionInfo object for additional flexibility. See Accessing

SessionInfo in Folder Management for more information.

string GetReportListXml(string companyId, string userId)

Description Returns a string listing folders and report names in xml format (see example).

Remark For reports set the flag <leaf_flag> to True. For folders set this flag to False.

If an error occurs return null and a generic error will be displayed to the user.

Example

<entity>
 <name>Travis' Reports</name>
 <leaf_flag>false</leaf_flag>
 <readonly_flag>false</readonly_flag>
 <entity>
 <name>Sales Report</name>
 <description>Contains sales information</description>
 <leaf_flag>true</leaf_flag>
 <readonly_flag>false</readonly_flag>
 </entity>
 <entity>
 <name>Employee Reports</name>
 <description>Contains employee information</description>
 <leaf_flag>false</leaf_flag>
 <readonly_flag>false</readonly_flag>
 <entity>
 <name>Employee Benefits Report</name>
 <description>HR and Employee info </description>
 <leaf_flag>true</leaf_flag>
 <readonly_flag>false</readonly_flag>
 </entity>
 </entity>
</entity>

string GetReportXml(string companyId, string userId, string reportName)

Exago Technical Guide

183 Exago Inc.

Description Returns a string containing the report in xml format.

Remark If an error occurs return null and a generic error will be displayed to the user.

string GetReportType(string reportName)

Description Returns the type of report as a wrReportType enum.

Remark Any invalid type returns null. This will cause any report management methods to fail.

string SaveReport(string companyId, string userId, string reportName, string reportXml)

Description Saves a report (reportName is fully qualified)

Remark Returns an error message if one occurs, else return null.

NOTE. To support multi-language functionality, if the returned string matches the id of
any element in the language files then the string of that language element will be
displayed to the user instead of the returned value. For more information see Multi-
Language Support.

string DuplicateReport(string companyId, string userId, string reportName, string reportXml)

Description Duplicates a report (reportName is fully qualified). If this method is not provided,
SaveReport will be called.

Remark Returns an error message if one occurs, else return null.

NOTE. To support multi-language functionality, if the returned string matches an id of
any element in the language files then the string of that language element will be
displayed to the user instead of the returned value. For more information see Multi-
Language Support.

string DeleteReport(string companyId, string userId, string reportName)

Description Deletes a report (reportName is fully qualified)

Remark Returns an error message if one occurs, else return null.

NOTE. To support multi-language functionality, if the returned string matches the id of
any element in the language files then the string of that language element will be
displayed to the user instead of the returned value. For more information see Multi-
Language Support.

string RenameReport(string companyId, string userId, string reportName, string newReportName)

Exago Technical Guide

184 Exago Inc.

Description Renames a report (reportName & newReportName are fully qualified). If this method
is not provided, DeleteReport and SaveReport will be called.

Remark Returns an error message if one occurs, else return null.

NOTE. To support multi-language functionality, if the returned string matches the id of
any element in the language files then the string of that language element will be
displayed to the user instead of the returned value. For more information see Multi-
Language Support.

string AddFolder(string companyId, string userId, string folderName)

Description Adds a report folder (folderName is fully qualified). Folder should not be named to
one that already exists.

Remark Returns an error message if one occurs, else return null.

NOTE. To support multi-language functionality, if the returned string matches the id of
any element in the language files then the string of that language element will be

displayed to the user instead of the returned value. For more information see Multi-
Language Support.

string DeleteFolder(string companyId, string userId, string folderName)

Description Deletes a report folder (folderName is fully qualified).

Remark Exago' default report template management will not allow a folder to be deleted that
contains any reports.

Returns an error message if one occurs, else return null.

NOTE. To support multi-language functionality, if the returned string matches the id of
any element in the language files then the string of that language element will be
displayed to the user instead of the returned value. For more information see Multi-

Language Support.

string RenameFolder(string companyId, string userId, string oldName, string newName)

Description Renames a report folder (folder names are fully qualified). Folder should not be
moved to a location where a Folder with a matching name already exists.

Remark Returns an error message if one occurs, else return null.

NOTE. To support multi-language functionality, if the returned string matches the id of
any element in the language files then the string of that language element will be
displayed to the user instead of the returned value. For more information see Multi-
Language Support.

string MoveFolder(string companyId, string userId, string oldName, string newName)

Description Moves a report folder (folder names are fully qualified). Folder should not be renamed
to one that already exists.

Exago Technical Guide

185 Exago Inc.

Remark Returns an error message if one occurs, else return null.

NOTE. To support multi-language functionality, if the returned string matches the id of
any element in the language files then the string of that language element will be
displayed to the user instead of the returned value. For more information see Multi-

Language Support.

bool ExistFolder(string companyId, string userId, string folderName)

Description Determines if a folder exists.

Remark Returns true or false.

List<string> GetTemplateList(string companyId, string userId)

Description Returns a list of strings or a string array containing the available templates.

Remark If an error occurs return null and a generic error will be displayed to the user.

byte[] GetTemplate(string companyId, string userId, string templateName)

Description Returns a byte array containing the template.

Remark If an error occurs return null and a generic error will be displayed to the user.

string SaveTemplate(string companyId, string userId, string templateName, byte[] templateData)

Description Saves a template

Remark Returns an error message if one occurs, else return null.

Note: To support multi-language functionality, if the returned string matches the id of
any element in the language files then the string of that language element will be
displayed to the user instead of the returned value. For more information see Multi-
Language Support.

List<string> GetThemeList(string companyId, string userId, string themeType)

Description Returns a list of strings or a string array containing the available themes.

Remark Valid values of themeType: “CrossTab”, “Express”, “Chart”, “Map”, “Gauge”

If an error occurs return null and a generic error will be displayed to the user.

Exago Technical Guide

186 Exago Inc.

bool ExistTheme(string companyId, string userId, string themeType, string themeName)

Description Determines if a theme exists.

Remark Valid values of themeType: “CrossTab”, “Express”, “Chart”, “Map”, “Gauge”

Returns true or false.

string GetThemeXml(string companyId, string userId, string themeType, string themeName)

Description Returns a string representing the theme in xml format.

Remark Valid values of themeType: “CrossTab”, “Express”, “Chart”, “Map”, “Gauge”

If an error occurs return null and a generic error will be displayed to the user.

string SaveTheme(string companyId, string userId, string themeType, string themeName, string

themeXml)

Description Saves a theme.

Remark Valid values of themeType: “CrossTab”, “Express”, “Chart”, “Map”, “Gauge”

Returns an error message if one occurs, else return null.

NOTE. To support multi-language functionality, if the returned string matches the id of
any element in the language files then the string of that language element will be
displayed to the user instead of the returned value. For more information see Multi-
Language Support.

Accessing SessionInfo in Folder Management

This section only applies to Folder Management using a .Net Assembly.

After adding a reference to WebReportsApi.dll you may gain additional flexibility by replacing

companyId and userId with Exago' sessionInfo object in the methods listed above. The sessionInfo

object grants access to all of the parameters, configuration, and report information of the Exago

session. See Exago SessionInfo for more information.

To utilize the sessionInfoObject replace the companyId and userId parameters in the method

signatures above with sessionInfo sessionInfo (see example below).

NOTE. To use the sessionInfoObject all the methods must be static.

Utilizing the sessionInfo object will allow the folder management code to access much more

information about the user and/or Exago. For example the capability to access the sessionInfo

object could be used to pass additional parameters to your folder management code such as the

preferred language of the user or from which part of the host application they entered Exago.

Exago Technical Guide

187 Exago Inc.

NOTE. Passing the sessionInfo object will lock the folder management Assembly. In order to

unlock the assembly, either IIS will need to be restarted, or the application pool running Exago will

need to be recycled.

The following is an example of the method signature for GetReportXml to utilize the sessionInfo

object.

string GetReportXml(SessionInfo sessionInfo, string reportName)

Description Returns a string containing the report in xml format.

Remark If an error occurs return null and a generic error will be displayed to the user.

companyId and userId can still be retrived using the calls
sessionInfo.SetupData.Parameters.GetValue('comapnyId') and
sessionInfo.SetupData.Parameters.GetValue('userId') respectively.

The sessionInfo object must be the first parameter in the method.

Exago Technical Guide

188 Exago Inc.

Application Logging

An administrator can configure how Exago handles logging in order to change or extend

functionality.

Logging Defaults

By default Exago saves a log file called 'WebReportsLog.txt' to the application's Temp path

(specified in 'WebReports.xml'). The logger maintains a lock on the file for the lifespan of the

application. The log file cannot be edited or deleted without restarting the application.

There are three configurable verbosity levels for the logger. By default, Exago runs at the Info

level.

 Error – Only logs error messages in the application.

 Info – Logs SQL statements, number of rows returned from each statement, and report

execution information, as well as all Error messages.

NOTE. Report execution information includes the following:

On execution start: Start time, userId, companyId, full report name, filter summary.

On execution end: End time, runtime, userId, companyId, full report name.

 Debug – Logs a variety of debugging information that can be used to time specific parts of

the app, as well as all Info and Error messages.

The logger can load its configuration from a file and continually watch the file for changes. A config

file can be used to lock or unlock the log file, as well as to customize and extend logging capability.

To create a custom config file, create a file called 'log4net.config' in the Config directory of the

Exago application. The following shows a sample config file:

<log4net>
 <appender name="RollingFileAppender" type="log4net.Appender.RollingFileAppender">
 <file value="C:\Exago\Temp\WebReportsLog.txt" />
 <encoding value="utf-8" />
 <appendToFile value="true" />
 <rollingStyle value="Size" />
 <maxSizeRollBackups value="10" />
 <maximumFileSize value="1MB" />
 <staticLogFileName value="true" />
 <lockingModel type="log4net.Appender.FileAppender+ExclusiveLock" />
 <layout type="log4net.Layout.PatternLayout">
 <conversionPattern value="%date %-5level [%property{SessionId}]
%message%newline"/>
 </layout>
 </appender>

 <!-- Setup the root category, add the appenders and set the default level -->
 <root>

Exago Technical Guide

189 Exago Inc.

 <level value="INFO" />
 <appender-ref ref="RollingFileAppender" />
 </root>
</log4net>

Custom Logging

Exago uses Apache Log4Net to handle custom logging. For more information and extensibility

features, see: Apache log4net. See the following examples for some simple modifications:

Changing Logfile Location

<file value="Path\To\Log.txt" />

Specifies the directory and filename for the log file.

Changing Logging Level

<level value="INFO" />

Specifies the Exago logging level: ERROR, INFO, or DEBUG.

Unlocking the Log File

<lockingModel type="log4net.Appender.FileAppender+ExclusiveLock" />

Configures the locking model in use for the log file. To temporarily disable the write lock, you can

use: log4net.Appender.FileAppender+MinimalLock

NOTE. This will result in a performance reduction until it is reset.

https://logging.apache.org/log4net/

Exago Technical Guide

190 Exago Inc.

Responsive Dashboards

Automatic scaling for running dashboards is implemented by use of an Action Event which is

bundled but disabled by default. The event is fully customizable in case one would wish to alter

the method of scaling.

This implementation makes use of the OnDashboardResize Action Event, which fires whenever

an active dashboard has its size changed. This could occur on a change of the dashboard

container or a change of the browser window.

NOTE. Reports included on a dashboard are not responsive, and will not resize to fit a

screen. However, all other elements of a dashboard, including visualizations, images, text

fields, and filters, are responsive.

Event Type

OnDashboardResize

Global Event Type

Load

References

WebReportsApi.dll

Namespaces

WebReports.Api

Custom Code

sessionInfo.JavascriptAction.SetJsCode(@"
var dashboardItemsList = clientInfo.dashboard.dashboardItemsList;

if (clientInfo.dashboard.container.clientWidth < 700)
{
 var currentBottom = 0;
 for (var i=0; i<dashboardItemsList.length; i++)
 {
 var currentItem = dashboardItemsList[i];
 var canvasItem = currentItem.canvasItem;
 var dashboardElement = currentItem.Element;
 var designHeight = currentItem.DesignHeight;
 var designWidth = currentItem.DesignWidth;
 var scalingFactor = 1;
 var newHeight = designHeight;
 var newWidth = designWidth;

 if (designWidth > clientInfo.dashboard.container.clientWidth)
 {
 var ratio = designHeight / designWidth;
 newWidth = Math.floor(clientInfo.dashboard.container.clientWidth - 5);
 if (currentItem.Type != 'Report') newHeight = Math.floor(newWidth * ratio);

Exago Technical Guide

191 Exago Inc.

 scalingFactor = newWidth / designWidth;
 }
 canvasItem.SetBounds({left:0, top: currentBottom, width: newWidth, height: newHeight},
true);

 if(currentItem.Type == 'Text')
 {
 if (scalingFactor != 1)
 {
 dashboardElement.style.transform = 'scale(' + scalingFactor + ')';
 dashboardElement.style.transformOrigin = 'top';
 }
 else
 {
 dashboardElement.style.transform = '';
 dashboardElement.style.transformOrigin = '';
 }
 }

 currentBottom += newHeight + 5;
 }
}
else
{
 for (var i=0; i<dashboardItemsList.length; i++)
 {
 var currentItem = dashboardItemsList[i];
 var canvasItem = currentItem.canvasItem;
 var dashboardElement = currentItem.Element;
 var X = currentItem.DesignX;
 var Y = currentItem.DesignY;
 var Width = currentItem.DesignWidth;
 var Height = currentItem.DesignHeight;
 canvasItem.SetBounds({left:X, top: Y, width: Width, height: Height}, true);
 if (currentItem.Type == 'Text')
 {
 dashboardElement.style.transform = '';
 dashboardElement.style.transformOrigin = '';
 }
 }
}
");

return sessionInfo.JavascriptAction;

Exago Technical Guide

192 Exago Inc.

Scheduler Queue

Scheduled reports can be controlled by an external custom queue whose code you administer via

a .NET Assembly or an XML Soap Web Service. This may be desirable in a configuration which uses

a large number of scheduler services, where customized load balancing is desired.

This queue must be referenced in each scheduler service in the eWebReportsScehduler.xml

configuration file:

<queue_service>Assembly=Path\To\Assembly.dll;class=Scheduler.SchedulerQueue</queue_servi

ce>

And in the each of the Exago web application instances' config files (or via the API at runtime):

<schedulerqueueservice>Assembly=Path\To\Assembly.dll;class=Scheduler.SchedulerQueue</sch

edulerqueueservice>

New helper classes have been added to the .NET Api: QueueApi and QueueApiJob. These are

contained within the WebReports.Api.Scheduler namespace.

The following methods are required to be in your queue interface:

public static void Start(string serviceName)

Called from scheduler services to indicate when a specific service starts.

public static string[] GetJobList(string viewLevel, string companyId, string userId)

Called from the Exago UI to populate the jobs in the scheduler manager.

public static string GetNextExecuteJob(string serviceName)

Called from the scheduler services to return the next job to execute.

public static void SaveJob(string jobXml)

Called from both the scheduler services and the Exago UI to save the job. This method is

called when a schedule is added, updated, completed, killed, etc.

public static string GetJobData(string jobId)

Called from the Exago UI schedule manager to get the full job XML data for a specific job.

public static void DeleteReport(string reportId)

Called from the Exago UI when a report is deleted.

public static void RenameReport(string reportId, string reportName)

Called from the Exago UI when a report is renamed.

public static void UpdateReport(string reportId, string reportXml)

Exago Technical Guide

193 Exago Inc.

Called from the Exago UI when a report is updated.

public static void Flush(string viewLevel, string companyId, string userId)

Called from the Exago UI scheduler manager in response to a click on the Flush button.

Exago Technical Guide

194 Exago Inc.

Exago API

The following chapter details the Application Programming Interface (API) offered by Exago.

The Exago application consists of two basic parts: the user interface (and all of its support code),

and the Api. The user interface is built entirely on top of the .NET Api. This means .NET

Applications can interface directly with Exago. Non-.NET applications can interface through the

Web Service Api which offers a subset of the .NET Api.

NOTE. Non Windows IIS applications can interface with the Exago Web Service Api as long as a

Windows IIS Server is setup to run Exago and the Web Service Api.

Exago Technical Guide

195 Exago Inc.

.NET API

To use the .NET Api the host application must include a reference to the assembly

WebReportsApi.dll in its project.

NOTE. A configuration using an Assembly Data Source must include a reference to the assembly

WebReportsAsmi.dll.

Quick List of Name Spaces and Classes

Below the Name Spaces employed by Exago are listed. The name spaces utilized to integrate

Exago display their classes below.

WebReports.Api – main namespace; contains Api class used in application integration.

 Api

WebReports.Api.Charts – Chart creation and processing classes.

WebReports.Api.Common – Common classes used by classes in other namespaces.

ReportObjectFactory

 ReportObject

WebReports.Api.Custom – Classes used for custom work.

WebReports.Api.Composite.Dashboard – Classes used for Dashboard Reports.

 DashboardReport

WebReports.Api.Data – Data source and access classes.

 DataSource

 DataSourceCollection

WebReports.Api.Export – Report execution export classes.

WebReports.Api.Reports – All classes used in report creation.

 Filter

 Report

 ReportFilterCollection

 ReportSortCollection

 Sort

WebReports.Api.ExecuteData – Classes used for report execution processing.

WebReports.Api.Roles – Role creation and processing classes.

 DataObject

 DataObjectCollection

 DataObjectRow

 DataObjectRowCollection

 Folder

 FolderCollection

 General

 Parameter

 ParameterCollection

 Role

Exago Technical Guide

196 Exago Inc.

 RoleCollection

 Security

WebReports.Api.ReportMgmtBase – Base class used for report and folder management.

Exago Technical Guide

197 Exago Inc.

WebReports.Api

Api Class

The Api class is the main interaction class between Exago and the host application. All API session

parameters are accessed through this class. An Api object should be the first thing that is

created to interact with Exago.

An Api object has the following properties:

 Action – Value that may indicate to execute a report or open Exago directly to the Report

Design Grid or New Report Wizard. For the values 'EditReport', 'NewReport',

'NewCrossTabReport, and 'NewExpressReport' the main menu will be disabled.

o Uses the enumeration wrApiAction(Default, Home, ExecuteReport, EditReport,

NewReport, NewCrossTabReport, NewExpressReport, NewDashboardReport,

ScheduleReport, ScheduleReportManager).

o NOTE. If you have a Report object loaded then the value of Default will execute the

report directly. Otherwise it will open the home page.

 AppVirtualPath – IIS virtual directory of Exago' location. This should be set to an absolute

path (i.e. /ExagoWebSite/Exago).

 DataSources – DataSources collection. See DataSourceCollection Class.

 Parameters – Parameters collection. See ParameterCollection Class.

 ReportObjectFactory – Used to manage all report objects within the application. See

ReportObjectFactory Class.

 ReportScheduler – Scheduler object. See Report Scheduler Class.

 Roles – Roles collection. See RoleCollection Class.

 ShowTabs – Boolean value. Set to False to hide the tabs and help button of Exago.

 DefaultReportName – String value used in conjunction with api.Action.

o When api.Action is set to NewReport, NewCrossTabReport or

NewExpressReport: The DefaultReportName provides the full path name for the

report. The Info tab of the new report wizard will be hidden and the report designer

will not display menus to rename the report or change its description.

o When api.Action is set to EditReport: If DefaultReportName is any non-empty

value the report designer will not display menus to rename the report or change its

description.

An Api object has the following methods:

Exago Technical Guide

198 Exago Inc.

Constructor()

Remark Do not call this method from the .NET Api.

Constructor(string appVirtualPath)

Description Initializes an Api object and sets the AppVirtualPath.

