00O
o

Technical Guide
Version v2014.1

© 2014 Exago Inc. All rights reserved.

Exago is a registered trademark of Exago, Inc. Windows is a registered trademark of
Microsoft Corporation in the United States and other countries. All other company and
product names mentioned may be trademarks of the respective companies with which
they are associated.

Exago Inc. makes a sincere effort to ensure the accuracy of the material. The content of
this manual is furnished for informational use only, is subject to change without notice,
and should not be construed as a commitment by Exago Inc. Exago Inc. assumes no
responsibility or liability for any errors or inaccuracies that may appear in this document.

Except as permitted by licensing agreement, no part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
without the prior written permission of Exago Inc.

Exago Inc. strives to provide our customers with high-quality printed and online
documentation. If you have any comments or suggestions on how we can improve our
documentation for your use, please contact us at: info@Exagoinc.com

Exago Technical Guide exago

Exago, Inc.
Two Enterprise Drive
Shelton, CT 06484 USA

Phone. 203.225.0876
FaxX. .. o 203.926.9505
E-mail sales@Exagoinc.com
Web. http://www.Exagoinc.com

Phone. 845.481.5221
=) 845.255.0209
E-mail. support@Exagoinc.com
Web................ http://www.Exagosupport.com
Blog..... http://ad-hoc-reporting-blog.Exagoinc.com

2 Exago Inc.

http://www.exagoinc.com/
http://www.exagoinc.com/

Exago Technical Guide EXago

Table of Contents

Table of ContentsS.....ccvicrririermirramisrsnssanssesssnssanssnssanssanssnssnnsnnnnas 3

Technical OVervVieWcccuiiiciiiitiisnssnssnssssssnssssssnssssssnnsssssnnssnnnns 8

FAN el 1< | = 8
Installationccveiriemmrnnmsssnmssnnnssansssansssnnsssnnsssnnssnnnssnnnssnnssnnnsnnnnnnns 10
SYStEM REQUINEMENTS 1ttt a e s e s s s sare s s s rann e annneans 10
Web Application Installation........cooiiiiiiii e 11
Installing the Web Application......ccooviiiiiiiii e 11
(@0e]] o T8 '] o [== Lo o 1PN 13
Web Service Installationc.oooiiiiiiii 14
Installing the Web Services APL......coiiiiiii e e 14
Configuring Web Services APL ... naeees 15
Scheduler Service Installationccviiiiiiii i 16
Installing the Scheduler ServiCe ... e 16
Configuring Scheduler ServiCesS......oviiiiii e 17
Installation Manifest ... 20
Administration Console.......ccuiiiiiiiissiisscsnrss s s ssrse s s srs s sarsasnnas 21
AN T 1 U PP 21
Important Security NOte: ...ooiiiiii 21
Creating Additional Configuration FilesS.......c.cooiiiiiiiiiiiiii e 21
Accessing the Administration Consoleccciiiiiiiiiiiii 22
[NV E= 177 = o T T o 22
3 =TT T =1 16 P 23
L= 1 P 23
SUPPOITEA BrOWSEIS . .veiieeieeiteie e e e ae s e e e e e a e e neaneaneaneaneaneanenneanens 24
)= o= 24
[1Y it= Y 0 1 | o 25
Data SOUICE DIiVEIS ..t e s aes 26
Web Services and .NET Assembliescceviiiiiiiiiiiiiiciicii e 27
EXCel @nd XML FileS...uuiiiiiiiiiii i aae e s 28

oY 1= 1 L= = 30
Data ObJeCES e 31

1) o /=T I o Tt =T [=T 33
Table Value FUNCHIONS ... e e e 34
Custom SQL ODJECES ..uviiiii e 34
Column Metadata....oooe i e 35
Retrieving Data Object SChemas.......c.coviiiiiiiiiii e 36
Data ObjJect IAdS vt 37
Reading Images from a Databaseccoviiiiiiiiii e 39

8o | 39
Ko Te N1 V4T o Lo N Lo Y| = PP 41
Note About Cross SOUICE JOINS ...uviiriiiiiiiie i aae s 41
=T =T =Y 41
Main SETEINGS ..ot e 41
CUItUre SettiNgS .t e 43
Features/UL Settings ...ciiiiii ittt a e aaaeaas 44
Available RePOI Ty PES. ittt ae s 45
Express Report Designer Settingsccvvvviiiiiiiiiiiiii e 45

3 Exago Inc.

Exago Technical Guide EXago

Standard Report Designer Settingsccviiiiiiiiiiiiii i 46
Dashboard Report Designer Settingsccovviiiiiiiiiiiiieeans 47
CommoON SEttiNgS .ouviiii i 47
Programmable Object Settings.....ccovviiiiii e 48
Filter Setting S .o e 49
Database SettingS.....cciiiiiiii e 50
Type-Specific Database Settingsccvviiiiiiiii 51
Scheduler Settings ...vviii i e 52
USEr SetEINGS. ettt 54
(@] 1= PP 55
0 < 57
ADOUL ROIES ..t 57
Creating ROIES ... 58
Main SettiNGS 1ot e 58
General SettiNgsS .ouviii i e 58
(0] o =T oy Yol ol 1= PP 61
(@] o) [T Aol < L] P 61
ROW LEVEI ACCESS 1.uuiiitiiittiiteiiteiitestsasesasesaassnss st sanesanssanssansanesaneaaneans 62
LU T [0 1 62
7AYo Yo 1Ll a1 U oot (o] I PP 63
L0 T [0 63
EXQg0 SESSION INfO. .ttt i 65
EX AP e 66
SV EVENES i e 67
Event Handlers ... e 67