Remarks Return value is void.

Constructor(string appVirtualPath, string configFile)

Description Initializes an Api object, sets the AppVirtualPath and loads the specified configuration.

Remarks Can be used to load configuration other than WebReport.xml.

Return value is void.

Constructor(string appVirtualPath, string configFile, string azurePath)

Description Initializes an Api object, sets the AppVirtualPath and loads the specified configuration
from Azure.

Remarks The specified Azure path must match that is app.config in the Exago installation. See
Azure Cloud Support for more information.

Return value is void.

GetUrlParamString()

Description Calls GetUrlParamString(“ExagoHome”)

Remarks Return value is void.

GetUrlParamString(string webPageName)

Description Returns the URL parameter string used to redirect browser or frame to Exago. Append
this string to your Exago URL.

GetUrlParamString(string webPageName, boolean showErrorDetail)

Description Returns the URL parameter string used to redirect browser or frame to Exago.

Append this string to your Exago URL. Set showErrorDetail to True to display detailed
error messages.

Exago Technical Guide

199 Exago Inc.

WebReports.Api.Data

DataSource Class

The DataSource class is used to set or override the data connection string of a pre-existing data

source at runtime.

A DataSource object has the following properties:

 Name – Name of the data source.

 DataConnStr – Value of data connection string.

A DataSource object has no available methods.

DataSourceCollection Class

This collection should not be instantiated; there is a single DataSourceCollection object that is

accessed through the DataSources property of the Api object.

The DataSources property of an Api object has one available method:

GetDataSource(string dataSourceName)

Description Returns a DataSourceObject. Returns Null if the object is not found.

Exago Technical Guide

200 Exago Inc.

WebReports.Api.Common

ReportObjectFactory Class

The ReportObjectFactory class is the entry point to application report object manipulation. This

factory manages access to reports via API, updating that report's schedules when required

(rename, delete), and creation of new reports. This class logically sits on top of ReportMgmtBase

and ReportScheduler for higher level report management.

The ReportObjectFactory has the following properties:

 Active – The active report object. The active report object is whichever report was most

recently created/loaded/deleted/etc.

The ReportObjectFactory has the following methods:

ReportObject Create(wrReportType reportType)

Description Create a new report object, it has yet to be saved into the report repository

Remarks The created report object is made the active report object on return.

Both the Report class and the DashboardReport class inherit from ReportObject, a

cast to the appropriate child class is required for more specific access to the report.

ReportObject LoadFromRepository(string name, [bool setActive = true])

Description Load an existing report object from the report repository.

Remarks The loaded report object is made the active report object on return.

Both the Report class and the DashboardReport class inherit from ReportObject, a

cast to the appropriate child class is required for more specific access to the report.

void Delete(string name)

Description Delete the provided report from the report repository.

Remarks The deleted report object is made the active report object on return.

void Delete(ReportObject reportObject, [bool deleteScheduledReports = true])

Description Delete the provided report object the report repository.

Exago Technical Guide

201 Exago Inc.

Remarks The deleted report object is made the active report object on return.

void Delete([bool deleteScheduledReports = true])

Description Delete the currently active report object from the report repository.

void Rename(string name, string newName)

Description Rename the provided report in the report repository.

Remarks The renamed report object is made the active report object on return.

void Rename(ReportObject reportObject, string newName)

Description Rename the provided report object in the report repository.

Remarks The renamed report object is made the active report object on return.

void Copy(string name, string newName)

Description Copy the provided report in the report repository to another location in the report
repository.

void Copy(ReportObject reportObject, string newName)

Description Copy the provided report object to another location in the report repository.

void SaveToRepository(ReportObject reportObject)

Description Save the provided report object to the report repository. If it already exists it will be
overwritten.

void SaveToApi(ReportObject reportObject)

Description Save the provided report object to an API area which can be accessed by the
application once it's given control via Api.GetUrlParamString

ReportObject Class

The ReportObject class is an abstract class that all report objects derive from. It contains all

properties and methods that are common for any type of report within the application.

Exago Technical Guide

202 Exago Inc.

The ReportObject has the following properties:

 ExportType – This value indicates which format to export the report.

o Uses the enumeration wrExportType:

 Html (Default Report Viewer), Excel, Pdf, Rtf, Csv

 IsEditAllowed – Boolean value. If False the report object cannot be edited because the

active role does not have access to one or more elements defined in the report object.

 IsExecuteAllowed - Boolean value. If False the report cannot be executed because the

active role does not permit access to one or more Data objects on the report.

WebReports.Api.Composite.Dashboards

DashboardReport Class

The DashboardReport class allows dashboard reports to be executed and manipulated from the

host application. This class does not need to be instantiated, it should be retrieved using methods

defined in ReportObjectFactory. The DashboardReport class is derived from the ReportObject

abstract class.

A DashboardReport object has the following properties:

ReportItems – A list of ReportItem objects, each representing a report contained within the

dashboard. To find the index of a particular report on a dashboard:

 Enter the dashboard designer.

 Press Ctrl+Shift+I.

 Click on the desired report. The index will appear in the reports title bar.

ReportItem Class

The ReportItem class represents a report that is contained within a composite report.

A ReportItem object has the following properties:

Report – The report that this ReportItem represents (fully qualified name).

The ReportItem object has the following methods:

void SetFilterValue(string filterName, wrFilterOperator filterOperator, List<string> filterValues)

Exago Technical Guide

203 Exago Inc.

Description Set the value for a promptable filter that exists on this report

Remarks The number of entries in filterValues depends on the filter operator.

void SetParameterValue(string parameterName, string parameterValue)

Description Set the value for a promptable parameter that exists on this report

WebReports.Api.Composite.Chained

ChainedReport Class

The ChainedReport class allows Chained Reports to be executed and manipulated from the host

application. This class does not need to be instantiated, it should be retrieved using methods

defined in ReportObjectFactory. The ChainedReport class is derived from the ReportObject

abstract class.

A ChainedReport object has the following properties:

ReportItems – A list of ReportItem objects, each representing a report contained within the

chained report.

ReportItem Class

See ReportItem.

WebReports.Api.Reports

Filter Class

The Filter class is used to modify filters at runtime. New Filter objects should be created by the

NewFilter method of ReportFilterCollection.

A Filter object has the following properties:

 AndOrWithNext – Value indicates to use an 'and' or 'or' with the next filter added.

o Uses the enumeration wrFilterAndOrWithNext (And, Or).

 DbName - The fully qualified database (not mnemonic) name of the filter (i.e.

'vw_optionee.Last Name').

 GroupWithNext – Boolean indicating if the filter should be grouped with the next filter.

Exago Technical Guide

204 Exago Inc.

 Operator – The comparison operator.

o Uses the enumeration wrFilterOperator (EqualTo, NotEqualTo, LessThan,

GreaterThan, LessThanOrEqualTo, GreaterThanOrEqualTo, StartsWith, EndsWith,

Contains, Between, NotBetween, OneOf, NotOneOf).

 Prompt – Boolean indicating whether to prompt user for the value of this filter at time of

execution.

 Value – value of the filter if it uses an Operator that only takes a single value. Dates must

be in the following format YYYY-MM-DD.

 DataValues – values of the filter using an Operator that takes multiple values, such as One

Of or Between.

A Filter object has no available methods.

Report Class

The Report class allows standard and express reports to be executed directly from the host

application. This class does not need to be instantiated, it should be retrieved using methods

defined in ReportObjectFactory. The Report class is derived from the ReportObject abstract class.

A Report object has the following properties:

 Filters – Filters collection. See ReportFilterCollection class below.

 Sorts – Sorts collection. See ReportSortCollection class below.

 ShowStatus – Boolean value. This value indicates whether to show status window during

execution. Default is True.

A Report Object has the following methods:

GetExecuteHtml()

Description Executes the report and returns HTML (Default Report Viewer).

Remarks The raw HTML can be used to populate a container in the host application. Does not
include Exago paging Report Viewer.

GetExecuteData()

Description Executes the report and returns data as a byte array.

Remarks Any export type can be executed in this way; use the ExportType property prior to
calling this method to set the export type.

Exago Technical Guide

205 Exago Inc.

GetExecuteSql()

Description Returns all SQL statements that would be generated as a result of executing the
report.

Remarks There may be more than one SQL statement generated if the report uses more than
one SQL data source.

ReportFilterCollection Class

This collection should not be instantiated; there is a single ReportFilterCollection object that is

accessed through the Filters property of the Report object.

The Filters property of a Report object has one available method:

NewFilter()

Description Returns a new Filter object and adds it to the collection.

Remarks The returned Filter object needs to have all of its properties filled or an error will
occur.

ReportSortCollection Class

This collection should not be instantiated; there is a single ReportSortCollection object that is

accessed through the Sorts property of the Report object.

The Sorts property of a Report object has one available method:

NewSort()

Description Returns a new Sort object and adds it to the collection.

Remarks The returned Sort object needs to have all of its properties filled or an error will occur.

Sort Class

The Sort class is used to modify sorts at runtime. New Sort objects should be created by the

NewSort method of ReportSortCollection.

A Sort object has the following properties:

 SortText – The fully qualified database (not mnemonic) name of the sort (i.e.

'vw_optionee.Last Name').

Exago Technical Guide

206 Exago Inc.

 Direction – Direction of the sort.

o Uses the enumeration wrSortDirection (Ascending, Descending)

A Sort object has no available methods.

Exago Technical Guide

207 Exago Inc.

WebReports.Api.Roles

DataObject Class

The DataObject class can allow or deny access to specific Data Objects for a particular user

session.

A DataObject object has the following property:

 Name – The name (non-mnemonic) of the Data Object to include or exclude.

o A DataObject in the DataObjectCollection will be excluded if the property IncludeAll

is True and included if it is False.

A DataObject object has no available methods.

DataObjectCollection Class

This collection should not be instantiated; there is a single DataObjectCollection object that is

accessed through the DataObjects property of the Security object.

The DataObjectCollection has the following property:

 IncludeAll – Boolean indicating whether to include all of the Data Objects (default) or none

of the Data Objects.

The DataObjects property of a Security object has the following method:

GetDataObject (string dataObjectName)

Description Returns the DataObject object or null if not found.

NewDataObject ()

Description Returns a new DataObject object and adds it to the collection.

Remarks The returned DataObject object needs to have all of its properties filled or an error
will occur.

DataObjectRow Class

The DataObjectRow class can set Row Level filters to Data Objects for a particular user session.

A DataObjectRow object has the following properties:

 ObjectName – The name (non-mnemonic) of the Data Object.

Exago Technical Guide

208 Exago Inc.

 FilterString – The filter string for the Data Object. The filter string will be placed into the

SQL WHERE clause.

A DataObjectRow object has no available methods.

DataObjectRowCollection Class

This collection should not be instantiated; there is a single DataObjectRowCollection object that

is accessed through the DataObjectRoles property of the Security object.

The DataObjectRoles property of a Security object has the following method:

GetDataObject (string dataObjectRowName)

Description Returns the DataObjectRow object or null if not found.

NewDataObjectRow ()

Description Returns a new DataObjectRow object and adds it to the collection.

Remarks The returned DataObjectRow object needs to have all of its properties filled or an
error will occur.

Folder Class

The Folder class is used to allow or deny access to folders or sets folders as execute-only for a

particular user session.

A Folder object has the following properties:

 Name – The name (non-mnemonic) of the folder to include/exclude.

o The folder in the FolderCollection will be excluded if the property IncludeAll is True

and included if it is False.

 ReadOnly – Boolean indicating whether a folder is read only. Default is False.

 Propagate – Not used: Parameters set for a folder are always propagated down to all of its

subfolders unless parameters for specific child folder are set.

A Folder object has no available methods.

FolderCollection Class

This collection should not be instantiated; there is a single FolderCollection object that is

accessed through the Folders property of the Security object.

Exago Technical Guide

209 Exago Inc.

A FolderCollection object has the following property:

 IncludeAll – Boolean indicating whether to include all of the folders (default) or none.

 ReadOnly – Global read-only for all of the folders in the collection. Individual Folder objects

can be set with a different ReadOnly property.

 AllowManagement – Boolean indicating whether or not to allow users to manage folders.

Set to False to hide the Manage Folder Icon.

The Folders property of a Security object has the following method:

GetFolder (string folderName)

Description Returns the Folder object or null if not found.

NewFolder ()

Description Returns a new Folder object and adds it to the collection.

Remarks The returned Folder object needs to have all of its properties filled or an error will
occur.

General Class

The General class is utilized to overwrite the General Settings of the Administration Console. This

collection should not be instantiated; there is a single General object that is accessed through

the General property of the Role object.

The General property of the Role object has the following properties:

 DbTimeout – The amount of time (in seconds) to allow the database to execute a query

before returning to Exago.

 DateFormat – Used to format dates on a report output.

 CurrencySymbol – The symbol prepended to currency numbers on a report output.

 SeparatorSymbol – The symbol used to separate 3 digits of number on a report output.

 ReadFilterValues – Boolean value that indicates whether to show a list of data values

associated with a specific filter in the Report Filters window. In certain cases, allowing this

can result in a lengthy delay of showing filter values, however, this depends on the amount

of data, the complexity of data object, etc. If the delay is unacceptable, setting this value to

'False' will disable the feature.

 ShowGrid – Boolean value that indicates whether to show the grid in the Report Viewer.

Also sets the 'Show Grid Lines' default to Report Viewer Report Options.

Exago Technical Guide

210 Exago Inc.

 ReportVirtualPath – IIS virtual path for the location of the report path.

The General property of the Role object does not have any available methods.

Parameter Class

The Parameter class is used to create and modify Parameters.

A Parameter object has the following properties:

 Id – Name of the parameter.

NOTE. Parameter names ARE case sensitive.

 Value – The value being stored in the parameter.

A Parameter object has the following available methods:

Constructor (string paramId, string paramValue)

Description Instantiates a Parameter object with the specified Id and Value.

ParameterCollection Class

This collection should not be instantiated; there is a single ParameterCollection object that is

accessed through the Parameters property of the Api object.

The Parameter property of an Api object has the following method:

GetParameter(string parameterId)

Description Returns the Parameter object or null if not found.

Role Class

The Role class contains all of the information concerning General and Security parameters. A Role

can be created at runtime and used for a single session or loaded from the roles that have been

created through the Administration Console. For more information see Roles.

This collection should not be instantiated; there is a single RoleCollection object that is

accessed through the Role property of the Api object.

A Role object may have the following properties:

 General – Access to all of the General Parameters. See General Class.

 Security – Access to all of the Security Parameters. See Security Class.

Exago Technical Guide

211 Exago Inc.

A Role object has one available method:

Activate()

Description Makes this role active.

RoleCollection Class

This collection should not be instantiated; there is a single RoleCollection object that is

accessed through the Roles property of the Api object.

GetRole(string roleId)

Description Returns the Role object or null if not found.

NewRole()

Description Returns a new Role object and adds it to the collection.

Remarks The returned Role object needs to have all of its properties filled or an error will occur.

Security Class

The Security class contains all of the security parameters for a user session.

This collection should not be instantiated; there is a single Security object that is accessed

through the Security property of the Role object.

The Security object has the following properties:

 Folders – Controls access to all of the FolderCollection parameters. See FolderCollection

class.

 DataObjects – Controls access to all of the DataObjectCollection parameters. See

DataObjectCollection class.

 DataObjectRows – Controls access to all of the DataObjectRowCollection parameters. See

DataObjectRowCollection class.

There are no available methods for a Security object.

Exago Technical Guide

212 Exago Inc.

WebReports.Api.Scheduler

ReportScheduler Class

The ReportScheduler class can be used to schedule reports to run on a regular basis. Output can

be emailed or stored in a repository. The output destination (email or storage) is normally set on a

global basis. This API allows you to override the global setting for individual report schedules if

desired.

A ReportScheduler object uses the following enumerations:

 ReportScheduleInfo.WeekOfMonthType – weeks of the month.

o Uses the enumeration WeekOfMonthType (First, Second, Third, Fourth, Last)

 ReportScheduleInfo.DayOfWeekType – days of the week.

Uses the enumeration DayOfWeekType (Day, Weekday, Weekendday, Sunday, Monday, Tuesday,

The API is designed to mirror the capabilities of the SchedulerWizard in the Exago main interface.

There are a few concepts that will be helpful to understand in using the API. In general each API

call requires the following information:

 Schedule name: A “handle” to refer to this schedule.

 Recurrence Information: usually a Start Date and Time, recurrence pattern and end

condition. The end condition may be “No end condition” which indicates that the schedule

should execute indefinitely according to the specified recurrence pattern. In certain

instances, the recurrence information uses static Enumerations from the

ReportScheduleInfo class.

 Email information: Includes To List, CC List, BCC List, Subject and Body. A new class

ScheduleEmailInfo has been created to easily pass this information.

NOTE. a small number of Scheduler API calls don't follow the above pattern. For example, there

are CreateOnceSchedule and CreateImmediateSchedule calls that don't use any recurrence

information.

For each schedule type that uses a recurrence pattern the following rules apply:

- The start time can be passed in one of two ways:

o As the Time Component of the startDate DateTime

o As a separate TimeSpan schedTime

The TimeSpan will always take precedence if not null. If the TimeSpan is null, the

scheduler will use the Time element of startDate

- The end condition can be set in one of three ways

Exago Technical Guide

213 Exago Inc.

o No End Condition: Report executions will continue indefinitely

o End by number of occurrences: Executions will cease after N occurrences, where N

is a passed parameter

o End by Date: Executions will cease after a certain date where the date is a passed

parameter.

Each type of call is overloaded to reflect the desired end condition. For example, there are three

possible ways to create an “Every Weekday” schedule:

string CreateEveryWeekdaySchedule(string name, DateTime rangeStartDate, TimeSpan

schedTime, SchedulerEmailInfo emailInfo) //No end condition

string CreateEveryWeekdaySchedule(string name, DateTime rangeStartDate, int

rangeEndAfterNOccurrences, TimeSpan schedTime, SchedulerEmailInfo emailInfo) //End by

number of occurrences

string CreateEveryWeekdaySchedule(string name, DateTime rangeStartDate, DateTime

rangeEndDate, TimeSpan schedTime, SchedulerEmailInfo emailInfo) //End by date

As noted above, report output can be sent through email or stored to a repository, and the choice

can be made with the schedule. Passing a ScheduleEmailInfo object to the appropriate argument

will tell the Exago Scheduler to send output through email based on the passed information.

Passing null for the argument will tell the scheduler to archive the output for that schedule.

NOTE. Archiving requires a Report Path to be set in the Scheduler Configuration XML. The

Report Path tells the scheduler where to store the output.

A ReportScheduler object has the following methods. All "Create" methods return the JobId string

of the schedule object. This can be passed into GetReportScheduleInfoByJobId() to return the

schedule for further manipulation.

string CreateImmediateSchedule(string name, SchedulerEmailInfo emailInfo)

Description Schedules a report to be run immediately.

Remarks Before calling this method be sure to activate the report you want to schedule using
api.ReportObjectFactory.LoadFromRepository()

See SchedulerEmailInfo class for information on emailInfo.

string CreateOnceScheduleByDateTime(DateTime schedDateTime, string name, TimeSpan

schedTime, SchedulerEmailInfo emailInfo)

Description Schedule a report to be run every weekday.

Exago Technical Guide

214 Exago Inc.

Report will be executed indefinitely.

Remarks Before calling this method be sure to activate the report you want to schedule using
api.ReportObjectFactory.LoadFromRepository()

If schedTime is null the time component of schedDateTime will be used to determine
the time the report is run.