O 1= o] o ¢ o T [T PP 69
Nt ASSEMDIES .t e 69
Setting Event Handlers on Specific Reportscovvvviiiiiiiiiiiiiiiinens 70
QUICK List Of EVENES vttt e e ae 72
Full Description Of EVENES ... aeeeens 73
OnDataCombined......coiuiiiii s 73
ONREPOEXECULESTArt .. ve i e 74
ONREPOMEXECULEENG.. .. e e aeees 75
OnWebServiceEXeCUteENd......ovvviiiiiiii e 75
OnExecuteSqglStatementConstructedccoviiiiiiiiii e 76
OnFilterSqglStatmentConstructedovvviiiiiii e 76

(0] 00 1 L= =] 1 T=1 o T« [P 77
ONnOkParametersDialog....cuvvieiiiiii i i 78
OnScheduledRepOrtEXECULESUCCESS ..viiviiiriiiiii i i aaeas 79
ONConfigloadStart. ... 79
ONCoNnfIgLOAdENGviiii i e 80
OnRenameFolderStartoovviiii i 80
OnRenameFolderENdcoviiiii i s 81
(@18 =] w0 8 0 T®] 0 0] o - 81
ADOUL OPtiON cuti ittt 82
Creating OpPtioNS vt e 82
SettiNg OP iONS et e 83
ACCESSING OPLIONS vt e 84
Integration .iicciiiciiicirsms s sssssssassssassssansssnsssansssannssanssnnnsnnnnnnns 85

4 Exago Inc.

Exago Technical Guide EXago

A T 1 U PP 85
1] 07/ 11 T N 86
Styling Exago’ SUrroUNdiNgS......ooviieiiiiiiiiieiii e e e naeees 86
Changing €SS ... i i e e 89
Changing IcoNn IMages...ccuiiiiii i i e e aaneeas 92
Styling the Administration Console.........cooviiiiiiiii e 93
N TU] R =Y oo [UT=Te LIRS U] oo] o ol PP 93
Translating EXa@gQO «..uvviiiiiiii i i e 95
Modifying Select Language Elements........ccooiiiiiiiiiiiiiiieneens 95
Customizing Getting Started Content.......cccoviiiiiiii 95
Creating Additional Custom Tabs.....ccvviiiiiiii e 96
Available JavaScript FUNCLIONS ...viiiiiii e e 97
Themes: Charts, Crosstabs, Express Reports & Mapscccovvviiviniiniinnnnnns 99
(O g 1= Y o I =T 0 1 1= 99
Crosstab Themes ..o e 100
EXpress Report TREMIES ... e e 100
1 F= T o T I = 0 ¢ L= P 101
Using Exago within @ WinForm ..o e 101
Cloud Environment Integration.......ccooiiiiiiiii e 102
PAV.AU1 g <3 @1 (o8 [e IS U] o Yo] o sl 102
.Net Assembly/Web Service Cloud Support.....ccccoiiiiiiiiiiiiiiiii e 102
EXaMIDIE oo 103
Multi-Tenant Environment Integrationcooviiiiiiiii s 104
Column Based TENANCY .vuviiiiiiiiit i sieeae e saaesasssesanesaneannsaneeaness 104
Schema Based TENANCY ..uvviiiiiiieiiteiieieeatiasesanssesanesanerassrnrsanesaneans 105
Database Based TeNanCY.....ouuieiieiiiii i e e e e anennaeens 105
Custom SQL Based TENANCY ..uouvieiiiieiiii e e e e e anenneanenens 106
Manual Application Installation........ccoviiiiiiiii 107
Exago and Exago Web Service Api Installer Integration............cccceevenntns 107
A1 U [0 010> /75 107
DireCtory StrUCTUNE ..o e s aaes 108
File INStallationoeiiriii i e 108
IIS ConfiguIrationeie e aneaneeas 108
Exago Scheduler Installer Integrationcooovviiiiiiiiiiiii e 112
118 1 21 = /7 112
File InStallation....ooe i e 112
Directory Security Settingsccoviviiiii 113
Windows Service Creationuoiviiiiii i e aaes 113
Optional Setup Information ..o 114
Creating @ REGISEIY ..uoiiiiiii i e e 115
Values iN @ ReGISIIY ..t e 115
Example Of REGISTIY .oviiiiiii i e 115
Extensibility.....cciviciiiiiiiinisns s s s s srs s r s n s 117
Load Balancing EXECULIONveeiiiiiie e e e e e e e e e nnennennens 117
Multiple Data MOdelS.ciiriii i e 117
= 0] 0] = PP 118
EXternal INterface ..o.ooviiei i 120
Report Execution Start Event.......ooiiiiiiiii e 120
User Preference Management ... e 121

5 Exago Inc.

Exago Technical Guide EXago

Handling Time ZONeS ...ttt e et re e a e aaneaas 121
Email List for Report Scheduling.......c.cooviiiiiiiii s 122
Custom Scheduler Recipient WindOWccoviiiiiiiiiiiii i 123
Scheduler Repository Notificationocvviiiiiiiiiiii e 123
Custom Scheduler Recipient WindOW.......ccviiiiiiiiiiiii i cce e neee s 123
Custom Filter EXecUtion WINAOW.....viiueiiieiiie i i seeaneenneenaeenes 124
Available JavaScript FUNCLIONS ...ocviiii e 125
Example Custom Filter Execution Controlcccoviiiiiiiiiiiiiiic e 127
Example Custom Filter Execution WebPage...........cooviiiiiiiiiiiins 127
Saving Scheduled Reports to External Repositoryccovvviiiiiiiiiii i, 128
Custom Context Sensitive Help .o e e 129
Report Templates SetuUp «ovvviiiiii i e 130
POF Templates ... e 130
Check Boxes in PDF Templates. ...coiiiiiiiiii i enee 131

I =T 0 g] F= L= PP 131
Dynamic content with RTF Templatescooviiiiiiieens 131
EXCel TemPlates o e 132
Referencing Data in Excel Templatesccovviiiiiiiiiiiiiiiiii e 132
Report and Folder Storage/Management.......ccooiviiiiiiiiiiiiii i 133
Accessing SessionInfo in Folder Managementocoiviiiiiiiiiiiiiieennnnes 138

) = T ¢ Lo T) o e 139
AT 1 U PP 139
AN ET AP e e 139
Quick List of Name Spaces and Classes.....ccvviviiiiiiiiiiiiiiiiiiiieiinennens 139
L]0 U] oo =0 AN o] P 141
AN] O = 1P 141
WebRePOrtS. Api.Data. ... 143
D= 1= I o 181 ol S O = 1] P 143
DataSourceCollection Classooviieiieiiii i aaennenaens 143

(VLS 130T o] o fT72Y o I @] o 0 2 41 o PP 144
ReportObjectFactory Class ...viviiiiiiiii i ae s 144

(U] oTo] oo @]} [=Tot fl 1 F= 1= P 145
WebReports.Api.Composite.Dashboardsccooveiiiiiiiiiiiiiiiiiciieeaea 146
DashboardReport Class.oiuiieiieiiiii i raeaneaens 146

[2XE] oTo] ol £ =] o ¢ IO 1= 1 PP 146

(LS 120 o To] w7 2Y o T aU=T o Lo o =P 147

T =T ol O F= 1= P 147
2] 0o o Al O 1= 11 PP 147
ReportFilterCollection Classcvviiiiiiiii i e e 148
ReportSortCollection Classoovvieiieiiii e aenneaens 148

1S o] o A 1 1= 1= PP 149
WeEbREPOIS. APILROIES ...t e 150
D= =[O o) =T ot fl 1 1= 1P 150
DataObjectCollection Class......vieiieiiii i naeaneanennens 150
DataObjJeCtROW Classuieiiiieiiei i e aeaeas 150
DataObjectRowCollection ClasS......viviiiiiiiiiii i 151
0] o [T ol O = 1= PP 151
FolderColleCtion Class ... uviiiiiiiii i e ae e 151
GENErAl ClasS c.uiiitiiiti ittt 152

6 Exago Inc.

Exago Technical Guide EXago

ParamEter Class ..uiuiiiiiii i 152
ParameterCollection Classcviiiiiiiiii i e e 153
ROIE ClaSS 1ttt it e e 153
ROIECOIIECHION Class .ot e eanes 153
Y=ol B [0V 1 = 1] PP 154
WebReports.Api.Scheduler ... 155
ReportScheduler Class.....ovviiiiiiii e 155
SchedulerEmailINfo Class....oieiiiiiiii i i naeas 163

(@ g 1= gl Lo =T O 163
Using MySQL through the .NET Api voviiiiiiii i i 163

EX MMl o e 164
B D SIVICE AP . it e 167
Quick List of Web Service Methodsccvviiiiiiiiiiii i 167
Full Description of Web Service Methodsccoiiiiiiiiic e 168
Main Methodsviii i e 168
Data Methods ..o s 171
Folder Methods ...couuiiii i e e e e e 172
Parameter Methods ..o e 173
ReportObject Methodsvineieii e 174
Dashboard MethodsS.......ouviiiiii i e e 174
ReEPO MethoOds v e e 175
ROIE MEEhOAS. .. i e e 177
Scheduler MethOdS e a e aaneaas 180
=]] 0] (<1 O PP 188
EXamMPIES PHP .. 190
Trouble Shootingccuviemriiemrrnmrsansssansssassssnsssansssansssnnsssnnssnnnsnnnnss 192
See FUll Error Details .ot 192
Read the LOg File. ... e e e e 192
1Yol g1 11] 1= ol 1o T P 193
AL o ST =T Y Tl 1K Y PP 193
Check the Version, Connections & PermissSionsccvviiiiiiiiiiiiieiiieiiieennns 194
Verifying Folder PermiSSiONSiiveiiiiiii i naerae s 194
Verifying Administration Settingscoooiiiiiii i 194
Verifying VEISIONSeiiiiii e ae e e nnennenes 195
Submitting a Debug Packagecooviiiiiiiii 196
Manually Creating a Debug Packageccovieiiiiiiiiiii e neeneeeens 197

7 Exago Inc.

Exago Technical Guide EXag0o

Technical Overview

Exago is an ASP .NET web application that utilizes C#, JavaScript and AJAX. Exago
consists of four main components.

1. .NET API: Controls all server-side processing and the user interface. The .NET API
can also be called by your host application to integrate Exago. For more information
see .NET API and Integration.

2. User Interface: ASP.NET pages that are converted to HTML at runtime. To access
the UI see Accessing the Administration Console.

3. Web Service API: Gives non .NET host applications access for integration
purposes. For more information see Web Services API and Integration.

4. Report Scheduler Service: Windows service used that handles processing
scheduled reports. The Scheduler can also be used for load balancing. For more
information see Scheduler Installation and Load Balancing Execution.

Architecture

The diagram below details the architecture of Exago:

Host Application o Output to Browser or Mobile Device
Host application calls APlto set user
eWebReparts Ul ol paramf:”-" e E’“thzrﬁf =y HTML PDF Excel CSV RTF Mobile
URL container or new browser window eSS AN S NED £ e <> F EF 7
{ i or NET assembly can be used. Q Q @ ﬁ Q =]
| -
Extensibility eWebReports —] | Report
’ = Templates
Host controlled settings allow Report Scheduler Web Servi User Interf. P
eWebReports to fit seamlessly Windows Service || & A‘:VICES :sr bnpe ace
into the host application Remoting Objects || €0 Fages XML Files
environment. % |

—s | e = ;
| Custom Data Sources | l . ((U}\
- Web Services J J
| Custom Functions | or NET ,
NET APL .
.| Assemblies

| External Interface | (Provides all aspects of eWebReports processing and support far Ul)

High performance ADO.NET drivers are Report templates are stored as XML in the
used for database connectivity,. ~ 7 file system (default) or by a web service
interface provided by the host company.