See SchedulerEmailInfo class for information on emailInfo.

string CreateEveryWeekdaySchedule(string name, DateTime rangeStartDate, int

rangeEndAfterNOccurrences, TimeSpan schedTime, SchedulerEmailInfo emailInfo)

Description Schedules a report to be run every weekday.

Report will be executed the number of times specified in rangeEndAfterNOccurrences.

Remarks Before calling this method be sure to activate the report you want to schedule using
api.ReportObjectFactory.LoadFromRepository()

If schedTime is null the time component of schedDateTime will be used to determine
the time the report is run.

See SchedulerEmailInfo class for information on emailInfo.

string CreateEveryWeekdaySchedule(string name, DateTime rangeStartDate, DateTime

rangeEndDate, TimeSpan schedTime, SchedulerEmailInfo emailInfo)

Description Schedules a report to be run every weekday.

Report will be executed until the specified rangeEndDate.

Remarks Before calling this method be sure to activate the report you want to schedule using
api.ReportObjectFactory.LoadFromRepository()

If schedTime is null the time component of schedDateTime will be used to determine

the time the report is run.

See SchedulerEmailInfo class for information on emailInfo.

string CreateEveryNDaySchedule(string name, int everyNDays, DateTime rangeStartDate,

TimeSpan schedTime, SchedulerEmailInfo emailInfo)

Description Schedules a report to be run on a daily interval.

Report will be executed indefinitely.

Remarks Before calling this method be sure to activate the report you want to schedule using
api.ReportObjectFactory.LoadFromRepository()

everyNDays indicates the interval at which the schedule is run (e.g. every 10 days).

Exago Technical Guide

215 Exago Inc.

If schedTime is null the time component of schedDateTime will be used to determine
the time the report is run.

See SchedulerEmailInfo class for information on emailInfo.

string CreateEveryNDaySchedule (string name, int everyNDays, DateTime rangeStartDate, int

rangeEndAfterNOccurrences, TimeSpan schedTime, SchedulerEmailInfo emailInfo)

Description Schedules a report to be run on a daily interval.

Report will be executed the number of times specified in rangeEndAfterNOccurrences.

Remarks Before calling this method be sure to activate the report you want to schedule using
api.ReportObjectFactory.LoadFromRepository()

everyNDays indicates the interval at which the schedule is run (e.g. every 10 days).

If schedTime is null the time component of schedDateTime will be used to determine
the time the report is run.

See SchedulerEmailInfo class for information on emailInfo.

string CreateEveryNDaySchedule(string name, int everyNDays, DateTime rangeStartDate,

DateTime rangeEndDate, TimeSpan schedTime, SchedulerEmailInfo emailInfo)

Description Schedules a report to be run on a daily interval.

Report will be executed until the specified rangeEndDate.

Remarks Before calling this method be sure to activate the report you want to schedule using
api.ReportObjectFactory.LoadFromRepository()

everyNDays indicates the interval at which the schedule is run (e.g. every 10 days).

If schedTime is null the time component of schedDateTime will be used to determine
the time the report is run.

See SchedulerEmailInfo class for information on emailInfo.

string CreateWeeklySchedule(string name, int everyNWeeks, List<DayOfWeek> days, DateTime

rangeStartDate, TimeSpan schedTime, SchedulerEmailInfo emailInfo)

Description Schedules a report to be run on a weekly interval.

Report will be executed indefinitely.

Remarks Before calling this method be sure to activate the report you want to schedule using
api.ReportObjectFactory.LoadFromRepository()

everyNWeeks indicates the interval at which the schedule is run (e.g. every 2 weeks).

days indicates a list of the days each week to run the schedule.

Exago Technical Guide

216 Exago Inc.

If schedTime is null the time component of schedDateTime will be used to determine
the time the report is run.

See SchedulerEmailInfo class for information on emailInfo.

string CreateWeeklySchedule(string name, int everyNWeeks, List<DayOfWeek> days, DateTime

rangeStartDate, int rangeEndAfterNOccurrences, TimeSpan schedTime, SchedulerEmailInfo

emailInfo)

Description Schedules a report to be run on a weekly interval.

Report will be executed until the specified rangeEndDate.

Remarks Before calling this method be sure to activate the report you want to schedule using
api.ReportObjectFactory.LoadFromRepository()

everyNWeeks indicates the interval at which the schedule is run (e.g. every 2 weeks).

days indicates a list of the days each week to run the schedule.

If schedTime is null the time component of schedDateTime will be used to determine
the time the report is run.

See SchedulerEmailInfo class for information on emailInfo.

string CreateWeeklySchedule(string name, int everyNWeeks, List<DayOfWeek> days, DateTime

rangeStartDate, int rangeEndDate, TimeSpan schedTime, SchedulerEmailInfo emailInfo)

Description Schedules a report to be run on a weekly interval.

Report will be executed the number of times specified in rangeEndAfterNOccurrences.

Remarks Before calling this method be sure to activate the report you want to schedule using
api.ReportObjectFactory.LoadFromRepository()

everyNWeeks indicates the interval at which the schedule is run (e.g. every 2 weeks).

days indicates a list of the days each week to run the schedule.

If schedTime is null the time component of schedDateTime will be used to determine
the time the report is run.

See SchedulerEmailInfo class for information on emailInfo.

string CreateMonthlyScheduleByNumericDay(string name, int everyNMonths, int numericDay,

DateTime rangeStartDate, TimeSpan schedTime, SchedulerEmailInfo emailInfo)

Description Schedules a report to be run on a specific day each month.

Report will be executed indefinitely.

Exago Technical Guide

217 Exago Inc.

Remarks Before calling this method be sure to activate the report you want to schedule using
api.ReportObjectFactory.LoadFromRepository()

everyNMonths indicates the interval at which the schedule is run (e.g. every 2
months).

numericDay indicates the day of each month to run the schedule (e.g. 17).

If schedTime is null the time component of schedDateTime will be used to determine
the time the report is run.

See SchedulerEmailInfo class for information on emailInfo.

string CreateMonthlyScheduleByNumericDay(string name, int everyNMonths, int numericDay,

DateTime rangeStartDate, int rangeEndAfterNOccurrences, TimeSpan schedTime,

SchedulerEmailInfo emailInfo)

Description Schedules a report to be run on a specific day each month.

Report will be executed the number of times specified in rangeEndAfterNOccurrences.

Remarks Before calling this method be sure to activate the report you want to schedule using
api.ReportObjectFactory.LoadFromRepository()

everyNMonths indicates the interval at which the schedule is run (e.g. every 2
months).

numericDay indicates the day of each month to run the schedule (e.g. 17).

If schedTime is null the time component of schedDateTime will be used to determine

the time the report is run.

See SchedulerEmailInfo class for information on emailInfo.

string CreateMonthlyScheduleByNumericDay(string name, int everyNMonths, int numericDay,

DateTime rangeStartDate, DateTime rangeEndDate, TimeSpan schedTime, SchedulerEmailInfo

emailInfo)

Description Schedules a report to be run on a specific day each month.

Report will be executed the specified rangeEndDate.

Remarks Before calling this method be sure to activate the report you want to schedule using
api.ReportObjectFactory.LoadFromRepository()

everyNMonths indicates the interval at which the schedule is run (e.g. every 2
months).

numericDay indicates the day of each month to run the schedule (e.g. 17).

If schedTime is null the time component of schedDateTime will be used to determine
the time the report is run.

Exago Technical Guide

218 Exago Inc.

See SchedulerEmailInfo class for information on emailInfo.

string CreateMonthlyScheduleByDescriptionDay(string name, int everyNMonths,

WeekOfMonthType ordinal, DayOfWeekType dayOfWeek, DateTime rangeStartDate, TimeSpan

schedTime, SchedulerEmailInfo emailInfo)

Description Schedules a report to be run on a described day each month.

Report will be executed indefinitely.

Remarks Before calling this method be sure to activate the report you want to schedule using
api.ReportObjectFactory.LoadFromRepository()

everyNMonths indicates the interval at which the schedule is run (e.g. every 2
months).

ordinal used in context with dayOfWeek describe when during each month to run the
scheduled report.

If schedTime is null the time component of schedDateTime will be used to determine
the time the report is run.

ordinal and dayOfWeek are enumerations detailed at the beginning of this section

See SchedulerEmailInfo class for information on emailInfo.

string CreateMonthlyScheduleByDescriptionDay(string name, int everyNMonths,

WeekOfMonthType ordinal, DayOfWeekType dayOfWeek, DateTime rangeStartDate, int

rangeEndAfterNOccurrences, TimeSpan schedTime, SchedulerEmailInfo emailInfo)

Description Schedules a report to be run on a described day each month.

Report will be executed the number of times specified in rangeEndAfterNOccurrences.

Remarks Before calling this method be sure to activate the report you want to schedule using
api.ReportObjectFactory.LoadFromRepository()

everyNMonths indicates the interval at which the schedule is run (e.g. every 2
months).

ordinal used in context with dayOfWeek describe when during each month to run the

scheduled report.

If schedTime is null the time component of schedDateTime will be used to determine
the time the report is run.

ordinal and dayOfWeek are enumerations detailed at the beginning of this section

See SchedulerEmailInfo class for information on emailInfo.

string CreateMonthlyScheduleByDescriptionDay(string name, int everyNMonths,

WeekOfMonthType ordinal, DayOfWeekType dayOfWeek, DateTime rangeStartDate, DateTime

rangeEndDate, TimeSpan schedTime, SchedulerEmailInfo emailInfo)

Exago Technical Guide

219 Exago Inc.

Description Schedules a report to be run on a described day each month.

Report will be executed the specified rangeEndDate.

Remarks Before calling this method be sure to activate the report you want to schedule using
api.ReportObjectFactory.LoadFromRepository()

everyNMonths indicates the interval at which the schedule is run (e.g. every 2
months).

ordinal used in context with dayOfWeek describe when during each month to run the

scheduled report.

If schedTime is null the time component of schedDateTime will be used to determine
the time the report is run.

ordinal and dayOfWeek are enumerations detailed at the beginning of this section

See SchedulerEmailInfo class for information on emailInfo.

string CreateYearlyScheduleByNumericDay(string name, int numericMonth, int numericDay,

DateTime rangeStartDate, TimeSpan schedTime, SchedulerEmailInfo emailInfo)

Description Schedules a report to be run on a specific month and day each year.

Report will be executed indefinitely.

Remarks Before calling this method be sure to activate the report you want to schedule using
api.ReportObjectFactory.LoadFromRepository()

numericMonth indicates the month of each year to run the schedule (e.g. 3).

numericDay indicates the day of each month to run the schedule (e.g. 17).

If schedTime is null the time component of schedDateTime will be used to determine
the time the report is run.

See SchedulerEmailInfo class for information on emailInfo.

string CreateYearlyScheduleByNumericDay(string name, int numericMonth, int numericDas,

DateTime rangeStartDate, int rangeEndAfterNOccurrences, TimeSpan schedTime,

SchedulerEmailInfo emailInfo)

Description Schedules a report to be run on a specific day each month.

Report will be executed the number of times specified in rangeEndAfterNOccurrences.

Remarks Before calling this method be sure to activate the report you want to schedule using
api.ReportObjectFactory.LoadFromRepository()

numericMonth indicates the month of each year to run the schedule (e.g. 3).

numericDay indicates the day of each month to run the schedule (e.g. 17).

Exago Technical Guide

220 Exago Inc.

If schedTime is null the time component of schedDateTime will be used to determine
the time the report is run.

See SchedulerEmailInfo class for information on emailInfo.

string CreateYearlyScheduleByNumericDay(string name, int numericMonth, int numericDay,

DateTime rangeStartDate, DateTime rangeEndDate, TimeSpan schedTime, SchedulerEmailInfo

emailInfo)

Description Schedules a report to be run on a specific day each month.

Report will be executed the specified rangeEndDate.

Remarks Before calling this method be sure to activate the report you want to schedule using
api.ReportObjectFactory.LoadFromRepository()

numericMonth indicates the month of each year to run the schedule (e.g. 3).

numericDay indicates the day of each month to run the schedule (e.g. 17).

If schedTime is null the time component of schedDateTime will be used to determine
the time the report is run.

See SchedulerEmailInfo class for information on emailInfo.

string CreateYearlyScheduleByDescriptionDay(string name, int numericMonth,

WeekOfMonthType ordinal, DayOfWeekType dayOfWeek, DateTime rangeStartDate, TimeSpan

schedTime, SchedulerEmailInfo emailInfo)

Description Schedules a report to be run on a described day each month.

Report will be executed indefinitely.

Remarks Before calling this method be sure to activate the report you want to schedule using
api.ReportObjectFactory.LoadFromRepository()

numericMonth indicates the month of each year to run the schedule (e.g. 3).

ordinal used in context with dayOfWeek describe when during each month to run the
scheduled report.

If schedTime is null the time component of schedDateTime will be used to determine

the time the report is run.

ordinal and dayOfWeek are enumerations detailed at the beginning of this section.

See SchedulerEmailInfo class for information on emailInfo.

string CreateYearlyScheduleByDescriptionDay(string name, int numericMonth,

WeekOfMonthType ordinal, DayOfWeekType dayOfWeek, DateTime rangeStartDate, int

rangeEndAfterNOccurrences, TimeSpan schedTime, SchedulerEmailInfo emailInfo)

Exago Technical Guide

221 Exago Inc.

Description Schedules a report to be run on a described day each month.

Report will be executed the number of times specified in rangeEndAfterNOccurrences.

Remarks Before calling this method be sure to activate the report you want to schedule using
api.ReportObjectFactory.LoadFromRepository()

numericMonth indicates the month of each year to run the schedule (e.g. 3).

ordinal used in context with dayOfWeek describe when during each month to run the
scheduled report.

If schedTime is null the time component of schedDateTime will be used to determine
the time the report is run.

ordinal and dayOfWeek are enumerations detailed at the beginning of this section See

SchedulerEmailInfo class for information on emailInfo.

string CreateYearlyScheduleByDescriptionDay(string name, int numericMonth,

WeekOfMonthType ordinal, DayOfWeekType dayOfWeek, DateTime rangeStartDate, DateTime

rangeEndDate, TimeSpan schedTime, SchedulerEmailInfo emailInfo)

Description Schedules a report to be run on a described day each month.

Report will be executed the specified rangeEndDate.

Remarks Before calling this method be sure to activate the report you want to schedule using
api.ReportObjectFactory.LoadFromRepository()

numericMonth indicates the month of each year to run the schedule (e.g. 3).

ordinal used in context with dayOfWeek describe when during each month to run the
scheduled report.

If schedTime is null the time component of schedDateTime will be used to determine
the time the report is run.

ordinal and dayOfWeek are enumerations detailed at the beginning of this section

See SchedulerEmailInfo class for information on emailInfo.

SchedulerEmailInfo Class

The SchedulerEmailInfo class is utilized used by methods of ReportScheduler objects.

A SchedulerEmailInfo object has the following property:

 toAddrs – list of email addresses and/or distribution lists for the 'To' field of the email.

 ccAddrs – list of email addresses and/or distribution lists for the 'cc' field of the email.

 bcAddrs – list of email addresses and/or distribution lists for the 'bc' field of the email.

Exago Technical Guide

222 Exago Inc.

NOTE. If toAddrs, ccAddrs and bcAddrs are all null, Exago will attempt to archive the report

to the Scheduler Repository.

 Subject – The subject of the email.

 body – The body text of the email.

Other Notes

Using MySQL through the .NET Api

For Exago .NET Api to connect to a MySQL database add the following to the host application's

web.config file.

<system.data>
 <DbProviderFactories>
 <remove invariant="MySql.Data.MySqlClient" />
 <add name="MySQL Data Provider" invariant="MySql.Data.MySqlClient" description=".NET
Framework Data Provider for MySQL"
type="MySql.Data.MySqlClient.MySqlClientFactory, MySql.Data, Version=6.3.6.0,
 Culture=neutral, PublicKeyToken=c5687fc88969c44d" />
 </DbProviderFactories>
</system.data>

Additionally if the host application does not already have a MySQL ADO.NET Data Adapter copy

the file 'Exago/bin/MySql.Data.dll' to the host application's bin folder.

Examples

To access the Exago Api, add a reference to the assembly WebReportsApi.dll to your project.

In all of the examples below the return value should be checked for validity. The examples below

have omitted validations for clarity.

Create Api object

// create WebReports API object passing Exago virtual path;
Api api = new Api("ExagoServer/Exago");

Adding/modifying a Role

// create a new runtime Role (is automatically made active)
Role role = api.Roles.NewRole();
// -- OR --
// accessing a pre-created Role and making it active
Role role = api.Roles.GetRole("Admin");
role.Activate();

Adding Folder security to role

// start with privileges to all folders for this user session (this is the default)
role.Security.Folders.IncludeAll = true;

Exago Technical Guide

223 Exago Inc.

// disallow access to folder 'Stew's Reports' (and any subfolders)
Folder folder = role.Security.Folders.NewFolder();
folder.Name = "Stew's Reports";

// make folder 'Summary Reports' (and any subfolders) read only
Folder folder = role.Security.Folders.NewFolder();
folder.Name = "Summary Reports";
folder.ReadOnly = true;

Adding Data Object security to role

// start with privileges to all data objects (this is the default)
role.Security.DataObjects.IncludeAll = true;

// disallow access to data object 'vw_cancellation'
DataObject dataObject = role.Security.DataObjects.NewDataObject();
dataObject.Name = "vw_cancellation";

Adding Data Object Row security to role

// don't allow this user to view rows from the 'vw_grant' object with a
// 'Grant Date' value of '2000-01-01'
DataObjectRow dataObjectRow = role.Security.DataObjectRows.NewDataObjectRow();
dataObjectRow.ObjectName = "vw_grant";
dataObjectRow.FilterString = @"""Grant Date"" <> '2000-01-01'";

Setting up several general user session parameters for role (overrides individual global

general parameters)

// set global date format for this user
role.General.DateFormat = "dd/MM/yyyy";

// set currency symbol for this user
role.General.CurrencySymbol = "kr";

Modifying the data connection string of a specific data source

// set data connection string for a specific datasource
DataSource dataSource = api.DataSources.GetDataSource("MyDb");
dataSource.DataConnStr = "Server=SVR;Database=db1;uid=sa;pwd=dba;";

Modifying a parameter value

// modify a parameter value
Parameter parameter = api.Parameters.GetParameter("asOfDate");
parameter.Value = "2007-06-01";

Setting a data column alias

// set column alias
api.Entities.GetEntity("vw_webrpt_optionee").ColumnMetadatas.SetColumnAlias("Hire Date", "Date

Exago Technical Guide

224 Exago Inc.

of Hire");

Starting Exago - At this point if you want to run the Exago applications, do the following:

// setup URL
string url = "http://MyDomainServer/Exago/" + api.GetUrlParamString();
Response.Redirect(url);

// or you can redirect any control that can be set to a URL
this.ReportIFrame.Attributes["src"] = url;

Executing a report directly from the host application – You can combine setting user session

information as above with report execution. To do that, just omit the redirect above and do

the following:

// load a specific report and return Report object (make sure to check return value)
Report report = (Report) api.ReportObjectFactory.LoadFromRepository(@"Stew Meyers' Reports\My
Report");

// add a sort
Sort sort = report.Sorts.NewSort();
sort.SortText = "vw_optionee.First Name";
sort.Direction = wrSortDirection.Ascending;
report.Sorts.Add(sort);