Data Sources

Data can come from tables, views, stored
procedures, functions, and web service
and .MET assembly methods. - -+
Objects can be joined from a combination
of any of these object types.

> @D -

JEESE

'
of]

ﬂ!

8 Exago Inc.

Exago Technical Guide EXago

Host Application

The Host Application uses the Web Service or .NET API to set user permissions and embed
the User Interface.

Exago

Exago uses the .NET API to process reports and support the User Interface. High
performance ADO.NET drivers are used to for database connectivity.

Report Templates

Report templates are stored as XML in the file system by default. Alternatively the Host
Application can use a Web Service to manage report template storage.

Data Sources

Exago can retrieve data from tables, views, stored procedures, Web Services, .NET
Assemblies or custom SQL. Data can be joined across data sources to provide additional
flexibility.

Extensibility

Exago provides several features that allow the Host Application to dynamically extend its
capabilities.

9 Exago Inc.

Exago Technical Guide EXago

Installation

The following chapter details the system requirements and walks through the installation
of Exago.

Note: Please be sure to disable your antivirus software (and check to make sure it's
stopped for services, and, not running in your task list) before installing. Antivirus
software may lock up the installation or cause it to fail.

To begin download the installation wizard from our support site. Make sure your antivirus
software is disabled and run the installer as Administrator. There are three components of
Exago that can be installed, but only the Web Application is required.

Web Application

_ This component consists of the User Interface and the .NET assembly
(j\rveb WebReportsApi.dll which can be used directly by .NET host applications. See
r=ccs= | Web Application Installation.

Web Service API (Optional)

This component provides a platform independent means of communication
with Exago at runtime. As well as being platform independent the Web Service
API provides cross domain accessibility and application isolation. See Web
Service Installation.

Scheduler Service (Optional)

EAL
,ajveb

This component uses .NET Remoting to communicate with Exago. This service
can be used to load balance report processing. Additionally, it can be used to
schedule and email reports. The Exago Scheduling Service can be installed on
any server that can communicate with the Exago web application via an HTTP
URL/Port. See Scheduler Service Installation.

PEROMGS:

System Requirements

The following components are required to install and run Exago:

Windows:

e Windows Server 2003 or greater / Windows XP / Windows Vista
e Internet Information Services v5.1 or greater

10 Exago Inc.

http://www.exagosupport.com/

Exago Technical Guide

EXX200
D

Note: IIS should be installed prior to the .NET Framework. If IIS is installed after
the .NET Framework, then the .NET Framework must be reinstalled or repaired via
Add/Remove Programs >.NET Framework 4.0 > Change/Remove, then choose the

Repair option.

e Microsoft .NET Framework version 4.0

Data Sources (one or more):

Microsoft SQL Server 2000 or greater

[]

e Oracle 9i or greater

e MySQL 5.0 or greater

e PostgreSQL 7.1 or greater
e Web Services

e .NET Assemblies

Data Adapters (one or more):

e Oracle - ODAC11 from oracle.com

e MySQL - Connector/Net from mysqgl.com

e PostgreSQL - dotConnect for PostgreSQL Express from devart.com

Web Application Installation

Installing the Web Application

Use the following steps to install the web application:

e Download the installation wizard from our support site.

e Make sure your antivirus software is disabled and run the installation Wizard as

Administrator.

e Click the Web Application button.

ol eWebReports Setup EI@
) 2

eWebReports Setup Wizard LMEb

The installer will guide you through the steps required to install eWWebReports on your computer.

Please disable your antivirus software. Antivirus sofiware can interfere
with this installation.

WARNING: This computer program is protected by copyright law and intemational treaties.
Unautharized duplication or distribution of this program, or any portion of it. may result in severe civil
or criminal penalties, and will be prosecuted to the maximum extent possible under the law.

Click Next to bring up the ‘Select
Installation Location” menu.

Exago Inc.

http://www.exagosupport.com/

Exago Technical Guide

EXX200
Yo]

a5l eWebReports Setup

2

Select Installation Location

-

e
(Jweb

reporcs

The installer will install eWebReports to the following location
To install to this location, click "Next". To install to a different location, enter it below.

e In this menu specify the web site,
virtual directory and physical directory
where you want Exago installed. Click
Next.

e Confirm your location selections by
clicking Next.

Web Site:
[Defautt Web Ste -
Virtual directory:
eWebReports
Physical directory:
C:\Program Files"Exago'eWebReports Browse
Cancel |[<Back | Net> |
= eWebReportsSetup B
Confirm Installation b
LwebD
reports
The installer is ready to install eWebReports on your computer.
Click "Next" to start the installation.
WebSite: Default Web Site
Virtual directory: eWebReports
Physical directory: C:\Program Filez"\ExagoeWebReports
Cancel || <Back |[New> |

e Monitor the installation and click
Finish when it is complete.

- eWebReports Setup

2
Lwe b

Installation is in progress

reporcs

Please wait: Copying files...

File: 199/399

12

Exago Inc.

o] = |5

Exago Technical Guide EXago

Configuring Exago

After the installation is complete, configure Exago using the following steps:

e Create a folder for storing reports. This folder needs to be accessible from the web
server, but is not required to be on the web server. It can reside on any server
accessible by Exago via direct UNC or virtual path created in IIS.

Note: Do not create the reports folder within the Exago application structure. Doing so
will cause ASP.NET sessions to die when report folders are created or deleted within the
Exago application.

e Give the Report Folder read and write privileges for the ASP.NET user.

e Specify the location of the Report Folder in the ‘Report Path’ setting of the
Administration Console. See Accessing the Administration Console and Main
Settings of the General Section.

Below are three examples of report paths to the folder \ReportsRepository:
1. C:\Program Files\Exago\ ReportsRepository - Folder is on a file system.
2. \\Server Name\ReportsRepository — Physical folder is on a separate server.