// add a filter
Filter filter = report.Filters.NewFilter();
filter.DbName = "vw_grant.Grant Date";
filter.Operator = wrFilterOperator.LessThan; // default is EqualTo
filter.Value = "20070501"; // filter dates are entered in YYYYMMDD sequence
filter.AndOrWithNext = wrFilterAndOrWithNext.And; // default is And
filter.GroupWithNext = false; // default is false
filter.Prompt = true; // default is false

// Set the Execute behavior to run in the Report Viewer (default is export to PDF)
report.ExportType = wrExportType.Html; // "Html" refers to the Report Viewer

// should Report Viewer be opened in new browser window
report.OpenNewWindow = false; // default is false
report.ShowStatus = false; // default is true

// saves a temporary version of the report to be used for execution
api.ReportObjectFactory.SaveToApi(report);

Start report execution

// setup URL
string url = "http://MyDomainServer/Exago/" + api.GetUrlParamString();
Response.Redirect(url);

// or you can redirect any control that can be set to a URL
this.ReportIFrame.Attributes["src"] = url;

Exago Technical Guide

225 Exago Inc.

Executing a dashboard report directly from the host application:

api.Action = wrApiAction.ExecuteReport;
 DashboardReport report = Api.ReportObjectFactory.LoadFromRepository(@"Reports\My
Dashboard") as DashboardReport;
 report.ReportItems[0].SetParameterValue("productname", "Parm1");
 report.ReportItems[0].SetFilterValue("Employees.EmployeeID",
wrFilterOperator.EqualTo, new List<string>() { "3" });
 report.ReportItems[0].SetFilterValue("Orders.OrderDate",
wrFilterOperator.GreaterThanOrEqualTo, new List<string>() { "1996-07-04 01:00:00" });

 report.ReportItems[1].SetParameterValue("productname", "Parm2");
 report.ReportItems[1].SetFilterValue("Employees.EmployeeID",
wrFilterOperator.EqualTo, new List<string>() { "5" });
 report.ReportItems[1].SetFilterValue("Orders.OrderDate",
wrFilterOperator.GreaterThanOrEqualTo, new List<string>() { "1996-07-04 01:00:00" });

 api.ReportObjectFactory.SaveToApi(report);

 string url = @"[Exago Install Path] /" + api.GetUrlParamString("Home");
 this.ReportIFrame.Attributes["src"] = url;

Scheduling a report with a filter and emailing results:

//load in the report
Report report = api.ReportObjectFactory.LoadFromRepository(@"Reports\Employee

Performance") as Report;

//specify the export type of the scheduled report

report.ExportType = wrExportType.Pdf;

//set email information

List<string> toList = new List<string>();
toList.Add("emailaddress@example.com");
SchedulerEmailInfo info = new SchedulerEmailInfo(toList);

//set a filter on the report

Filter filter = report.Filters.NewFilter();
filter.DbName = "Employees.FirstName";
filter.Operator = wrFilterOperator.EqualTo;
filter.Value = "Janet";
filter.Prompt = true;

//create a schedule

api.ReportScheduler.CreateImmediateSchedule("Schedule Test", info);

//save the report to the api

api.ReportObjectFactory.SaveToApi(report);

mailto:emailaddress@example.com

Exago Technical Guide

226 Exago Inc.

SOAP Web Service API

The SOAP Web Service Api provides a way for non-.NET applications to interface with Exago. The

functionality provided by the Web Service is a subset of the .NET Api, and includes basic methods

to launch Exago and execute reports directly from the host application.

The Web Service must be installed on a Microsoft Windows Server running IIS and be able to

access the Exago application directory directly or through an IIS virtual directory. For more

information see Web Service Installation.

Quick List of Web Service Methods
Main:

GetUrlParamString

GetUrlParamString2

InitializeApi

InitializeApi2

SetAction

SetAction2

SetDefaultReportName

SetGeneralProperty

SetGeneralProperties

Data:

DataObject_Add

DataObject_Add2

DataObject_SetColumnAlias

DataSource_AddXmlType

DataSource_Modify

Join_Add

Folders:

Folder_Add

Folder_Delete

Folder_Exist

Folder_Rename

Parameters:

Parameter_Add

Parameter_Modify

ReportObjects:

ReportObject_Activate

ReportObject_Delete

ReportObject_Duplicate

Dashboards:

Dashboard_SetReportParameterValue

Dashboard_SetReportFilterValue

Reports:

Report_AddFilter

Report_AddFilterValue

Report_AddSort

Report_GetExecuteData

Report_GetExecuteHtml

Report_GetReportListXml

Report_GetReportXml

Report_SetFilterValue

Report_SetParams

Report_TestExecute

Roles:

Role_GetRoles

Role_Activate

Role_Add

Role_AddDataObject

Role_AddDataObjectRow

Role_AddFolder

Role_SetCurrencySymbol

Role_SetDateFormat

Role_SetDbTimeout

Role_SetDecimalSymbol

Role_SetLanguageFile

Role_SetReadFilterValues

Role_SetReportVirtualPath

Role_SetScheduleManagerViewLevel

Role_SetSeparatorSymbol

Exago Technical Guide

227 Exago Inc.

Role_SetShowGrid

Role_SetShowScheduleRep

orts

Role_SetShowScheduleRep

ortsEmail

Role_SetShowScheduleRep

ortsManager

Schelduer:

Report_CreateImmediateSc

hedule

Report_CreateImmediateSc

heduleForArchiving

Report_CreateOnceSchedul

eByDateTime

Report_CreateOnceScheduleByDateTimeForArchiving

Report_CreateEveryWeekdaySchedule

Report_CreateEveryWeekdayScheduleForArchiving

Report_CreateEveryNDaySchedule

Report_CreateEveryNDayScheduleForArchiving

Report_CreateWeeklySchedule

Report_CreateWeeklyScheduleForArchiving

Report_CreateMonthlyScheduleByNumericDay

Report_CreateMonthlyScheduleByNumericDayForArchiving

Report_CreateMonthlyScheduleByWeekAndDay

Report_CreateMonthlyScheduleByWeekAndDayForArchiving

Report_CreateYearlyScheduleByNumericDay

Report_CreateYearlyScheduleByNumericDayForArchiving

Report_CreateYearlyScheduleByWeekAndDay

Report_CreateYearlyScheduleByWeekAndDayForArchiving

Full Description of Web Service Methods

This section provides detailed information on the available web service api methods.

Types of Web Service methods:

 Main Methods

 Data Methods

 Folder Methods

 Parameter Methods

 ReportObject Methods

 Dashboard Methods

 Report Methods

 Role Methods

 Scheduler Methods

Main Methods

This section lists the main web service methods used to access Exago.

void GetUrlParamString(string apiId)

Exago Technical Guide

228 Exago Inc.

Description Returns the URL parameter string. Points to ExagoHome.aspx.

Remarks This is always the last method called.

Appended the returned URL to your Exago application URL and redirect the user.

void GetUrlParamString2(string apiId, string webPageName, boolean showErrorDetail)

Description Returns the URL parameter string. Points to the specified home page. Set

showErrorDetail to True to display detailed error messages.

Remarks This is always the last method called.

Appends the returned URL to your Exago application URL and redirects the user.

string InitalizeApi()

Description Returns an apiId as a string that is used in all subsequent calls.

Remarks This is always the first method called.

string InitializeApi2(string configFn)

Description Returns an apiId as a string that is used in all subsequent calls.

Remarks Can be used instead of InitializeApi to specify a configuration file other than
WebReports.xml

bool SetAction(string apiId, int action, string defaultFolderName)

Description Set the Action property of the Api object. The action dictates the behavior of Exago
when you call GetUrlParamString.
Returns Boolean indicating success/failure.

Remarks Valid values for action are:
0: Default – Executes a report on ReportObject_Activate, otherwise opens the
home page.
1: Home – opens the home page.
2: ExecuteReport – Executes the active report.

3: EditReport – opens the
4: NewReport – opens the new report wizard directly.
5: NewCrossTabReport – opens the new crosstab report wizard directly.
6: NewExpressReport – opens the new express report wizard directly.
7: NewDashboardReport – opens a new dashboard designer directly.
8: Schedule Report – opens the new schedule report wizard directly.
9: ScheduleReportManager – opens the new schedule report wizard directly.

Exago Technical Guide

229 Exago Inc.

bool SetAction2(string apiId, int action, string defaultFolderName, Boolean showTabs)

Description Set the Action property of the Api object. The action dictates the behavior of Exago
when you call GetUrlParamString.
Returns Boolean indicating success/failure.

Remarks Valid values for action are:
0: Default – Executes a report on ReportObject_Activate, otherwise opens the

home page.
1: Home – opens the home page.
2: ExecuteReport – Executes the active report.
3: EditReport – opens the
4: NewReport – opens the new standard report wizard directly.
5: NewCrossTabReport – opens the new crosstab report wizard directly.
6: NewExpressReport – opens the new express report wizard directly.
7: NewDashboardReport – opens a new dashboard designer directly.
8: Schedule Report – opens the new schedule report wizard directly.
9: ScheduleReportManager – opens the new schedule report wizard directly.

bool SetDefaultReportName(string apiId, string defaultReportName)

Description Set the DefaultReportName property of the Api object. The DefaultReportName is
used in conjunction with the Action property of the Api to modify the behavior of
Exago when you call GetUrlParamString.
Returns Boolean indicating success/failure.

Remarks The Default report name is a string providing the fully qualified path of the report.

This function's effect will change based on the set value of the Action.

When the Action is set to NewReport, NewCrossTabReport or NewExpressReport: The
DefaultReportName provides the full path name for the report. The Info tab of the

new report wizard will be hidden and the report designer will not display menus to
rename the report or change its description.

When the Action is set to EditReport: If DefaultReportName is any non-empty value
the report designer will not display menus to rename the report or change its
description.

bool SetGeneralProperty(string apiId, string propertyName, string propertyValue)

Description Modify any of the General Settings in the Administration Console for the session.

Remarks The propertyName must match the name used in the configuration file

WebReports.xml for the setting you want to modify. Ex. 'showexpressreports'

controls the Feature/UI Setting 'Show Express Reports'.

The propertyValue type will depend on the setting using the following rules based on
how the property is shown in the Administration Console:
 1. If the setting is True/False then use a boolean.
 2. If the setting is enterable text (ex. chart colors) use a string.
 3. If the setting is a number use an int.
 4. If the setting is a dropdown of predefined values use the enumeration specified

below.

Exago Technical Guide

230 Exago Inc.

DefaultOutputType:
 0. Html (Default Report Viewer)
 1. Excel
 2. Pdf
 3. Rtf

 4. Csv
 6. Default

DateTimeTreatedAs:
 0. Date
 1. Time (Time filters are not supported.)
 2. DateTime

ScheduleManagerViewLevel:
 0. Current User at Current Company
 1. All Users at Current Company
 2. All Users at All Companies

UserPreferenceStorage:

 0. Cookie
 1. ExternalInterface:
 2. None

ExcelExportTarget:
 0. v2003
 1. v2007
 2. v2010

DefaultFilterExecutionWindow

SchemaAccessType:
Default
Datasource
Metadata

bool SetGeneralProperties(string apiId, string[] propertyName, string[] propertyValue)

Description Allows multiple SetGeneralProperty calls to be grouped together to avoid making
many web service calls.

Remarks The length the propertyName array and the propertyValue array must be equal.

See remarks above in the SetGeneralProperty method.

Data Methods

This section lists the web service methods used to create, modify or delete Data Objects, Data

Sources and Joins.

bool DataObject_Add(string apiId, string dataSourceName, int objectType, string, objectName,

string mnemonicName, string keyName, string categoryName, string sqlStmt, string parmaterIds,

string tenants)

Exago Technical Guide

231 Exago Inc.

Description Adds a Data Object. Returns Boolean indicating success/failure.

Remarks Valid objectType values are:
0: database table
1: database view

2: database function
3: database stored procedure
4: database SQL statement
5: web service method

parameterIds is a comma delimited list whose values will be passed to the data
object.

tenants is a comma delimited list of columns and parameters. Ex.
'db_col1,paramId1,db_col,paramId2'

bool DataObject_Add2(string apiId, string dataSourceName, int objectType, string, objectName,

string, objectId, string mnemonicName, string keyName, string categoryName, string sqlStmt,

string parmaterIds, string tenants)

Description Adds a Data Object. Returns Boolean indicating success/failure.

Remarks Unlike DataObject_Add this function includes an objectId. This allows for multiple
Data Objects with the same name. The objectID should be a unique value.

bool DataObject_Add3(string apiId, string dataSourceName, int objectType, string, objectName,

string, objectId, string schemaName, string mnemonicName, string keyName, string

categoryName, string sqlStmt, string parmaterIds, string tenants)

Description Adds a Data Object. Returns Boolean indicating success/failure.

Remarks Unlike DataObject_Add this function includes an objectId and schemaName.

ObjectId allows for multiple Data Objects with the same name and should be a unique
value.
SchemaName sets the database schema of the object.

bool DataObject_SetColumnAlias(string apiId, string objectName, string columnName, string

alias)

Description Sets the alias of a specific data column. Returns Boolean indicating success/failure.

bool DataSource_AddXmlType(string apiId, string xml, string categoryNames)

Description Loads Xml into Exago as a data source. Returns Boolean indicating success/failure.

Exago Technical Guide

232 Exago Inc.

Remarks Xml can be Excel worksheet type or compatible with .NET DataSet.

The Data Object can appear in multiple categories using a comma delimiter.

bool DataSource_Modify(string apiId, string dataSourceName, string dataConnStr)

Description Modifies the connection string of a Data Source. Returns Boolean indicating
success/failure.

bool Join_Add(string apiId, string dataObjectFromName, string columnFromName, string

dataObjectToName, string columnToName, int joinType int relationType, int weight)

Description Adds a Data Object Join. Returns Boolean indicating success/failure.

Remarks Valid relationType values are:
0:one-to-one
1:one-to-many

Valid joinType values are:

0:inner
1: left outer
2: right outer
3: full outer

Folder Methods

This section lists the web service methods used to create, modify or delete Folders.

bool Folder_Add(string apiId, string parentName, string name)

Description Adds a report folder. Returns Boolean indicating success/failure.

Remarks parentName is relative to the Report Path and should not contain slashes.

Method will fail if a parent folder named parentName does not exist.

bool Folder_Delete(string apiId, string folderName)

Description Deletes a report folder. Returns Boolean indicating success/failure.

Remarks folderName is relative to the Report Path.

Method will fail if the report is not empty.

Exago Technical Guide

233 Exago Inc.

bool Folder_Exist(string apiId, string folderName)

Description Checks if a report folder exists. Returns Boolean indicating success/failure.

Remarks folderName is relative to the Report Path.

bool Folder_Rename(string apiId, string oldName, string newName)

Description Renames a report folder exists. Returns Boolean indicating success/failure.

Remarks Both folder names are relative to the Report Path.

Parameter Methods

This section lists the web service methods used to create, modify or delete Parameters.

bool Parameter_Add(string apiId, string parameterId, string parameterValue, int dataType, bool

isHidden, string promptText)

Description Adds a parameter. Returns Boolean indicating success/failure.

Remarks Valid dataType values are:
0: string
1: date
2: integer
5: decimal

bool Parameter_Modify(string apiId, string parameterId, string parameterValue)

Description Modifies a parameter value. Returns Boolean indicating success/failure.

bool Parameter_ModifyMultiple(string apiId, string[] parameterIds, string[] parameterValues)

Description Modifies multiple parameter values. Returns Boolean indicating success/failure.

Remarks The length of the parameterIds and parameterValues arrays must be the same.

Exago Technical Guide

234 Exago Inc.

ReportObject Methods

This section lists the web service methods used to create, modify or delete Report objects. A

Report object is any type of report supported by the application (currently Report_ or

Dashboard_).

bool ReportObject _Activate(string apiId, string reportName)

Description Activates an existing report. Returns Boolean indicating success/failure.

Remarks Use backslashes to delineate subfolders.

NOTE. Before calling any report or dashboard method call ReportObject_Activate to specify which

Report object to modify.

bool ReportObject _Delete(string apiId, string reportName)

Description Deletes an existing report. Returns Boolean indicating success/failure.

Remarks Use backslashes to delineate subfolders.

bool ReportObject _Duplicate(string apiId, string srcReportName, string destReportName)

Description Creates a duplicate copy of an existing report (srcReportName) and provides a new
name (destReportName). Returns Boolean indicating success/failure.

Remarks Use backslashes to delineate subfolders.

Dashboard Methods

bool Dashboard_SetReportFilterValue(string apiId, int reportIndex, string filterName,

wrFilterOperator filterOperator, List<string> filterValues)

Description Sets the dashboard value for a promptable filter that exists on the specified report
contained within the dashboard

Remarks To find the reportIndex of a particular report on a dashboard:
 Enter the dashboard designer.
 Press Ctrl+Shift+I.
 Click on the desired report. The index will appear in the reports title bar.

The number of items in filterValues depends on the filter operator.

Exago Technical Guide

235 Exago Inc.

bool Dashboard_SetReportParameterValue(string apiId, int reportIndex, string parameterName,

string parameterValue)

Description Sets the dashboard value for a promptable parameter that exists on the specified

report contained within the dashboard

Remarks To find the reportIndex of a particular report on a dashboard:

 Enter the dashboard designer.

 Press Ctrl+Shift+I.
 Click on the desired report. The index will appear in the reports title bar.

Report Methods

bool Report_AddFilter(string apiId, string filterName, int filterOperator, string filterValue, int

andOrWithNext, bool groupWithNext, bool promptForValue)

Description Adds a filter to a report. Returns Boolean indicating success/failure.

Remarks Valid filterOperator values are:
0: equal to

1: less than
2: less than or equal to
3: greater than
4: greater than or equal to
5: not equal to
6: starts with
7: not starts with
8: ends with
9: not ends with
10: contains
11: not contains

12: between
13: not between
14: one of
15: not one of

filterValue can contain multiple values. Delineate values with '|~|' (pipe tilde pipe).

Valid andOrWithNext values are:
0: and
1:or

Dates must be in the following format YYYY-MM-DD.

bool Report_AddFilterValue(string apiId, int index, string value)

Description Adds a value to a filter that accepts multiple values (ex 'one of' filters).

Returns Boolean indicating success/failure.

Remarks Index indicates which filter to add the value to.
This method can only be used on filters with the following operators: 'one of', 'not one
of'.

Exago Technical Guide

236 Exago Inc.

bool Report_AddSort(string apiId, string sortName, int sortDirection)

Description Adds a sort to a report. Returns Boolean indicating success/failure.

Remarks Valid sortDirection values are:
0: ascending
1: descending

bool Report_RemoveSort(string apiId, string sortName)

Description Removes a sort from a report. Returns Boolean indicating success/failure.

bool Report_SetSorts(string apiId, string[] sortName, int[] sortDirection)

Description Replaces any existing sorts of a report with the new sorts specified. Returns Boolean
indicating success/failure.

Remarks Valid sortDirection values are:
0: ascending
1: descending

If the lengths of the sortName and sortDirection arrays are not equal the following
behavior will occur:

 sortNames without a corresponding sortDirection will default to ascending.
 sortDirections without a corresponding sortName will be ignored.

byte[] Report_GetExecuteData(string apiId)

Description Executes a report directly and returns data as a byte array.

Remarks Any export type can be used with this method. Use Report_setParams method to set
the export type prior to this call.

string Report_GetExecuteHtml(string apiId)

Description Executes a report directly and returns HTML as a string.

Remarks This can be used to populate a container in the host application.

HTML will not contain Report Viewer.

string Report_GetReportListXml(string apiId)

Description Returns the hierarchical structure of reports and folders as an Xml string.

Remarks Returned list adheres to the active Role if set.

Exago Technical Guide

237 Exago Inc.

See Report and Folder Storage/Management for an example of the Xml output.

string Report_GetReportXml(string apiId)

Description Returns the hierarchical structure of the active report an Xml string.

bool Report_SetFilterValue(string apiId, int index, int subIndex, string value)

Description Sets the value of a filter. Returns Boolean indicating success/failure.

Remarks subIndex is used for filters with multiple values such as 'one of' or 'between' filters.

Set subIndex to -1 for single value operators.

Dates must be in the following format YYYY-MM-DD.

bool Report_SetParams(string apiId, int exportType, bool openNewWindow, bool showStatus)

Description Sets report execution parameters. Returns Boolean indicating success/failure.

Remarks Valid exportType values are:
0: html (Dafault Report Viewer)
1: excel
2: pdf
3: rtf
4: csv

Role Methods

This section lists the web service methods used to create, modify or delete Roles.

string Role_GetRoles(string apiId)

Description Returns the list of existing Roles as an Xml string.

bool Role_Activate(string apiId, string roleId)

Description Activates a pre-created role. Returns Boolean indicating success/failure.

NOTE. Before calling any of the following methods call Role_Activate to specify which role to

modify.

Exago Technical Guide

238 Exago Inc.

bool Role_Add(string apiId, bool includeAllFolders, bool foldersReadOnly, bool

allowFolderManagement, bool includeAllDataObjects)

Description Creates a new temporary run-time role. Returns Boolean indicating success/failure.

bool Role_AddDataObject(string apiId, string objectName)

Description Adds a Data Object to the role. Returns Boolean indicating success/failure.

Remarks If includeAllDataObjects is True this method will exclude the Data Object and vice
versa.

objectName is the database value not the mnemonic.

bool Role_AddDataObjectRow(string apiId, string objectName, string filterString)

Description Adds a Data Object row to the role. Returns Boolean indicating success/failure.

Remarks objectName is the database value not the mnemonic.

filterString should be standard SQL to go into the WHERE clause.

bool Role_AddFolder(string apiId, string folderName, bool readOnly)

Description Adds a Report Folder to the role. Returns Boolean indicating success/failure.

Remarks If includeAllFolders is True this method will exclude the Folder and vice versa.

bool Role_ SetCurrencySymbol (string apiId, string currencySymbol)

Description Overrides global currency symbol. Returns Boolean indicating success/failure.

bool Role_ SetDateFormat (string apiId, string dateFormat)

Description Overrides global date format. Returns Boolean indicating success/failure.

bool Role_ SetDbTimeout (string apiId, int dbTimeout)

Description Overrides maximum seconds the database is allowed to execute a query before
timing out. Returns Boolean indicating success/failure.

bool Role_ SetDecimalSymbol(string apiId, string decimalSymbol)

Exago Technical Guide

239 Exago Inc.

Description Overrides global decimal symbol. Returns Boolean indicating success/failure.

bool Role_ SetLanguageFile(string apiId, string languageFile)

Description Overrides global Language File. Returns Boolean indicating success/failure.

bool Role_ SetReadFilterValues(string apiId, bool readFilterValues)

Description Overrides whether to allow users to see database values in filter dropdowns. Returns

Boolean indicating success/failure.

bool Role_ SetReportVirutalPath (string apiId, string reportPath)

Description Overrides report virtual path. Returns Boolean indicating success/failure.

bool Role_ SetScheduleManagerViewLevel (string apiId, int scheduleManagerViewLevel)

Description Sets the level of view privilege for the user session Returns Boolean indicating
success/failure.

Remarks Valid values for scheduleManagerViewLevel are:
0: Current users (requires parameter userId be set)
1: Current Company (requires parameter companyId be set)

2: All

bool Role_ SetSeparatorSymbol (string apiId, string separatorSymbol)

Description Overrides global numeric separator symbol. Returns Boolean indicating
success/failure.

bool Role_SetServerTimeZoneOffset(string apiId, decimal serverTimeZoneOffset)

Description Overrides global Server Time Zone Offset. Returns Boolean indicating success/failure.

bool Role_ SetShowGrid (string apiId, bool showGrid)

Description Overrides global numeric separator symbol. Returns Boolean indicating
success/failure.

bool Role_ SetShowScheduleReports (string apiId, bool showScheduleReports)

Description Overrides whether to show the schedule report option. Returns Boolean indicating
success/failure.

bool Role_ SetShowScheduleReportsEmail (string apiId, bool showScheduleReportsEmail)

Exago Technical Guide

240 Exago Inc.

Description Overrides whether to show the schedule reports instant email option. Returns Boolean
indicating success/failure.

bool Role_ SetShowScheduleReportsManager(string apiId, bool showScheduleReportsManager)

Description Overrides whether to show the schedule reports management option. Returns Boolean

indicating success/failure.

Scheduler Methods

This section lists the web service methods used to create Schedules for Reports to be emailed or

Archived.

Before calling any of the following methods, call Report_Activate to specify which report to

schedule and Report_SetParams to set an export format.

NOTE. There are two methods for type of schedule: a regular method and a 'ForArchiving' method.

The regular method will email the report while the ForArchiving method will save the report to the

Scheduler Repository. For more information on archiving schedules see Saving Scheduled

Reports to External Repository.

NOTE. Dates must be in the following format YYYY-MM-DD. Times must be in the following format

HH:MM[:SS] (24-hour format).

bool Report_CreateImmediateSchedule(string apiId, string name, string[] toAddrArray, string[]

ccAddrArray, string[] bccAddrArray, string subject, string body)

Description Schedules a report to run and emailed immediately.

Returns Boolean indicating success/failure.

Remarks name: The name of the schedule as it appears in the Schedule Manager

toAddrArray: The array of email addresses and/or distribution lists for the 'To' field of

the email. If none of To, CC or BCC are set, Exago will attempt to archive scheduled
reports.

ccAddrArray: The array of email addresses and/or distribution lists for the 'CC' field of
the email. If none of To, CC or BCC are set, Exago will attempt to archive scheduled
reports.

bccAddrArray: The array of email addresses and/or distribution lists for the 'BCC' field
of the email. If none of To, CC or BCC are set, Exago will attempt to archive
scheduled reports.</param>

subject: The subject line of the email

body: The body text of the email

bool Report_CreateImmediateScheduleForArchiving(string apiId, string name)

Exago Technical Guide

241 Exago Inc.

Description Schedules a report to run and archived immediately.

Returns Boolean indicating success/failure.

Remarks name: The name of the schedule as it appears in the Schedule Manager

bool Report_CreateOnceScheduleByDateTime(string apiId, string dateStr, string timeStr, string

name, string[] toAddrArray, string[] ccAddrArray, string[] bccAddrArray, string subject, string body)

Description Schedules a report to be run and emailed at a specific date and time..

Returns Boolean indicating success/failure.

Remarks dateStr: The date to run the schedule. If the timeStr parameter is null, the scheduler
will use the time value of this parameter

timeStr: The time to run the schedule. If null, the scheduler will use the time value of
the dateStr parameter

NOTE. See remarks in Report_CreateImmediateSchedule toAddrArray,
ccAddrArray & bccAddrArray

bool Report_CreateOnceScheduleByDateTimeForArchiving(string apiId, string dateStr, string

timeStr, string name)

Description Schedules a report to be run and archived at a specific date and time..

Returns Boolean indicating success/failure.

Remarks dateStr: The date to run the schedule. If the timeStr parameter is null, the scheduler
will use the time value of this parameter

timeStr: The time to run the schedule. If null, the scheduler will use the time value of
the dateStr parameter

bool Report_CreateEveryWeekdaySchedule(string apiId, string startDateStr, string timeStr, bool

noEndDate, int endOccurrences, string endDateStr, string name, string[] toAddrArray, string[]

ccAddrArray, string[] bccAddrArray, string subject, string body)

Description Schedules a report to be run and emailed every weekday.

Returns Boolean indicating success/failure.

Remarks startDateStr: The date to begin running the schedule.

timeStr: The time to run the schedule. If null, the scheduler will use the time value of
the startDateStr parameter.

Three parameters are used to determine when to end a recurring schedule: bool

Exago Technical Guide

242 Exago Inc.

NoEndDate, int endOccurrences, string endDateStr. These parameters adhere to the
following logic.

If noEndDate is true, the report will run indefinitely.
Else if endOccurrences is greater than zero, the report will execute that many times.
Else the schedule will execute until the date represented in endDateStr.

NOTE. See remarks in Report_CreateImmediateSchedule for a description of
toAddrArray, ccAddrArray & bccAddrArray.

bool Report_CreateEveryWeekdayScheduleForArchiving(string apiId, string startDateStr, string

timeStr, bool noEndDate, int endOccurrences, string endDateStr, string name)

Description Schedules a report to be run and archived every weekday.

Returns Boolean indicating success/failure.

Remarks startDateStr: The date to begin running the schedule.

timeStr: The time to run the schedule. If null, the scheduler will use the time value of
the startDateStr parameter.

NOTE. See remarks in Report_CreateEveryWeekdaySchedule for a description of
noEndDate, endOccurrences & endDateStr.

bool Report_CreateEveryNDaySchedule(string apiId, int everyNDays, string startDateStr, string

timeStr, bool noEndDate, int endOccurrences, string endDateStr, string name, string[]

toAddrArray, string[] ccAddrArray, string[] bccAddrArray, string subject, string body)

Description Schedules a report to be run and emailed every N days.

Returns Boolean indicating success/failure.

Remarks everyNDays: Indicates the interval at which to run the schedule (e.g. every 10 days).

NOTE. See remarks in Report_CreateEveryWeekdaySchedule for a description of
startDateStr, timeStr, noEndDate, endOccurrences & endDateStr.

NOTE. See remarks in Report_CreateImmediateSchedule for a description of
toAddrArray, ccAddrArray & bccAddrArray.

bool Report_CreateEveryNDayScheduleForArchiving(string apiId, int everyNDays, string

startDateStr, string timeStr, bool noEndDate, int endOccurrences, string endDateStr, string name)

Description Schedules a report to be run and archived every N days.

Returns Boolean indicating success/failure.

Remarks everyNDays: Indicates the interval at which to run the schedule (e.g. every 10 days).

Exago Technical Guide

243 Exago Inc.

NOTE. See remarks in Report_CreateEveryWeekdaySchedule for a description of
startDateStr, timeStr, noEndDate, endOccurrences & endDateStr.

bool Report_CreateWeeklySchedule(string apiId, int everyNWeeks, int[] dayNums, string

startDateStr, string timeStr, bool noEndDate, int endOccurrences, string endDateStr, string name,

string[] toAddrArray, string[] ccAddrArray, string[] bccAddrArray, string subject, string body)

Description Schedules a report to be run and emailed on a weekly interval.

Returns Boolean indicating success/failure.

Remarks everyNWeeks: Indicates the interval at which to run the schedule (e.g. every 2

weeks).

dayNums: Days on which the schedule is to be run. Valid values are:
 1: Sunday
 2: Monday
 3: Tuesday
 4: Wednesday
 5: Thursday
 6: Friday
 7: Saturday

NOTE. See remarks in Report_CreateEveryWeekdaySchedule for a description of
startDateStr, timeStr, noEndDate, endOccurrences & endDateStr.

NOTE. See remarks in Report_CreateImmediateSchedule for a description of
toAddrArray, ccAddrArray & bccAddrArray.

bool Report_CreateWeeklyScheduleForArchiving(string apiId, int everyNWeeks, int[] dayNums,

string startDateStr, string timeStr, bool noEndDate, int endOccurrences, string endDateStr, string

name)

Description Schedules a report to be run and archived on a weekly interval.

Returns Boolean indicating success/failure.

Remarks everyNWeeks: Indicates the interval at which to run the schedule (e.g. every 2
weeks).

dayNums: Days on which the schedule is to be run. Valid values are:
 1: Sunday
 2: Monday
 3: Tuesday
 4: Wednesday
 5: Thursday

 6: Friday
 7: Saturday

NOTE. See remarks in Report_CreateEveryWeekdaySchedule for a description of
startDateStr, timeStr, noEndDate, endOccurrences & endDateStr.

Exago Technical Guide

244 Exago Inc.

bool Report_CreateMonthlyScheduleByNumericDay(string apiId, int everyNMonths, int

numericDay, string startDateStr, string timeStr, bool noEndDate, int endOccurrences, string

endDateStr, string name, string[] toAddrArray, string[] ccAddrArray, string[] bccAddrArray, string

subject, string body)

Description Schedules a report to be run and emailed on a specific day each month.

Returns Boolean indicating success/failure.

Remarks everyNMonths: Indicates the interval at which to run the schedule (e.g. every 2
months).

numericDay: The numeric day of each month (e.g. 17) on which to run the schedule

NOTE. See remarks in Report_CreateEveryWeekdaySchedule for a description of
startDateStr, timeStr, noEndDate, endOccurrences & endDateStr.

NOTE. See remarks in Report_CreateImmediateSchedule for a description of
toAddrArray, ccAddrArray & bccAddrArray.

bool Report_CreateMonthlyScheduleByNumericDayForArchiving(string apiId, int

everyNMonths, int numericDay, string startDateStr, string timeStr, bool noEndDate, int

endOccurrences, string endDateStr, string name)

Description Schedules a report to be run and archived on a specific day each month.

Returns Boolean indicating success/failure.

Remarks everyNMonths: Indicates the interval at which to run the schedule (e.g. every 2
months).

numericDay: The numeric day of each month (e.g. 17) on which to run the schedule

NOTE. See remarks in Report_CreateEveryWeekdaySchedule for a description of
startDateStr, timeStr, noEndDate, endOccurrences & endDateStr.

bool Report_CreateMonthlyScheduleByWeekAndDay(string apiId, int everyNMonths, int

weekOfMonthNum, int dayOfWeekNum, string startDateStr, string timeStr, bool noEndDate, int

endOccurrences, string endDateStr, string name, string[] toAddrArray, string[] ccAddrArray, string[]

bccAddrArray, string subject, string body)

Description Schedules a report to be run and emailed on a “described” day each month,
consisting of the week and the day.

Returns Boolean indicating success/failure.

Remarks everyNMonths: Indicates the interval at which to run the schedule (e.g. every 2
months).

weekOfMonthNum: The 'described' week of each month (e.g. 'Third') on which to run
the schedule. Used in conjunction with dayOfWeek. Valid values are:
 1: First

Exago Technical Guide

245 Exago Inc.

 2: Second
 3: Third
 4: Fourth
 5: Last

dayOfWeekNum: The 'described' day of each week (e.g. 'Weekday') on which to run

the schedule. Valid values are:
 1: Sunday
 2: Monday
 3: Tuesday
 4: Wednesday
 5: Thursday
 6: Friday
 7: Saturday
 8: Day
 9: Weekday
 10: Weekend Day

NOTE. See remarks in Report_CreateEveryWeekdaySchedule for a description of
startDateStr, timeStr, noEndDate, endOccurrences & endDateStr.

NOTE. See remarks in Report_CreateImmediateSchedule for a description of
toAddrArray, ccAddrArray & bccAddrArray.

bool Report_CreateMonthlyScheduleByWeekAndDayForArchiving(string apiId, int

everyNMonths, int weekOfMonthNum, int dayOfWeekNum, string startDateStr, string timeStr,

bool noEndDate, int endOccurrences, string endDateStr, string name)

Description Schedules a report to be run and archived on a “described” day each month,
consisting of the week and the day.

Returns Boolean indicating success/failure.

Remarks everyNMonths: Indicates the interval at which to run the schedule (e.g. every 2
months).

weekOfMonthNum: The 'described' week of each month (e.g. 'Third') on which to run
the schedule. Used in conjunction with dayOfWeek. Valid values are:
 1: First

 2: Second
 3: Third
 4: Fourth
 5: Last

dayOfWeekNum: The 'described' day of each week (e.g. 'Weekday') on which to run
the schedule. Valid values are:
 1: Sunday
 2: Monday
 3: Tuesday
 4: Wednesday
 5: Thursday
 6: Friday

 7: Saturday
 8: Day
 9: Weekday
 10: Weekend Day

NOTE. See remarks in Report_CreateEveryWeekdaySchedule for a description of

Exago Technical Guide

246 Exago Inc.

startDateStr, timeStr, noEndDate, endOccurrences & endDateStr.

bool Report_CreateYearlyScheduleByNumericDay(string apiId, int numericMonth, int

numericDay, string startDateStr, string timeStr, bool noEndDate, int endOccurrences, string

endDateStr, string name, string[] toAddrArray, string[] ccAddrArray, string[] bccAddrArray, string

subject, string body)

Description Schedules a report to be run and emailed on a specific day each year.

Returns Boolean indicating success/failure.

Remarks everyNMonths: Indicates the interval at which to run the schedule (e.g. every 2
months).

numericMonth: The numeric Month of each year (e.g. 3) on which to run the schedule

numericDay: The numeric day of each month (e.g. 17) on which to run the schedule

NOTE. See remarks in Report_CreateEveryWeekdaySchedule for a description of
startDateStr, timeStr, noEndDate, endOccurrences & endDateStr.

NOTE. See remarks in Report_CreateImmediateSchedule for a description of
toAddrArray, ccAddrArray & bccAddrArray.

bool Report_CreateYearlyScheduleByNumericDayForArchiving(string apiId, int numericMonth,

int numericDay, string startDateStr, string timeStr, bool noEndDate, int endOccurrences, string

endDateStr, string name)

Description Schedules a report to be run and archived on a specific day each year.

Returns Boolean indicating success/failure.

Remarks everyNMonths: Indicates the interval at which to run the schedule (e.g. every 2
months).

numericMonth: The numeric Month of each year (e.g. 3) on which to run the schedule

numericDay: The numeric day of each month (e.g. 17) on which to run the schedule

NOTE. See remarks in Report_CreateEveryWeekdaySchedule for a description of

startDateStr, timeStr, noEndDate, endOccurrences & endDateStr.

bool Report_CreateYearlyScheduleByWeekAndDay(string apiId, int numericMonth, int

weekOfMonthNum, int dayOfWeekNum, string startDateStr, string timeStr, bool noEndDate, int

endOccurrences, string endDateStr, string name, string[] toAddrArray, string[] ccAddrArray, string[]

bccAddrArray, string subject, string body)

Description Schedules a report to be run and emailed on a specific day each year.

Returns Boolean indicating success/failure.

Exago Technical Guide

247 Exago Inc.

Remarks numericMonth: The numeric Month of each year (e.g. 3 = March) on which to run the
schedule

weekOfMonthNum: The 'described' week of each month (e.g. 'Third') on which to run
the schedule. Used in conjunction with dayOfWeek. Valid values are:
 1: First

 2: Second
 3: Third
 4: Fourth
 5: Last

dayOfWeekNum: The 'described' day of each week (e.g. 'Weekday') on which to run
the schedule. Valid values are:
 1: Sunday
 2: Monday
 3: Tuesday
 4: Wednesday
 5: Thursday

NOTE. See remarks in Report_CreateEveryWeekdaySchedule for a description of
startDateStr, timeStr, noEndDate, endOccurrences & endDateStr.

NOTE. See remarks in Report_CreateImmediateSchedule for a description of
toAddrArray, ccAddrArray & bccAddrArray.

bool Report_CreateYearlyScheduleByWeekAndDayForArchiving(string apiId, int numericMonth, int

weekOfMonthNum, int dayOfWeekNum, string startDateStr, string timeStr, bool noEndDate, int

endOccurrences, string endDateStr, string name)

Description Schedules a report to be run and archived on a specific day each year.