3. /ReportsRepository — Assumes an IIS virtual directory called
‘ReportsRepository’ has been created to point to the folder.

e Verify that the user running under the Exago instance within IIS has read/write
privileges on the folders below:

o The folder specified in the Report Path of the Main settings of
Administration Console.

o The Config sub-folder of the Exago installation.

o The folder specified in the Temp Path. By default this is a sub-folder of Exago
called ‘Temp’. However this can be changed in the Main Settings of the
Administration Console.

13 Exago Inc.

Exago Technical Guide

EXX200
D

Web Service Installation

Installing the Web Services API

Use the following steps to install the Web Service API:

e Download the installation wizard from our support site.

e Make sure your antivirus software is disabled and run the installation wizard as an

E&’veb

Administrator.

e Click the Web Application

rEponts

o= eWebReports API Setup ol @ =3
api
eWebReports APl Setup Wizard (Jv’veb

rEROrtS

The installer will guide you through the steps required to install eWebReports Web Service on your
computer.

Please disable your antivirus software. Antivirus software can interfere
with this installation.

WARNING: This computer program is protected by copyright law and intemational treaties.
Unautharized duplication or distribution of this program, or any portion of it, may result in severe civil
or criminal penalties, and will be prosecuted to the maximum extert possible under the law.

Cancel < Back Mext =
a5' eWebReports API Setup = R ="
api
Select Installation Location t_;\"veb
reEports
The installer will install eWebReports AP to the following location.
To install to this location, click "Next". To install to a different location, enter it below.
Web Site:
Defaut eb Ste -
Virtual directony:
eWebReportsAP|
Physical directory:
C:\Program Files"Exago'eWebReportsAF| Browse
Cancel [<Back [nNet> |

button.

e Click Next to bring up the ‘Select
Installation Location” menu.

e In this menu specify the web site,
virtual directory and physical
directory where you want Exago
installed. Click Next.

Note: The Web Service API must be
installed on the same server and web
site as the Exago Application.

14

Exago Inc.

http://www.exagosupport.com/

Exago Technical Guide EXag0o

(a0 eWebReports APISetwp =] ® e
Confirm Installation 2
Lweb
The installer is ready to install eWebReports AP| on your computer.
Click "Next” to start the instaliation. e Confirm your location selections by
clicking Next.
WebSite: Default Web Site
Virtual directory: eWWebReportsAFI

Physical directory: C:\Program Files'Exago*eWebReports AP|

Cancel |[<Back |[New> |
api
Installation is in progress Lj:veb

rEROrGs

e Monitor the installation and click
Finish when it is complete.

Please wait: Verifying binlWebServiceApi.dll

File: 1818

Mex | | < Back | [Finish]

Configuring Web Services API

To configure the Web Service API edit the file ‘WebReportsApi.xml” which is located in the
Config sub-folder where the Web Service API is installed. The location of the Config sub-
folder is determined when the Web Service API is installed. Set the following items:

e apppath - IIS virtual directory of the Exago web application. For example,
entering ‘/Exago’ will cause the Web Service API to look for the Exago virtual
directory.

15 Exago Inc.

Exago Technical Guide EXag0o

e throwexceptiononerror - set to true if you want to catch exceptions in your
application thrown by Exago.

e writelog - set to true to write a log file (WebReportsApiLog.txt in the Config sub-
folder) of any exceptions thrown. Write permissions for the Config sub-folder must
be given to the ASP.NET user.

Scheduler Service Installation

The version and build number of the Scheduler Service must match that of the Web
Application.

You may have different installations of Exago with different versions/builds on separate
servers. The Scheduler Service installation wizard allows you to install multiple Schedulers
to maintain corresponding version/builds with the Web Application.

Installing the Scheduler Service

Use the following steps to install the Scheduler Service:
e Download the installation wizard from our support site.

e Make sure your antivirus is software disabled and run the installation wizard as an
Administrator.

e Click the Scheduler button.
o5 eWebReports Scheduler Setup E@@
FAA.
eWebReports Scheduler Setup Wizard /Q) b
ANED
This will guide you through the steps required to install the eWebReports Scheduler windows
service on your computer.
Please dizable your antiviruz =oftware. Antivirus software can interfere ° Clle Next to brlng Up the ‘Se|eCt
with this installation.

Installation Location’ menu.

WARNING: This computer program is protected by copyright law and intemational treaties.
Unautharized duplication or distibution of this program. or any portion of it, may result in severe civil
or criminal penalties, and will be prosecuted to the maximum extent possible under the law.

0 eWebReports Scheduler Setup o] ® el
Select| llation L i /Q)
elect Installation Location ‘web

PEROrGS

The installer will install eWebReports Scheduler to the following folder.

To install to this location, click "Next". To install to a different location, enter it below.
Service

Mew Scheduler Service -

Service Name
eWebReportsScheduler

Folder
C:\Program Files'\Exago'eWeb Reports Scheduler Browse

Install eWebReports Scheduler for yourself, or for anyone uses this computer:

@ Everyone () Justme

Exago Inc.

http://www.exagosupport.com/

Exago Technical Guide

EXX200
D

e Specify if you want to create a new service or if you want to update an existing one.

e To create a new service set a name and location.

e Select to who the Exago Scheduler Windows Service will be installed. By default,

“Everyone” is selected. Click Next.

0 eWebReports Scheduler Setup

Confirm Installation

=
Z;,Ensmla

The installer is ready to install eWebReports Scheduler on your computer.
Click "Mext” to start the installation.

Folder: C:\Program Files"Exago*eWebReportsScheduler

Run Services for: Everyone

| TS | T

0 eWebReports Scheduler Setup

e Monitor the installation and click
Finish when it is complete.

Configuring Scheduler Services

e Confirm your location selections by
clicking Next.

D

I"EDDI"'CS

Installation is in progress

Please wait: verifying file eWebReporsScheduler exe config

Files: 15/15

Mea > | | < Back | [

17

Exago Inc.