Returns Boolean indicating success/failure.

Remarks numericMonth: The numeric Month of each year (e.g. 3 = March) on which to run the
schedule

weekOfMonthNum: The 'described' week of each month (e.g. 'Third') on which to run
the schedule. Used in conjunction with dayOfWeek. Valid values are:
 1: First
 2: Second

 3: Third
 4: Fourth
 5: Last

dayOfWeekNum: The 'described' day of each week (e.g. 'Weekday') on which to run
the schedule. Valid values are:
 1: Sunday
 2: Monday
 3: Tuesday
 4: Wednesday
 5: Thursday

NOTE. See remarks in Report_CreateEveryWeekdaySchedule for a description of
startDateStr, timeStr, noEndDate, endOccurrences & endDateStr.

Exago Technical Guide

248 Exago Inc.

Examples C#

The following examples demonstrate the capabilities of the Web Service Api using C#.

It is important that the first call instantiate an Api object. After making all the desired changes the

final call should be GetUrlParamString. Then redirect the user to Exago' Url concatenated with the

string GetUrlParamString returns.

In all of the examples below the return value should be checked for validity. The examples below

have omitted these checks for clarity.

Create Api object and initialize

// create an instance of the web service
//(web service needs to have been discovered in your application)
ExagoWebService.Api api = new ExagoWebService.Api();

// initialize API; returns an ID which is used in subsequent calls
string apiId = api.InitializeApi();

Adding/modifying a Role

// create a new runtime Role (is automatically made active)
api.Role_Add(apiId, true, false, true, true);
// -- OR --
// accessing a pre-created Role and making it active
api.Role_Activate(apiId, "Admin");

Adding Folder security to role

// disallow access to folder 'Stew's Reports' (and any subfolders)
api.Role_AddFolder(apiId, "Stew's Reports", false);

// make folder 'Summary Reports' (and any subfolders) read only
api.Role_AddFolder(apiId, "Summary Reports", true);

Adding Data Object security to role

// disallow access to data object 'vw_cancellation'
api.Role_AddDataObject(apiId, "vw_cancellation");

Adding Data Object Row security to role

// don't allow this user to view rows from the 'vw_grant' object with a
// 'Grant Date' value of '2000-01-01'
api.Role_AddDataObjectRow(apiId, "vw_grant", @"""Grant Date"" <> '2000-01-01'");

Setting up several general user session parameters for role (overrides individual global

general parameters)

// set global date format for this user
api.Role_SetDateFormat(apiId, "dd/MM/yyyy");

// set currency symbol for this user

Exago Technical Guide

249 Exago Inc.

api.Role_SetCurrencySymbol(apiId, "kr");

Modifying the data connection string of a specific data source

// set data connection string for a specific datasource
api.DataSource_Modify(apiId, "MyDb", "Server=SVR;Database=db1;uid=sa;pwd=dba;");

Modifying a parameter value

// modify a parameter value
api.Parameter_Modify(apiId, "asOfDate", "2007-06-01");

Adding a data object

api.DataObject_Add(apiId, "eowin", 0, "optionee", "Optionee Dynamic", "OPT_NUM", "Dynamic",
null, null, null));

Setting data column alias

api.DataObject_SetColumnAlias(apiId, "vw_webrpt_optionee", "Hire Date", "Date of Hire"));

Adding a data object join

api.Join_Add(apiId, "optionee", "OPT_NUM", "fn_webrpt_grant", "Optionee Number", 1, 10));

Starting Exago - At this point if you want to run the Exago applications, do the following:

// setup URL
string url = "http://MyDomainServer/Exago/" + api.GetUrlParamString(apiId);
Response.Redirect(url);

// or you can redirect any control that can be set to a URL
this.ReportIFrame.Attributes["src"] = url;

Executing a report directly from the host application – You can combine setting user session

information as above with report execution. To do that, just omit the redirect above and do

the following:

// activate specific report
api.ReportObject_Activate(apiId, @"Stew Meyers' Reports\My Report")

// add a sort
api.Report_AddSort(apiId, "vw_optionee.First Name", 0);

// add a filter
api.Report_AddFilter(apiId, "vw_grant.Grant Date", 1, "20070501", 0, false, true);

// set other execution params
api.Report_SetParams(apiId, 0, false, false);

Start report execution

// setup URL
string url = "http://MyServer/Exago/" + api.GetUrlParamString(apiId);
Response.Redirect(url);

Exago Technical Guide

250 Exago Inc.

// or you can redirect any control that can be set to a URL
this.ReportIFrame.Attributes["src"] = url;

Scheduler Examples

Api api = new Api(apiPath, "AdventureWorks.XML");
api.Report.Load(@"DevReports\Adventure Works\Product Locations and Inventory");
api.Report.ExportType = wrExportType.Pdf;

ReportScheduler scheduler = api.ReportScheduler;

List<string> toAddrs = new List<string>();
toAddrs.Add("foo@bar.com");
List<string> ccAddrs = new List<string>();
ccAddrs.Add("foo@bar.com");
List<string> bccAddrs = new List<string>();
bccAddrs.Add("foo@bar.com");

DateTime dt = new DateTime(2013, 5, 16, 11, 00, 0);
DateTime dt2 = new DateTime(2013, 6, 15, 10, 20, 0);
TimeSpan ts = new TimeSpan(17, 20, 25);

scheduler.CreateOnceScheduleByDateTime(dt, "Once by datetime", toAddrs);

scheduler.CreateDailySchedule(true, 3, dt, true, 0, dt, "Daily No End Date");
scheduler.CreateDailySchedule(false, 2, dt, false, 5, dt2, "Daily two occurrences");
scheduler.CreateDailySchedule(false, 2, dt, false, 0, dt2, string.Format("Daily end by {0}_{1}",
dt2.Month, dt2.Day), toAddrs, ccAddrs);

List<DayOfWeek> days = new List<DayOfWeek>();
days.Add(DayOfWeek.Wednesday);
days.Add(DayOfWeek.Wednesday);
days.Add(DayOfWeek.Sunday);
scheduler.CreateWeeklySchedule(2, days, dt, true, 0, null, "Weekly no end date");
scheduler.CreateWeeklySchedule(2, days, dt, false, 2, null, "Weekly 2 occurrences");
scheduler.CreateWeeklySchedule(2, days, dt, false, 0, dt2, "Weekly end by date", toAddrs,
ccAddrs, bccAddrs, ts);

Examples PHP

The following examples demonstrate the capabilities of the Web Service Api using PHP.

It is important that the first call instantiate an Api object. After making all the desired changes the

final call should be GetUrlParamString. Then redirect the user to Exago' Url concatenated with the

string GetUrlParamString returns.

In all of the examples below the return value should be checked for validity. The examples below

have omitted these checks for clarity.

Create Api object and initialize

$client = new SoapClient('http://MyServer/ExagoApi/Api.asmx?wsdl');

mailto:foo@bar.com
mailto:foo@bar.com
mailto:foo@bar.com

Exago Technical Guide

251 Exago Inc.

$r = $client->InitializeApi();
$apiId = $r->InitializeApiResult;

Activate a role

$r = $client->Role_Activate(array('apiId' => $apiId, 'roleId'=>'Admin'));
$result = $r->Role_ActivateResult;

Activate a report

$r = $client->ReportObject_Activate(array('apiId' => $apiId, 'reportName'=>'Stew Meyers'
Reports\\My Report'));

Get URL

$url = "http://MyServer/Exago/" . $client->GetUrlParamString(array('apiId' => $apiId);

Exago Technical Guide

252 Exago Inc.

REST Web Service API

Exago provides a RESTful API Web Service useful for language-agnostic application support. If

enabled, an admin can access and modify elements of the Exago Application using standard HTTP

methods in either XML or JSON representation.

The REST API is installed to the Exago Web Service directory. For information on how to install the

Exago Web Service, see Web Service Installation.

In order to enable the REST API, the following key must be added to the Exago Web Service's

AppSettings.config file:

<appSettings>

 <add key="ExagoREST" value="true" />

</appSettings>

Once enabled, the REST API can be accessed through the “/REST/*” URL from the Web Service

virtual directory.

The format of the data sent and returned can be either XML or JSON. The format of the content

being sent is defined through the Content-Type header of the request; the format of the data

returned is defined through the Accept header of the request:

Content-Type: application/(json/xml)

Accept: application/(json/xml)

For any request, parameters can be appended to the URL in the following form:

“/Path/To/Resource/?param1=value1¶m2=value2”

A session id parameter “sid” is required for most resources. Each resource may additionally define

parameters unique to that URL pattern.

Authorization

The REST API can be accessed in either an authorized or unauthorized state. Certain URLs and/or

HTTP Methods and/or properties within a resource may only be available or may behave

differently depending on whether the request is authorized or not.

To make an authorized request, the Authorization header must be supplied. There are two

different authorization methods depending on your needs. Both rely on the username and

password found within the configuration file currently being accessed.

Exago Technical Guide

253 Exago Inc.

Basic Authorization

When using basic authorization, the authorization header is constructed as follows:

1. The username and password are combined into a string “username:password”.

2. The resulting string literal is encoded using Base64.

3. “Basic” and a space are placed before the encoded string.

For example, if the username is “Brian” and the password is “open sesame” then the authorization

header would be:

Authorization: Basic QWxhZGRpbjpvcGVuIHN1c2FtZQ==

NOTE. The password is sent in clear text with each request. If this is a concern, the REST API should

be deployed in an SSL environment or the more secure ExagoKey authorization should be used.

A configuration lacking a username and password can be accessed using the following

authorization header:

Authorization: Basic Og==

ExagoKey Authorization

ExagoKey authorization uses the HMAC-SHA256 algorithm for authorization. When using

ExagoKey authorization, the authorization header is constructed as follows:

1. The string to sign is UTF-8 encoded, then signed with the UTF-8 encoded password using

the HMAC-SHA256 algorithm.

2. The resulting signature is then encoded using Base64.

3. The username and a colon is put before the encoded signature.

4. “ExagoKey” and a space are placed before the username:encoded string literal.

For example, if the username is “Brian” and the password is “open sesame” then depending on the

request the authorization header might be something like:

Authorization: ExagoKey Brian:6HZE5tCWjsjbJY+VXQg3UzXlK/jeoGhbm25YDXiHWdE=

Using ExagoKey does not send the password with each request, making it more secure than Basic

Authorization. However to ensure greater security the REST API should be deployed in an SSL

environment.

ExagoKey String

The ExagoKey string that is to be signed is constructed using the following information from the

request, in the following order, with “\n” after each item (including the last one).

Exago Technical Guide

254 Exago Inc.

1. The HTTP Method, must be in uppercase.

2. The absolute request path, up to but not including the query string if one should exist. For

example, if the request is to “http://myserver.com/reporting/api/Sessions?config=myconfig”

the absolute request path would be “/reporting/api/Sessions”.

3. The contents of the Content-Length header.

4. The contents of the Content-Type header, or a string of zero length if no header exists.

5. The contents of the Content-MD5 header, or a string of zero length if no header exists.

6. The SID, or a string of zero length if no SID exists.

7. The contents of the X-Exago-Date header, or the contents of the Date header if the X-

Exago-Date header does not exist, or a string of zero length if neither header exists.

NOTE. If a date is supplied, the REST API will reject any request that is older than 15

minutes from the supplied date. The date supplied is in GMT (UTC).

List of Resources

URL GET POST PUT PATCH DELETE

/Sessions ✓

/Sessions/{sid} ✓ ✓ ✓ ✓

/DataSources ✓ ✓

/DataSources/{id} ✓ ✓ ✓ ✓

/Joins ✓ ✓

/Joins/{id} ✓

/Roles ✓ ✓

/Roles/{id} ✓ ✓ ✓ ✓

/Roles/{id}/Settings ✓ ✓ ✓

/Roles/{id}/Entities ✓ ✓ ✓

/Roles/{id}/Folders ✓ ✓ ✓

/Roles/{id}/DataObjectRows ✓ ✓ ✓

/Settings ✓ ✓ ✓

/Parameters ✓ ✓

/Parameters/{id} ✓ ✓ ✓ ✓

/Entities ✓ ✓

/Entities/{id} ✓ ✓ ✓ ✓

/Entities/{id}/Fields ✓

/Entities/{id}/Fields/{fid} ✓ ✓ ✓

/Functions ✓ ✓

/Functions/{id} ✓ ✓ ✓ ✓

/ServerEvents ✓ ✓

/ServerEvents/{id} ✓ ✓ ✓ ✓

/Folders/{id} ✓ ✓ ✓

/Reports/List ✓

/Reports/Execute/{id} ✓

Exago Technical Guide

255 Exago Inc.

Sessions

This resource provides access to session information. A session is the first object created in order

to interface with the REST Api. “POST /Sessions” should be the first service called by the user. If

successful, it will return a Session ID parameter that is the resource path for the REST services.

POST /Sessions

Creates a new session within the Exago application. This is the only URL that does not require a

session ID in some form.

Info Description

Authorization Required

Parameters config Optionally specify the base configuration to

load for this session.

Input Data SessionResource

Output Data SessionResource

GET /Sessions/{sid}

Retrieves the session information for a previously created session.

Info Description

Authorization Required

Path {sid} The session id to retrieve.

Output Data SessionResource

PUT /Sessions/{sid}

Updates a session in its entirety. If a property is not specified, it will revert to its original and

default value.

Info Description

Authorization Required

Path {sid} The session id to update.

Input Data SessionResource

Output Data SessionResource

PATCH /Sessions/{sid}

Updates specified properties of a session. If a property is not specified, it will not be changed.

Info Description

Authorization Required

Path {sid} The session id to update.

Exago Technical Guide

256 Exago Inc.

Input Data SessionResource

Output Data SessionResource

DELETE /Sessions/{sid}

Deletes a session.

Info Description

Authorization Required

Path {sid} The session id to delete.

DataSources

This resource provides access to the data sources.

GET /DataSources

Retrieves the data sources in a session.

Info Description

Authorization Required

Parameters sid Required session id.

 entity Only return joins that join the entity

id.

Output Data DataSourceListItemResource A list of DataSourceResource

objects.

GET /DataSources/{id}

Retrieve a single data source in a session.

Info Description

Authorization Required

Parameters sid Required session id.

Path {id} The data source id to retrieve.

Output Data DataSourceResource

POST /DataSources

Creates a new data source.

Info Description

Authorization Required

Parameters sid Required session id.

Exago Technical Guide

257 Exago Inc.

Input Data DataSourceResource

Output Data DataSourceResource

PUT /DataSources/{id}

Update a single data source in a session in its entirety. If a property is not specified, it will revert to

its original and default value.

Info Description

Authorization Required

Parameters sid Required session id.

Path {id} The data source id to update.

Input Data DataSourceResource

PATCH /DataSources/{id}

Update specified properties for single data source in a session. If a property is not specified, it will

not be changed.

Info Description

Authorization Required

Parameters sid Required session id.

Path {id} The data source id to update.

Input Data DataSourceResource

DELETE /DataSources/{id}

Delete a single data source in a session.

Info Description

Authorization Required

Parameters sid Required session id.

Path {id} The data source id to delete.

Joins

This resource provides access to join information.

GET /Joins

Retrieves the joins in a session.

Info Description

Authorization Required

Exago Technical Guide

258 Exago Inc.

Parameters sid Required session id.

 entity Only return joins that join the entity id.

Output Data JoinListItemResource A list of JoinResource objects.

GET /Joins/{id}

Retrieves a single join in a session.

Info Description

Authorization Required

Parameters sid Required session id.

Path {id} The join id to retrieve.

Output Data JoinResource

POST /Joins

Creates a new join.

Info Description

Authorization Required

Parameters sid Required session id.

Input Data JoinResource

Output Data JoinResource

PUT /Joins/{id}

Update a single join in a session in its entirety. If a property is not specified, it will revert to its

original and default value.

Info Description

Authorization Required

Parameters sid Required session id.

Path {id} The join id to update.

Input Data JoinResource

PATCH /Joins/{id}

Update specified properties for single join in a session. If a property is not specified, it will not be

changed.

Info Description

Authorization Required

Parameters sid Required session id.

Path {id} The join id to update.

Exago Technical Guide

259 Exago Inc.

Input Data JoinResource

Output Data JoinResource

DELETE /Joins/{id}

Delete a single join in a session.

Info Description

Authorization Required

Parameters sid Required session id.

Path {id} The join id to delete.

Roles

This resource provides access to role information.

GET /Roles

Retrieves the roles in a session.

Info Description

Authorization Required

Parameters sid Required session id.

Output data RoleListItemResource List of RoleResource objects.

GET /Roles/{id}

Retrieves a single role in a session.

Info Description

Authorization Required

Parameters sid Required session id.

Path {id} The role id to retrieve.

Output data RoleResource

POST /Roles

Creates a new role.

Info Description

Authorization Required

Parameters sid Required session id.

Input Data RoleResource

Exago Technical Guide

260 Exago Inc.

Output data RoleResource

PUT /Roles/{id}

Update a single role in a session in its entirety. If a property is not specified, it will revert to its

original and default value.

Info Description

Authorization Required

Parameters sid Required session id.

Path {id} The role id to update.

Input Data RoleResource

PATCH /Roles/{id}

Update specified properties for single role in a session. If a property is not specified, it will not be

changed.

Info Description

Authorization Required

Parameters sid Required session id.

Path {id} The role id to update.

Input Data RoleResource

DELETE /Roles/{id}

Delete a role in a session.

Info Description

Authorization Required

Parameters sid Required session id.

Path {id} The role id to delete.

GET /Roles/{id}/Settings

Retrieves the settings for a single role in a session.

Info Description

Authorization Required

Parameters sid Required session id.

Path {id} The role id to retrieve.

Output data RoleSettingsResource

PUT /Roles/{id}/Settings

Exago Technical Guide

261 Exago Inc.

Updates the settings for a single role in a session in its entirety. If a property is not specified, it will

revert to its original and default value.

Info Description

Authorization Required

Parameters sid Required session id.

Path {id} The role id to update.

Input data RoleSettingsResource

PATCH /Roles/{id}/Settings

Updates specified properties for the settings for a single role in a session. If a property is not

specified, it will not be changed.

Info Description

Authorization Required

Parameters sid Required session id.

Path {id} The role id to update.

Input data RoleSettingsResource

GET /Roles/{id}/Entities

Retrieves the entity security for a single role in a session.

Info Description

Authorization Required

Parameters sid Required session id.

Path {id} The role id to retrieve.

Output data RoleEntityResource

PUT /Roles/{id}/Entities

Updates the entity security for a single role in a session in its entirety. If a property is not specified,

it will revert to its original and default value.

Info Description

Authorization Required

Parameters sid Required session id.

Path {id} The role id to update.

Input data RoleEntityResource

PATCH /Roles/{id}/Entities

Updates specified properties for the entity security for a single role in a session. If a property is not

Exago Technical Guide

262 Exago Inc.

specified, it will not be changed.

Info Description

Authorization Required

Parameters sid Required session id.

Path {id} The role id to update.

Input data RoleEntityResource

GET /Roles/{id}/Folders

Retrieves the folder security for a single role in a session.

Info Description

Authorization Required

Parameters sid Required session id.

Path {id} The role id to retrieve.

Output data RoleFoldersResource

PUT /Roles/{id}/Folders

Updates the folder security for a single role in a session in its entirety. If a property is not specified,

it will revert to its original and default value.

Info Description

Authorization Required

Parameters sid Required session id.

Path {id} The role id to update.

Input data RoleFoldersResource

PATCH /Roles/{id}/Folders

Updates specified properties for the folder security for a single role in a session. If a property is

not specified, it will not be changed.

Info Description

Authorization Required

Parameters sid Required session id.

Path {id} The role id to update.

Input data RoleFoldersResource

GET /Roles/{id}/DataObjectRows

Retrieves the data object row security for a single role in a session.

Exago Technical Guide

263 Exago Inc.

Info Description

Authorization Required

Parameters sid Required session id.

Path {id} The role id to retrieve.

Output data RoleDataObjectRowResource

PUT /Roles/{id}/DataObjectRows

Updates the data object row security for a single role in a session in its entirety. If a property is not

specified, it will revert to its original and default value.

Info Description

Authorization Required

Parameters sid Required session id.

Path {id} The role id to update.

Input data RoleDataObjectRowResource

PATCH /Roles/{id}/DataObjectRows

Updates specified properties for the data object row security for a single role in a session. If a

property is not specified, it will not be changed.

Info Description

Authorization Required

Parameters sid Required session id.

Path {id} The role id to update.

Input data RoleDataObjectRowResource

Settings

GET /Settings

Retrieves the general settings of the configuration.

Info Description

Authorization

Optional Unauthorized access may only return a subset

of data.

Parameters sid Required session id.

Output data SettingsResource

PUT /Settings

Updates the general properties of the configuration in its entirety. If a property is not specified, it

will revert to its original and default value.

Exago Technical Guide

264 Exago Inc.

Info Description

Authorization Required

Parameters sid Required session id.

Input data SettingsResource

PATCH /Settings

Updates the general properties of the configuration. If a property is not specified, it will not be

changed.

Info Description

Authorization Required

Parameters sid Required session id.

Input data SettingsResource

Parameters

This resource provides access to all the parameters within the application.

GET /Parameters

Retrieves the parameters in a session.

Info Description

Authorization

Optional Unauthorized access may only return

a subset of data.

Parameters sid Required session id.

Output Data ParameterListItemResource A list of ParameterResource objects.

POST /Parameters

Creates a new parameter.

Info Description

Authorization Required

Parameters sid Required session id.

Input Data ParameterResource

GET /Parameters/{id}

Retrieves a single parameter in a session.

Info Description

Exago Technical Guide

265 Exago Inc.

Authorization

Optional Unauthorized access may only return a

subset of data.

Parameters sid Required session id.

Path {id} The parameter id to retrieve.

Output Data ParameterResource

PUT /Parameters/{id}

Update a single parameter in a session in its entirety. If a property is not specified, it will revert to

its original and default value.

Info Description

Authorization Required

Parameters sid Required session id.

Path {id} The parameter id to update.

Input Data ParameterResource

PATCH /Parameters/{id}

Update specified properties for single parameter in a session. If a property is not specified, it will

not be changed.

Info Description

Authorization Required

Parameters sid Required session id.

Path {id} The parameter id to update.

Input Data ParameterResource

DELETE /Parameters/{id}

Delete a single parameter in a session.

Info Description

Authorization Required

Parameters sid Required session id.

Path {id} The parameter id to delete.

Entities

This resource provides access to all the entities within the application.

GET /Entities

Retrieves the entities in a session.

Exago Technical Guide

266 Exago Inc.

Info Description

Authorization

Optional Unauthorized access may only return a

subset of data.

Parameters sid Required session id.

Output Data EntityListItemResource A list of EntityResource objects.

POST /Entities

Creates a new entity.

Info Description

Authorization Required

Parameters sid Required session id.

Input Data EntityResource

GET /Entities/{id}

Retrieves a single entity in a session.

Info Description

Authorization

Optional Unauthorized access may only return a subset

of data.

Parameters sid Required session id.

Path {id} The entity id to retrieve.

Output Data EntityResource

PUT /Entities/{id}

Updates a single entity in a session in its entirety. If a property is not specified, it will revert to its

original and default value.

Info Description

Authorization Required

Parameters sid Required session id.

Path {id} The entity id to update.

Input data EntityResource

PATCH /Entities/{id}

Updates specified properties for a single entity in a session. If a property is not specified, it will not

be changed.

Info Description

Authorization Required

Exago Technical Guide

267 Exago Inc.

Parameters sid Required session id.

Path {id} The entity id to update.

Input data EntityResource

DELETE /Entities/{id}

Delete a single entity in a session.

Info Description

Authorization Required

Parameters sid Required session id.

Path {id} The entity id to delete.

GET /Entities/{id}/Fields

Retrieves the fields for a single entity in a session.

Info Description

Authorization

Optional Unauthorized access may only return

a subset of data.

Parameters sid Required session id.

Path {id} The entity id to retrieve.

Output Data EntityFieldListItemResource A list of EntityFieldResource objects.

GET /Entities/{id}/Fields/{fid}

Retrieves a single field for a single entity in a session.

Info Description

Authorization

Optional Unauthorized access may only return a

subset of data.

Parameters sid Required session id.

Path {id} The entity id to retrieve.

 {fid} The field id to retrieve for the entity.

Output Data EntityFieldResource

PUT /Entities/{id}/Fields/{fid}

Updates a single field for a single entity in a session in its entirety. If a property is not specified, it

will revert to its original and default value.

Info Description

Authorization Required

Parameters sid Required session id.

Exago Technical Guide

268 Exago Inc.

Path {id} The entity id to retrieve.

 {fid} The field id to retrieve for the entity.

Input Data EntityFieldResource

PATCH /Entities/{id}/Fields/{fid}

Updates specified properties for a single field for a single entity in a session. If a property is not

specified, it will not be changed.

Info Description

Authorization Required

Parameters sid Required session id.

Path {id} The entity id to retrieve.

 {fid} The field id to retrieve for the entity.

Input Data EntityFieldResource

Functions

This resource provides access to all the functions within the application.

GET /Functions

Retrieves the functions in a session.

Info Description

Authorization

Optional Unauthorized access may only return a

subset of data.

Parameters sid Required session id.

 filter Optionally allows the user to filter by

types of functions. Accepted values:

 custom: only custom functions

Output Data FunctionListItemResource A list of FunctionResource objects.

POST /Functions

Creates a new function.

Info Description

Authorization Required

Parameters sid Required session id.

Input Data FunctionResource

GET /Functions/{id}

Exago Technical Guide

269 Exago Inc.

Retrieves a single function in a session.

Info Description

Authorization

Optional Unauthorized access may only return a subset

of data.

Parameters sid Required session id.

Path {id} The function id to retrieve.

Output Data FunctionResource

PUT /Functions/{id}

Updates a single function in a session in its entirety. If a property is not specified, it will revert to its

original and default value.

Info Description

Authorization Required

Parameters sid Required session id.

Path {id} The function id to update.

Input Data FunctionResource

PATCH /Functions/{id}

Updates specified properties for a single function in a session. If a property is not specified, it will

not be changed.

Info Description

Authorization Required

Parameters sid Required session id.

Path {id} The function id to update.

Input Data FunctionResource

DELETE /Functions/{id}

Delete a single function in a session.

Info Description

Authorization Required

Parameters sid Required session id.

Path {id} The function id to delete.

ServerEvents

GET /ServerEvents

Exago Technical Guide

270 Exago Inc.

Retrieves the server events in a session.

Info Description

Authorization

Optional Unauthorized access may only

return a subset of data.

Parameters sid Required session id.

 filter Optionally allows the user to filter by

types of server events. Accepted

values:

 custom: only custom server

events

Output Data ServerEventListItemResource A list of ServerEventResource

objects.

POST /ServerEvents

Creates a new server event.

Info Description

Authorization Required

Parameters sid Required session id.

Input Data ServerEventResource

GET /ServerEvents/{id}

Retrieves a single server event in a session.

Info Description

Authorization

Optional Unauthorized access may only return a

subset of data.

Parameters sid Required session id.

Path {id} The server event id to retrieve.

Output Data ServerEventResource

PUT /ServerEvents/{id}

Updates a single server event in a session in its entirety. If a property is not specified, it will revert

to its original and default value.

Info Description

Authorization Required

Parameters sid Required session id.

Path {id} The server event id to update.

Input Data ServerEventResource

Exago Technical Guide

271 Exago Inc.

PATCH /ServerEvents/{id}

Updates specified properties for a single server event in a session. If a property is not specified, it

will not be changed.

Info Description

Authorization Required

Parameters sid Required session id.

Path {id} The server event id to update.

Input Data ServerEventResource

DELETE /ServerEvents/{id}

Delete a single server event in a session.

Info Description

Authorization Required

Parameters sid Required session id.

Path {id} The server event id to delete.

Folders

POST /Folders/{id}

Creates a new folder.

Info Description

Authorization Required

Parameters sid Required session id.

Path {id} The folder id to create.

Output Data FolderResource

POST /Folders/{id}

Renames an existing folder.

Info Description

Authorization Required

Parameters sid Required session id.

Path {id} The folder id to rename.

Input Data FolderRenameResource

Output Data FolderResource

Exago Technical Guide

272 Exago Inc.

GET /Folders/{id}

Checks if a folder exists or not.

Info Description

Authorization Required

Parameters sid Required session id.

Path {id} The folder id to check.

Output Data FolderResource

DELETE /Folders/{id}

Deletes a folder.

Info Description

Authorization Required

Parameters sid Required session id.

Path {id} The folder id to delete.

Input Data FolderResource

Reports

GET /Reports/List

Retrieve the list of folders and reports available to the current role.

Info Description

Authorization Required

Parameters sid Required session id.

Output Data ReportFoldersResource

POST /Reports/Execute/{type}

Execute the selected report.

Info Description

Authorization Required

Parameters sid Required session id.

 ReportPath Required report path.

 Sorts Optional SortsResource array.

 Filters Optional FiltersResource array.

Path {type} The execution file type, one of:

Exago Technical Guide

273 Exago Inc.

 html

 csv

Data Definitions

A: Authorized Only

W: Writable Property (Y: Yes, N: No, C: Create Only)

R: Required Property (Y: Yes, N: No, C: Create Only)

Sessions

SessionResource

Name Type A W R Default Description

Id String Y N - - The SID for this session

AppUrl String Y N - - The URL to access the Exago Application as

session.

Page String Y Y N ExagoHome The page to access within the Exago

Application.

Action String Y Y N Default The action to take when initially accessing

the application, one of:

 Default – The default action

 Home – Open the home page

 NewReport – Open the New Report

Wizard for a Standard Report

 NewCrossTabReport – Open the

New Report Wizard for a CrossTab

Report

 NewDashboardReport – Open the

New Report Wizard for a Dashboard

Report

ShowTabs Boolean Y Y N true Whether tabs should be shown.

ShowErrorDetail Boolean Y Y N false Whether error details should be shown.

DataSources

DataSourceListItemResource

Name Type A W R Default Description

Id String Y N - - The ID for this data source

Name String Y N - - The name for this data source

DataSourceResource

Exago Technical Guide

274 Exago Inc.

Name Type A W R Default Description

Id String Y N - - The ID of the data source

Name String Y Y N The name of the data source

DbType String Y Y N Mssql The type of the data source, one of:

 MsSql

 MySql

 Postgres

 Oracle

 DB2

 Informix

 Assembly

 WebService

Connection String Y Y N The data source connection string

Schema String Y Y N The default data schema

Joins

JoinListItemResource

Name Type A W R Default Description

Id String Y N - - The ID for this join

JoinResource

Name Type A W R Default Description

Id String Y N - - The ID of the join

EntityFrom String Y C C The id of the from entity

EntityTo String Y C C The id of the to entity

JoinType String Y Y N Inner The type of join, one of:

 Inner

 LeftOuter

 RightOuter

 FullOuter

RelationshipType String Y Y N OneToOne The type of relationship, one

of:

 OneToOne

 OneToMany

Weight Integer Y Y N 0 The weight of the join

JoinColumns JoinColumnsResource[] Y Y Y The columns to join

JoinColumnsResource

Name Type A W R Default Description

ColumnFrom String Y Y Y The id of the from column

Exago Technical Guide

275 Exago Inc.

ColumnTo String Y Y Y The id of the to column

Roles

RoleListItemResource

Name Type A W R Default Description

Id String Y N - - The ID for this role.

RoleResource

Name Type A W R Default Description

Id String Y C C - The ID for this role.

IsActive Boolean Y Y N false Whether this role is active,

NOTE. Only one role may be active at a time.

RoleSettingsResource

Name Type A W R Default Description

ReportPath String Y Y N - The report path

ReadFilterValues Boolean Y Y N - When true, filter values are read

from the database

DbTimeout Number Y Y N - Maximum number of seconds a

single query is allowed to run

ScheduleManagerViewLevel String Y Y N - One of:

 User

 Company

 All

LanguageFile String Y Y N - The language file string

ServerTimeZoneOffset Number Y Y N - Used to convert server time to

client time

DateFormat String N Y N - The date format string for this

role

TimeFormat String N Y N - The time format string for this

role

DateTimeFormat String N Y N - The datetime format string for

this role

SeparatorSymbol String N Y N - The character to use as a

number separator symbol

CurrencySymbol String N Y N - The character to use to

represent currencty

Decimal Symbol String N Y N - The character to use as a

decimal symbol

ShowGrid Boolean N Y N - When true, the default Report

Exago Technical Guide

276 Exago Inc.

Viewer option to show grid will

be true.

ShowCrossTabReports Boolean N Y N - When true, the crosstab

designer is accessible

ShowExpressReports Boolean N Y N - When true, the express report

designer is accessible

ShowExpressReportsGrouping Boolean N Y N - When true, express report

grouping is accessible

ShowExpressReportsFormulas Boolean N Y N - When true, express report

formulas are accessible

ShowExpressReportsStyling Boolean N Y N - When true, express report

styling is accessible

ShowExpressReportsThemes Boolean N Y N - When true, express report

themes are accessible

ShowStandardReports Boolean N Y N - When true, the standard report

designer is accessible

ShowScheduleReports Boolean N Y N - When true, scheduling reports is

accessible

ShowScheduleReportsManager Boolean N Y N - When true, the schedule report

manager is accessible

ShowScheduleReportsEmail Boolean N Y N - When true, emailing reports is

accessible

RoleEntityResourceCollection

Name Type A W R Default Description

IncludeAll Boolean Y Y N false When true, all entities except

specified in the Entities property are

included. When false, only the

entities specified in the Entities

property are included.

Entities RoleEntityResource[] Y Y N The list of entities that are included

or excluded (depends on IncludeAll)

RoleEntityResource

Name Type A W R Default Description

Id String Y Y N The id of the entity this role is

controlling.

RoleFolderResourceCollection

Name Type A W R Default Description

IncludeAll Boolean Y Y N false When true, all folders

Exago Technical Guide

277 Exago Inc.

except specified in the

Folders property are

included. When false, only

the folders specified in the

Folders property are

included.

ReadOnly Boolean Y Y N false When true, all folders

except specified as

readonly in the Folders

property are read only.

When false, only the folders

specified in the Folders

property as readonly are

read only.

AllowManagement Boolean Y Y N false When true, folder

management is allowed

Folders RoleFolderResource[] Y Y N The list of folders that are

included or excluded

(depends on IncludeAll)

RoleFolderResource

Name Type A W R Default Description

Id String Y Y N The id of the folder

ReadOnly Boolean Y Y N false When true, this folder is read only

Propogate Boolean Y Y N false When true, the readonly property is

propogated to the children of this

folder.

RoleDataObjectRowResourceCollection

Name Type A W R Default Description

DataObjectRows RoleDataObjectRowResource[] Y Y N The data object rows

included.

RoleDataObjectRowResource

Name Type A W R Default Description

Id String Y Y N The id of the data object

Filter String Y Y N The filter string

Settings

SettingsResource

Exago Technical Guide

278 Exago Inc.

Name Type A W R Default Description

ReportPath String Y Y N The report path

ReadFilterValues Boolean Y Y N When true, filter values are read

from the database

DbTimeout Number Y Y N Maximum number of seconds a

single query is allowed to run

ScheduleManagerViewLevel String Y Y N All One of:

 User

 Company

 All

LanguageFile String Y Y N The language file string

ServerTimeZoneOffset Number Y Y N Used to convert server time to

client time

DateFormat String N Y N The date format string

TimeFormat String N Y N The time format string

DateTimeFormat String N Y N The datetime format string

SeparatorSymbol String N Y N , The character to use as a

number separator symbol

CurrencySymbol String N Y N $ The character to use to

represent currencty

DecimalSymbol String N Y N . The character to use as a

decimal symbol

ShowGrid Boolean N Y N When true, the default Report

Viewer option to show grid will

be true.

ShowCrossTabReports Boolean N Y N When true, the crosstab

designer is accessible

ShowExpressReports Boolean N Y N When true, the express report

designer is accessible

ShowExpressReportsGrouping Boolean N Y N When true, express report

grouping is accessible

ShowExpressReportsFormulas Boolean N Y N When true, express report

formulas are accessible

ShowExpressReportsStyling Boolean N Y N When true, express report

styling is accessible

ShowExpressReportsThemes Boolean N Y N When true, express report

themes are accessible

ShowStandardReports Boolean N Y N When true, the standard report

designer is accessible

ShowScheduleReports Boolean N Y N When true, scheduling reports is

accessible

ShowScheduleReportsManager Boolean N Y N When true, the schedule report

manager is accessible

Exago Technical Guide

279 Exago Inc.

ShowScheduleReportsEmail Boolean N Y N When true, emailing reports is

accessible

Parameters

ParameterListItemResource

Name Type A W R Default Description

Id String N N - - The ID for this parameter

ParameterResource

Name Type A W R Default Description

IsHidden Boolean Y Y N true Whether this parameter is hidden

to the user

Id String N C C - The ID for this parameter

DataType String N Y N String The data type of the parameter,

one of:

 String

 Date

 Integer

 Decimal

Value String N Y N “” The value of the parameter

PromptText String N Y N “” The text to prompt the user for the

value.

Entities

EntityListItemResource

Name Type A W R Default Description

Id String N N - - The ID for this entity

Name String N N - - The name of this entity

EntityResource

Name Type A W R Default Description

Id String N C C - The ID for this entity

Name String N Y Y - The name of this entity

DataSourceId Integer Y Y Y - The DataSource Resource ID this

entity gets its data from

DataType String Y Y N Table The type of data this entity is, one

of:

 Assembly

 File

Exago Technical Guide

280 Exago Inc.

 Function

 Procedure

 SqlStmt

 Table

 View

 WebSvc

DataName String Y Y Y - The name of the data object for

this entity

CategoryName String Y Y N - The category group of the entity.

Schema String Y Y N - The database schema for the

entity.

KeyColumns String[] Y Y N - List of key columns for the entity

TenantColumns TenantResource[] Y Y N - List of tenant columns for the

entity.

SqlStatement String Y Y N - Entity SQL statement.

TenantResource

Name Type A W R Default Description

Column String Y Y N - Tenant column name

Parameter String Y Y Y - Parameter associated with this

tenant column.