Exago Technical Guide EXago

To configure the Scheduler Service API, edit the file ‘WebReportsScheduler.xml’ in the
folder where the scheduler service was installed.

Set the following items:

Note: Settings that can be true or false are case sensitive and should use lower case. Ex.
encrypt_schedule_files will cause an error for True.

e smtp_server - The smtp server used to email reports.

e smtp_enable_ssl - Set to ‘true’ to enable SSL.
¢ smtp_user_id - The user id that is used to login into the smtp server.

¢ smtp_password - The password id that is used to login into the smtp server.
e smtp_from - The ‘From’ email address used in the report emails.

e smtp_from_name - The ‘From’ name used in the report emails.

e error_report_to - The email address to send error reports to.

e channel_type - tcp or http — must match the setting of the Remote Host in the
Scheduler Settings of the Administration Console.

e port - The port number of the .NET remoting object used to communicate with
Exago; this should also be entered in the Scheduler Settings of the Administration
Console.

e working_directory - The directory where scheduled documents and temporary
files are written. The default setting ‘[INSTALLDIR] working” will create a ‘working’
folder in the location the scheduler was installed.

e default_job_timeout - The maximum number of seconds any report execution is
allowed. If an execution reaches a maximum number of seconds an email will be
sent to the address specified under ‘error_report_to.

e report_path - A path to specify where to save reports when ‘Email Scheduled
Reports’ is set to False in the Scheduler Settings. For more details see Saving
Scheduled Reports to External Repository.

o sleep_time - The time interval used for polling for scheduled reports to execute.

¢ simultaneous_job_max - The maximum number of report executions that can
occur simultaneously. This setting is based on the resources available of the server
where the scheduler is installed.

e logging - Set to ‘on’ in order to log events to ExagoScheduler.log in the working
directory.

e flush_time - The number of hours that a completed, deleted, or aborted job will
be saved for viewing in the schedule reports manager. Set to 0 to flush jobs
immediately upon completion. Set to -1 to disable automatic flushing.

e sync_flush_time - The flush time for synchronous (non-scheduled remote) jobs.

18 Exago Inc.

Exag

o Technical Guide exago

email_addendum - Text that will be added at the end of email body. Use ‘\n’ to
insert lines.

external_interface - This is optional and overrides the value set in the
Administration Console. The advantage of setting the value here is that the existing
scheduled reports that have a previous external interface value will take the new
value. For more details see External Interface.

abend_upon_report_error - This controls how the scheduling service should
proceed if an error occurs while loading or executing a report. The default ‘true’ will
stop the running the schedule and set the status to Abended. Set to False to
continue running the schedule and maintain the status as Ready.

ip_address - Binding IP address for the Scheduling Service. Most commongly used
when the server has multiple Network Interface Cards (NICs)

encrypt_schedule_files - Set to ‘true’ to encrypt the files created by the
scheduling service. All existing schedules will be encrypted the next time the
service is started.

max_temp_file_age - The nhumber of minutes between each “flush” of the temp
files created by the scheduling service. The default is 1440 minutes (24 hours).

Note: Making this value too low may result in errors as temp files are used during
report execution and for interactive HTML capabilities when using remote execution.
It is not recommended setting this value any lower than 60 minutes.

email_retry_time - In the case an email fails to send, the number of minutes to
wait before retrying to send the email. After five failed attempts the schedule will
set itself to Aborted. The default is 10 minutes.

19

Exago Inc.

Exago Technical Guide EXago

Starting and Changing Scheduler Services
[SNeteporssenssuer rperi= local o m=l| 1 he Windows Service will have to be manually started for new

fostn [Feee installations of the Scheduler. Starting the service will create
Service name: eWebReportsScheduler . . . \ . . Vi .
Dy, iR the working directory as set in ‘working_directory’ described
Descrption: E&bﬁepnns Scheduler Windows Senvice : a bove .

Path to executable:
C:\Program Fil

To start the scheduler open Windows Services. Double click on
‘ExagoScheduler’ and the Properties menu will appear. Click
Service status: Stopped Start_

[sat JJ sop][Pase][Resume

Statuptpe. [Automatic

You can speciy the start parameters that apply when you start the service

oo If any changes are made to the configuration (detailed above)
s the service must be stopped and restarted for the changes to
CoJlew) = | take effect.

Installation Manifest

When installing the Exago Host Application, the installer will create a new manifest file on
your system called ‘ExagoMainfest.txt’. It is very important that you do not delete
this file.

Some features in the Exago application enable you to create your own files located in the
Exago’ installation folder outside of the Config folder. The manifest file ensures that future
installs of Exago do not wipe out the local files that you have created.

During subsequent upgrades to the Host Application, the installer will read the manifest
file to determine which files to over-write. If the manifest file exists but the installer
cannot access it, the installation will fail and give notification.

If, however, the manifest file does not exist, any files in the Exago’ tree outside of the
Config folder will be deleted. Additionally, any custom .aspx pages or image files that
live outside the Config folder (such as per-user styling) will be erased.

20 Exago Inc.

Exago Technical Guide EXago

Administration Console

The following chapter details how to configure data, set permissions and enable/disable
features through the Administration Console.

About

The Exago Administration Console serves as a user interface to set up and save
administrative preferences. Using the Administration Console you can:

e Establish how to connect to data. Determine what data should be exposed to users.
See Data.

¢ Modify global settings of Exago to enable/disable features. See General.
e Create and modify security Roles for individuals or groups of users. See Roles.

e Create and modify custom functions to make calculations on reports. See
Functions.

e Create and modify custom code that is run when reports execute. See Server
Events.

e Create and modify custom options that can be set on reports. See Custom
Options.

The Administration Console creates three configuration files: an XML file called
WebReports.xml, a backup of the XML file called webreport.xml.backup, and an encrypted
XML file called WebReports.xml.enc. These files are created and saved in the Config folder
where Exago was installed.