EntityFieldListItemResource

Name Type A W R Default Description

Id String N N - - The ID for this entity field

Name String N N - - The name of this entity field

EntityFieldResource

Name Type A W R Default Description

Id String N N - - The ID for this entity field

Name String N Y Y - The name of this entity field

Type String N Y N <actual

data

type>

The type of data this entity field is,

one of:

 String

 Date

 DateTime

 Time

 Int

 Decimal

 Float

 Bit

 Guid

Exago Technical Guide

281 Exago Inc.

 Image

IsFilterable Boolean N Y N true When true, this field is filterable

IsVisible Boolean Y Y N true When true, this field is visible to

users

Functions

FunctionListItemResource

Name Type A W R Default Description

Id String N N - - The ID for this function

FunctionResource

Name Type A W R Default Description

Id String N C C - The ID for this function

Description String N Y N The description for the function

(only writeable if custom function)

MinArgs Integer N Y N 1 The minimum number of

arguments for this function (only

writeable if custom function)

MaxArgs Integer N Y N 1 The maximum number of

arguments for this function (only

writeable if custom function)

IsCustom Boolean Y N - - Whether this function is a custom

function or a built-in function

Language String Y Y N CSharp The language the custom function

is written in, one of:

 CSharp

 JavaScript

 VisualBasic

Namespaces Array of String Y Y N The namespaces to include for

this function

References Array of String Y Y N The references to include for this

function

ProgramCode String Y Y N The program code for this

function

Server Events

ServerEventListItemResource

Name Type A W R Default Description

Exago Technical Guide

282 Exago Inc.

Id String N N - - The ID for this server event

Name String N N - - The name for this server event

ServerEventResource

Name Type A W R Default Description

Id String N C C - The ID for this server event

Name String N Y N The name for this server event

Code String Y Y N The program code for this function

Language String Y Y N CSharp The language the custom function

is written in, one of:

 CSharp

 JavaScript

 VisualBasic

Namespaces Array of String Y Y N The namespaces to include for this

function

References Array of String Y Y N The references to include for this

function

Folders

FolderResource

Name Type A W R Default Description

Id String Y Y Y - The ID for this folder

Name String Y Y Y The name for this folder

Exists String Y Y Y The status for this folder

FolderRenameResource

Name Type A W R Default Description

BasePath String Y Y Y - The path for this folder

OldName String Y Y Y The old name for this folder

NewName String Y Y Y The new name for this folder

Reports

ReportFoldersResource

Name Type A W R Description

name String Y N Y The name of the folder or report

leaf_flag Boolean Y N Y True: Report; False: Folder

readonly_flag Boolean Y N Y Read-only status for current role

type String Y N N Type of report, one of:

 standard

Exago Technical Guide

283 Exago Inc.

 express

 chained

 dashboard

 crosstab

Null if it is a folder.

user String Y N N The current role.

entity ReportFoldersResource[] Y N N List of reports and sub-folders.

SortsResource

Name Type A W R Default Description

SortText String Y Y Y Full text of the sort

EntityName String Y Y Y Data object to sort on

ColumnName String Y Y Y Column to sort on

AscendingFlag Boolean Y Y N True True: Ascending; False:

Descending

FiltersResource

Name Type A W R Default Description

EntityName String Y Y Y Data object to filter on

ColumnName String Y Y Y Column to filter on

DataType Data Type string Y Y N string The data type, one of:

 string

 date

 integer

 bit

 numeric

 float

 decimal

 guid

 datetime

OperatorType Operator Type enum Y Y N 0 An enum representing operator

type, one of:

 0: EqualTo

 1: LessThan

 2: LessThanOrEqualTo

 3: GreaterThan

 4: GreaterThanOrEqualTo

 5: NotEqualTo

 6: StartsWith

 7: NotStartsWith

 8: EndsWith

Exago Technical Guide

284 Exago Inc.

 9: NotEndsWith

 10: Contains

 11: NotContains

 12: Between

 13: NotBetween

 14: OneOf

 15: NotOneOf

Values String[] Y Y Y Array of values to filter with

Return Codes

For any request the below return codes are defined. Each resource may define more return codes

as well as better define the return codes provided here.

Status Code Description

200 The request was completed successfully. The document in the entire-body, if

any, is a representation of some resource.

201 The request was completed successfully. A new resource has been created at

the URL specified in the Location header of the response.

204 The request was completed successfully. There is no content in the body.

400 The request was bad on the client side. The document in the entire-body, if

any, is error data describing the problem.

401 The request wasn't authorized to access the resource. The document in the

entire body, if any, is error data describing the problem.

404 The requested resource was not found. The document in the entire body, if

any, is error data describing the problem.

409 The request caused a conflict amongst two resources. The document in the

entire body, if any, is error data describing the problem.

500 There was a problem on the server side. The document in the entire-body, if

any, is error data describing the problem.

Error Data

All codes 4xx and 5xx will have a log entry in the WebReports log. When possible, the document

body returned with the status takes the following representation:

Name Type Description

Code String A string token indicating the reason for the error, for

programmatic consumption.

Message String A more verbose text describing the error, for developer

consumption.

UserMessageId String The language id to display to the user as the error, for user

Exago Technical Guide

285 Exago Inc.

consumption.

StackTrace String The server-side stack trace if one exists

Error Codes

Code Description

Unknown Unknown error

UnAuthorized UnAuthorized access was attempted

ResourceNotFound Resrouce was not found at the specified URL

ResourceConflict Resource conflicts with an already existing resource

MissingResource Request must contain a resource

MissingResourceId Request must contain a resource with a user supplied ID to identify

location of resource

InvalidResourceId Request must contain a resource with a valid ID to identify location of

resource

InvalidState Request contains a resource in an invalid state

Exago Technical Guide

286 Exago Inc.

Troubleshooting

The following chapter details techniques for troubleshooting issues that may arise when using

Exago.

Exago Technical Guide

287 Exago Inc.

See Full Error Details

When an error occurs in Exago, a generic error message is displayed.

This generic message is meant to prevent end users from seeing the full stack trace of the error.

There are two ways to see detailed error messages.

1. If you are accessing Exago directly in a browser:

a. Append '?showerrordetail=true' to the url. Ex.

…/Exagohome.aspx?showerrordetail=true

b. Refresh the page and recreate the error.

2. If you are accessing Exago through the Api:

a. Using the .Net Api call the method GetUrlParamString and set showErrorDetail to

True.

-OR-

Using the Web Service Api call the method GetUrlParamString2 and set

showErrorDetail to True.

b. Enter Exago through the Api and recreate the error.

NOTE. The status code on the generic error message corresponds to standard html error

codes. For example if the status code is 408 it means there was a request timeout. For

status code 200 the html completed successfully and the error lies elsewhere.

If you would like more details after seeing the full error message please see the section Read the

Log File.

Exago Technical Guide

288 Exago Inc.

Read the Log File

Exago keeps a text log of when certain tasks are performed. For example each time a page or

report is loaded, each time an error occurs or when various phases of execution happen.

To access the Log file:

1. Set “Write Log File” to True in Other Settings of the Administration Console.

2. Recreate the error you are investigating.

3. Navigate to the folder specified in the Temp Path of Main Settings. If this is blank go to

<webapp_dir>/Temp.

4. Open the file WebReportsLog.txt. Scroll to the bottom of the log for the most recent

activity.

NOTE. Occasionally IIS may lock this file and prevent the log from being written. To correct

this reset, IIS, delete the file WebReportsLog.txt and repeat steps 2-4.

NOTE. If 'Enable Remote Report Execution' is set to True in the Scheduler Settings the report

execution will be recorded in the Scheduler Log.

Scheduler Log

Similar to the main application the Exago Scheduler Service maintains a log file. Considering the

Scheduler can reside on a different machine than the main application the log file is written where

the Scheduler is installed.

To access the Scheduler Log file:

 Set <logging> to True in the file <scheduler_dir>\Config\ ExagoScheduler.xml

 Rerun the scheduled report you are investigating.

 Open the file <scheduler_dir>\ExagoScheduler.log. Scroll to the bottom of the log for the

most recent activity.

Exago Technical Guide

289 Exago Inc.

Web Service Log

Similar to the main application Exago Web Service maintains a log file. Considering the Web

Service can reside on a different machine than the main application the log file is written where

the Web Service is installed.

To access the Api Log file:

 Set <writelog> to True in the file <websvc_dir>\Config\ WebReportsApi.xml

 Rerun the project that makes the Api calls you are investigating.

 Open the file <websvc_dir>\Config\ WebReportsApiLog.txt. Scroll to the bottom of the log

for the most recent activity.

Exago Technical Guide

290 Exago Inc.

Check the Version, Connections & Permissions

This section will detail a few useful things to check when troubleshooting an issue within Exago.

Verifying Folder Permissions

A common issue when installing or updating Exago is to not set read/write permissions on various

folders the application uses. For these folders the user accessing them via the IIS app pool must

have read write permissions. For the default app pool this is the IIS user ('iis_iusrs' for Windows 7,

Vista & 2008, 'aspnet' for Windows XP or Server 2003). The folders that require read/write

permissions are listed below.

 <webapp_dir>/Config – this folder contains the configuration settings loaded and modified

by the Admin Console.

 <webapp_dir>/Temp – this folder is used to store some temporary files.

 The folder specified in the Report Path of the Main Settings.

 The folder specified in the Temp Path of the Main Settings.

Verifying Administration Settings

Some settings in the Administration Console are used to connect to other programs such as

databases, Web Services, .Net Assemblies or the External Interface module. Each of these items

will have a green check button () to verify they are connecting correctly.

The following settings can be checked:

Exago Technical Guide

291 Exago Inc.

 The Data Source(s) being utilized by the report you are investigating.

 The 'Schedule Remoting Host' and 'Remote Execution Remoting Host' in Scheduler

Settings.

 The 'External Interface' in Other Settings.

Verifying Versions

When updating Exago occasionally issues arise because the Scheduler Service or Web Service Api

have not also been updated. For the Scheduler and Web Service Api to function properly they

must be running the same version and build as the Exago application.

NOTE. When using the .Net Api you will need to copy the dlls from the updated Exago

application to the bin directory of your host application.

To check the version of Exago:

 Navigate to the home page (default exaghome.aspx).

 Press Ctrl + Shift + V

Exago Technical Guide

292 Exago Inc.

To check the version of the Scheduler:

 Locate the file <scheduler_dir>/eWebReportsScheduler.exe.

 Right click on this file and select 'Properties'

 Navigate to the 'Details' tab.

To check the version of the Web Service Api:

 Locate the file <websvc_dir>/bin/ WebReportsApi.dll.

 Right click on this file and select 'Properties'

 Navigate to the 'Details' tab.

Exago Technical Guide

293 Exago Inc.

Submitting a Debug Package

If the “Debug Password” is set in Other Settings of the Administration Console, a client will have

the ability to submit Debug Packages automatically to Exago, Inc. via the internet. The client will

need to select the report that they are having a problem with and press Ctrl+Shift+X. This

keystroke will bring up the Debug Package submission window.

NOTE. The Debug Package consists of the same files that are created via “Enable Debugging,”

which is also located in Other Settings of the Administration Console. These files are

encrypted, and then sent to a Web Service that resides at the Exago Support site.

To send a Debug Package to Exago Support:

1. From the Main Menu, select the problematic report.

2. Press Ctrl+Shift+X.

3. In the Submit Debug Package window, enter the debug extraction password (this is set in

Other Settings), preexisting Ticket URL or ID, and contact email address.

4. Click the 'Ok' button.

5. Fill in any information for Parameters or Filters if they are set for the report.

6. A success/failure message will display when the process finishes.

If submitting a debug package fails see Manually Creating a Debug Package.

Manually Creating a Debug Package

If submitting a debug package fails then you can set 'Enable Debugging' to True in the Other

Settings of Administration Console to manually create the files needed for debugging. These files

can be attached to a support ticket.

http://support.exagoinc.com/hc/en-us/requests/new

Exago Technical Guide

294 Exago Inc.

NOTE. Before creating a Debug Package verify that 'Enable Remote Report Execution' in

Scheduler Settings is set to False.

To manually create a Debug Package:

1. Create the folder Debug where Exago is installed. Make sure this folder has the same

read/write permissions as the Report and Temp Folders.

2. Set 'Enable Debugging' in Other Settings to True.

3. Execute the problematic report. A copy of the report, the configuration settings and a data set

will be created in '.\Debug'.

4. Zip these three files together and attach them to a support ticket.

http://support.exagoinc.com/hc/en-us/requests/new

Exago Technical Guide

295 Exago Inc.

Exago, Inc.

Two Enterprise Drive

Shelton, CT 06484 USA

203.225.0876

http://www.exagoinc.com

http://www.exagoinc.com/

	Table of Contents
	Technical Overview
	Architecture

	Installation
	System Requirements
	Web Application Installation
	Installing the Web Application
	Configuring Exago

	Web Service Installation
	Installing the Web Services API
	Configuring Web Services API

	Scheduler Service Installation
	Installing the Scheduler Service
	Configuring Scheduler Services

	Installing Exago on Linux
	Silent Installation with Parameters
	Guided Installation

	Installation Manifest
	Installing Optional Features
	Legacy Maps (GeoCharts)
	Google Maps
	Application Themes

	Administration Console
	About
	Important Security Notes
	Creating Additional Configuration Files

	Accessing the Administration Console
	Navigation
	Main Menu
	Tabs
	Supported Browsers

	Data
	Data Sources
	Data Source Drivers
	Web Services and .NET Assemblies
	Excel and XML Files
	OLAP and MDX Queries
	ODBC Drivers

	Parameters
	Data Objects
	Stored Procedures
	Table Value Functions
	Custom SQL Objects
	Data Object Macros

	Column Metadata
	Custom Columns
	Retrieving Data Object Schemas
	Data Object Ids
	Adding Multiple Data Objects with the Same Name
	Avoiding Issues from Changes to Object Names
	Calling a Single Web Service/.Net Assembly/Stored Procedure

	Reading Images from a Database

	Joins
	Modifying Joins
	Note About Cross Source Joins

	Automatic Database Discovery

	General
	Main Settings
	Culture Settings
	Features/UI Settings
	Available Report Types
	ExpressView Settings
	Express Report Designer Settings
	Standard Report Designer Settings
	Dashboard Report Designer Settings
	Common Settings

	Programmable Object Settings
	Filter Settings
	Database Settings
	Type-Specific Database Settings

	Scheduler Settings
	User Settings
	Other
	Hidden Flags

	Roles
	About Roles
	Creating Roles
	Main Settings
	General Settings
	Folder Access
	Object Access
	Filters Access

	Extensions
	Functions
	Creating Functions
	Exago Session Info
	Calling Exago Functions
	Example

	Filter Functions
	Creating Filter Functions
	Example

	Server Events
	Event Handlers
	Custom Code
	.Net Assemblies
	Setting Event Handlers on Specific Reports
	Displaying User Messages from Server Events
	List of Events
	OnDataCombined
	OnReportExecuteStart
	OnReportExecuteEnd
	OnWebServiceExecuteEnd
	OnExecuteSqlStatementConstructed
	OnFilterSqlStatmentConstructed
	OnOkFiltersDialog
	OnOkParametersDialog
	OnScheduledReportExecuteSuccess
	OnConfigLoadStart
	OnConfigLoadEnd
	OnRenameFolderStart
	OnRenameFolderEnd
	OnDataFieldsRetrieved
	OnGetUserPreferences
	OnSetUserPreferences
	OnLoadReportParameters
	OnExceptionThrown
	OnExportCsvCell
	OnParameterSqlStatementConstructed
	OnAfterLoadReportsList

	Action Events
	Creating Event Handlers
	Adding Local Events to a Report Item
	Writing Action Events
	Simple Example – Chart Formatting
	Complex Example – Save Handling

	Global Events
	List of Global Events

	List of ClientInfo Elements
	Properties
	Methods

	List of UI Elements

	Custom Options
	Creating Options
	Setting Options
	Accessing Options

	Integration
	Styling
	Exago Control Properties
	Changing CSS
	Changing Icon Images
	Hovering Images
	Image Ids

	Styling the Administration Console

	Multi-Language Support
	Translating Exago
	Modifying Select Language Elements
	Text of Prompting Filters and Parameters on Dashboards

	Customizing Getting Started Content
	Creating Additional Custom Tabs
	Available JavaScript Functions

	Themes: Charts, Crosstabs, Express Reports & Maps
	Chart Themes
	Crosstab Themes
	Express Report Themes
	Map Themes

	Using Exago within a WinForm
	Cloud Environment Integration
	Cloud Support
	Configuration File Storage
	Report Storage
	Microsoft Azure
	Amazon S3

	Temporary Files Storage

	.Net Assembly/Web Service Cloud Support
	Example

	Multi-Tenant Environment Integration
	Column Based Tenancy
	Schema Based Tenancy
	Database Based Tenancy
	Custom SQL Based Tenancy

	Manual Application Installation
	Exago and Exago Web Service Api Installer Integration
	Summary
	Directory Structure
	File Installation
	IIS Configuration
	IIS Version 5.0-6.0
	IIS Version 7+

	Exago Scheduler Installer Integration
	Summary
	File Installation
	Directory Security Settings
	Windows Service Creation

	Optional Setup Information
	Creating a Registry
	Values in a Registry
	Example of Registry

	Extensibility
	Load Balancing Execution
	Multiple Data Models
	Example

	External Interface
	Report Execution Start Event
	User Preference Management
	Handling Time Zones
	Email List for Report Scheduling
	Custom Scheduler Recipient Window
	Scheduler Repository Notification

	Custom Scheduler Recipient Window
	Custom Filter Execution Window
	Available JavaScript Functions
	Example Custom Filter Execution Control
	Example Custom Filter Execution WebPage

	Saving Scheduled Reports to External Repository
	Custom Context Sensitive Help
	Report Templates Setup
	PDF Templates
	Check Boxes in PDF Templates.

	RTF Templates
	Dynamic content with RTF Templates

	Excel Templates
	Referencing Data in Excel Templates

	Report and Folder Storage/Management
	List of Methods
	Accessing SessionInfo in Folder Management

	Application Logging
	Logging Defaults
	Custom Logging

	Responsive Dashboards
	Scheduler Queue

	Exago API
	.NET API
	Quick List of Name Spaces and Classes
	WebReports.Api
	Api Class

	WebReports.Api.Data
	DataSource Class
	DataSourceCollection Class

	WebReports.Api.Common
	ReportObjectFactory Class
	ReportObject Class

	WebReports.Api.Composite.Dashboards
	DashboardReport Class
	ReportItem Class

	WebReports.Api.Composite.Chained
	ChainedReport Class
	ReportItem Class

	WebReports.Api.Reports
	Filter Class
	Report Class
	ReportFilterCollection Class
	ReportSortCollection Class
	Sort Class

	WebReports.Api.Roles
	DataObject Class
	DataObjectCollection Class
	DataObjectRow Class
	DataObjectRowCollection Class
	Folder Class
	FolderCollection Class
	General Class
	Parameter Class
	ParameterCollection Class
	Role Class
	RoleCollection Class
	Security Class

	WebReports.Api.Scheduler
	ReportScheduler Class
	SchedulerEmailInfo Class

	Other Notes
	Using MySQL through the .NET Api

	Examples

	SOAP Web Service API
	Quick List of Web Service Methods
	Full Description of Web Service Methods
	Main Methods
	Data Methods
	Folder Methods
	Parameter Methods
	ReportObject Methods
	Dashboard Methods
	Report Methods
	Role Methods
	Scheduler Methods
	Examples C#
	Examples PHP

	REST Web Service API
	Authorization
	List of Resources
	Sessions
	DataSources
	Joins
	Roles
	Settings
	Parameters
	Entities
	Functions
	ServerEvents
	Folders
	Reports

	Data Definitions
	Return Codes
	Error Data
	Error Codes

	Troubleshooting
	See Full Error Details
	Read the Log File
	Scheduler Log
	Web Service Log

	Check the Version, Connections & Permissions
	Verifying Folder Permissions
	Verifying Administration Settings
	Verifying Versions

	Submitting a Debug Package
	Manually Creating a Debug Package