Important Security Note:

Each time you save the Administration Console settings a backup copy of WebReports.xml
is created. Store this xml copy in a secure place and delete the WebReports.xml and the
WebReports.xml.backup from the Config directory.

Creating Additional Configuration Files

As part of the integration of Exago you may want to create alternative configuration files
in addition to WebReports.xml. Additional configuration files can be utilized in two ways:

e If entering Exago directly, the configuration file to be used is specified in the
custom styling page.

¢ When entering through the Api the configuration file to be used is specified in the
Api constructor methods.

To create additional configuration files:

21 Exago Inc.

Exago Technical Guide

EXX200
D

1. Navigate to the Administration Console in a browser.

2. Append ‘?configFn=NewConfigFile.xml’ to the URL replacing NewConfigFile with

the name you want to give the configuration file.

3. Click in the URL bar and press enter.

Welcome to eWebReports™

WebReports.xml

Demo Configxml
0 0 0 d

WebReports xml

Accessing the Administration Console

Once Exago is installed navigate your browser to http://‘Your

e
» B Sources
- um Objects
b @ Joins
» ® Parameters
- # General
#+ Main Settings
£+ Culture Seftings
£+ Feature/Ul Settings
£+ Programmable Object Settings
£+ Filter Settings
£+ Database Settings
£+ Scheduler Settings
£+ Other Settings
~ & Roles
» 8 Administratior
+ G Mike

Server’'/Exago/Admin.aspx. In the Other Settings menu under the General Section
you can set a login and password to restrict future access to the Admin Console.

Navigation

The Administration Console consists of two sections. On the left is the Main Menu and on
the right are tabs that can contain menus to create and modify Data Sources, Data
Objects, Parameters, Roles, and other settings.

22

Exago Inc.

Exago Technical Guide

I B
3 tsm -+ -
| M&l an l"-.—l 1a
VI RARY N B AA/.2011.2 Working/Ulhome.aspx 77 v |8 Google ollalE =

ag
1
L)

V‘le come 1o eWeBReporﬁ' | - |

WebReports xmi Objects x][Majn Seﬁlngs] Sources stning Stanad‘]

* i x Travis Northwind.Pivot_Example

~ 4 Data
» E Sources
» & Objects
» > Joins
» © Parameters
~ /# General
£ Main Settings
> Culture Settings
{ Feature/Ul Seffings
> Programmable Object Settings

£ Filter Settings &l
£ Database Seftings Travis N j :
£ Scheduler Setiings Custom SQL Object =
2 Other Settings lame Object Name Data Source Parameter Test pQt
Pivot Table Northwind v pageNumber ~
» % Administratior
» § Mike
select
id,
4| osrame max(case when fieldId=1 then value else null end) as color,

max (case when fieldId=2 then value else null end) as weight
o] from Pivot Example

group by id

(09 (X cance)

Main Menu

Through the main menu you can:

. Create Data Sources, Data Objects, Joins, Parameters, Roles and Custom Functions.
. Edit settings for - Data, Roles, Functions and General features.
. Delete Data Sources, Data Objects, Joins, Parameters, Roles and Functions.

-

Click the arrows (:) to hide the main menu.
Tabs

The right section of Exago is made up of tabs containing the menus to create and modify
administrative settings.

To save the changes made in a tab click 'Ok’ () or press ‘Apply’ ().

Tabs can be closed without saving by clicking the 'x’ to the right of the tab name.

23 Exago Inc.

Exago Technical Guide EXag0o

&4 Objects ﬂ[l’ General‘”' 8 Administratior]

Mew Data | Close this tab

Name

Alias

Key Fields

Tabs can also be rearranged by clicking and dragging them as desired.

| & Dbjﬁs x heral |[8 Administratior |

New Data Object

MName
Alias

Key Fields

Supported Browsers

The Administration console can be accessed by the following browsers:

Firefox 3+

Internet Explorer 8+
Google Chrome
Safari

Note: In Internet Explorer’s Compatibility Mode some items may not display correctly.

Data

This chapter discusses how to determine which data should be made available to users to
create reports. Using Data Sources, Data Objects, Parameters and Joins you can create
user friendly names and control what data users may access.

WebRepors xm| -

+ 7 R
B Data)

» B Sources

+ mm Objects

F @ Joins

+ @ Parameters
r & General

r & Roles

24 Exago Inc.

Exago Technical Guide EXago

All existing Data elements are listed in the Main Menu under Data. Whenever a data
element is added or modified it will be displayed in a Tab based on its type. For example
all Data Objects you select to edit will appear in an Objects tab.

e To add a new element select the type (Sources, Object, Parameter or Join) in the
Main Menu under Data, then click the add button (*).
e To edit an element either double click it or select the desired element and click the

edit button (i).

e To delete an element select it and click the delete button (x).

e To save changes click the Ok button () or press the ‘Apply’ button

(5 aepy).

Data Sources

Data sources establish the connection between Exago and a database or a web service.
Although typically only one database is used, Exago can join data from different sources
into a single report.

Note: To utilize some types of Data Sources you may need to download and install the
appropriate driver. Please see Data Source Drivers for more information.

All existing Data Sources are listed in the Main Menu under Data. All the Sources you are
adding or editing will be displayed in a Tab entitled Data Sources.

e To add a new Data Source click ‘Sources’ in the Main Menu then click the add
button (*).
e To edit a Data Source either double click it or select the Data Source and click the

edit button (i).

e To delete a Data Source select it and click the delete button (x).

e To save changes click the Ok button () or press the ‘Apply’ button

(5 aepy).

Each Data Source must have the following:
¢ Name - a name for the data source.
e Type - the type of source being used. Valid types include:

o mssql — Microsoft SQL Server.
o mysql - MySQL.

25 Exago Inc.

Exago Technical Guide EXago

oracle - Oracle.

postgres — PostgreSQL.

db2 - IBM db2.

informix — IBM Informix.

websvc - Web Service. For more information see Web Services.

assembly - .NET Assembly dll. For more information see .NET Assemblies.
file — XML or Excel file. For more information see Excel and XML Files.

¢ Schema/Owner Name (blank for default) - Provide a default database schema
for the data source.

O O O O O O O

Note: Only use this if you are using schema to provide Multi-Tenant security.
For more details see Multi-Tenant Environment Integration.

¢ Connection String - the method that is used to connect to the data source.
Connection strings vary by type:

o mssql, oracle, postgres and mysql - Please refer to ConnectionStrings.com
for database connection strings.

o websvc - Can take up to four parameters but only requires url.
= url - The url of the web service.

» Authentication (optional) — Set to ‘basic’ to utilize basic authentication
through IIS. This will send the userid and password as clear text
(unless https is used).

= uid (optional) — User id is passed to the web service.

= pwd (optional) - Password is passed to the web service
o assembly - Requires two parameters.

» assembly - The full path of the assembly name.

» class — The class name in the assembly where the static methods will
be obtained.

o file — Requires the physical path to the excel or xml file and the file type. Ex.
File=C:\example.xls; Type=excel;

Click the green check mark to verify the connection succeeds ().
Data Source Drivers

Below is a lists of recommended ADO.NET drivers for each type of Data Source.
e SQL Server - No external ADO.NET driver needed

e Oracle - ODAC1120320_x64 or newer — Oracle ODAC Connector -

http://www.oracle.com/technetwork/database/windows/downloads/ind
ex-090165.html

¢ MySQL/MariaDB - dcmysglfree.exe — Devart Connector -
http://www.devart.com/dotconnect/mysql/download.html

e PostgreSQL - dcpostgresqlfree.exe — Devart Connector -
http://www.devart.com/dotconnect/postgresql/download.html

26 Exago Inc.

http://www.oracle.com/technetwork/database/windows/downloads/index-090165.html
http://www.oracle.com/technetwork/database/windows/downloads/index-090165.html
http://www.devart.com/dotconnect/mysql/download.html
http://www.devart.com/dotconnect/postgresql/download.html

Exago Technical Guide EXago

e DB2/Informix - ibm_data_server_driver_package_win64_v10.5.exe or newer -
IBM Data Server Driver Package -
https://www14.software.ibm.com/webapp/iwm/web/reg/download.do?s
ource=swg-idsdpds&lang=en_US&S_PKG=win_64&cp=UTF-
8&dIimethod=http

Web Services and .NET Assemblies

Web Services and .NET Assemblies can be used as Data Sources. This is possible when the
Web Service and .NET Assemblies underlying methods are setup as Data Objects. An
advantage of doing this is being able to use a high-level language to manipulate the data
being reported on at run-time. The main disadvantage is not being able to take
advantage of the database to perform joins with other data objects; data from methods
can still be joined, but the work to do this is done within Exago. For more information see
Note about Cross Source Joins.

Parameters are passed from Exago to Web Services and .NET Assemblies. Three types of
parameters can be passed but only Call Type is required.

e Call Type (required) - Integer that specifies what Exago needs at the time of the
call. There are three possible values. You may specify the name of this parameter in
the Programmable Object Settings of the General Section.

o 0:Schema - returns a DataSet with no rows.
o 1 : Data - returns a full DataSet.

o 2 : Filter Dropdown Values - returns data for the filter dropdown list. The
Data Field being requested is passed in the column parameter. The filter type
is passed in the filter parameter (see below).

e Column, Filter and Sort Strings (optional) — To optimize performance Exago can
pass user-specified sorts and filters to the Web Service or .NET Assembly. This
process reduces the amount of data sent to Exago. If these parameters are not
used, all of the data will be sent to Exago to sort and filter. Column, filter and sort
strings are sent as standard SQL. You may specify the name of these parameters in
the Programmable Object Settings of the General Section.

¢ Custom Parameter Values (optional) — Additional parameters can be specified to
be sent to individual methods in the Data Object Menu.

Important Note: When a Web Service or .NET Assembly is first accessed it is compiled
and kept in an internal cache within Exago. This is done in order to increase performance.
Due to this internal cache, Exago will not be aware of any changes within the Web Service
or .NET Assembly. If the service or assembly is subsequently changed; Exago will execute
the prior compiled version. Thus, when you modify the Web Service or .NET Assembly
reset the internal cache of Exago by clicking the green check mark of the Data Source

() or by restarting IIS.

.NET Assemblies

27 Exago Inc.

https://www14.software.ibm.com/webapp/iwm/web/reg/download.do?source=swg-idsdpds&lang=en_US&S_PKG=win_64&cp=UTF-8&dlmethod=http
https://www14.software.ibm.com/webapp/iwm/web/reg/download.do?source=swg-idsdpds&lang=en_US&S_PKG=win_64&cp=UTF-8&dlmethod=http
https://www14.software.ibm.com/webapp/iwm/web/reg/download.do?source=swg-idsdpds&lang=en_US&S_PKG=win_64&cp=UTF-8&dlmethod=http

Exago Technical Guide EXag0o

It is important to note that when a connection string for .NET Assembly is set the class
name must match the name of the class where the static methods will be searched. UNC
or absolute paths may be used. Make sure that the assembly has read privileges for the
IIS user running Exago. Below is an example of a .NET Assembly connection string:

assembly=\\MyServerName\MyShareName\MyAssembly.dll;class=Main
.NET Assembly methods must be static. Below is an example of a .NET Assembly method.

public class Main

{

public static DataSet dotnet_optionees(int callType, string columnsStr, string filterStr, int myCustomParameter)

{
switch (callType)
{

case 0:
/I return schema
case 1:
/I return data
case 2:
/I return filter values for dropdown

Web Services

Web Services are accessed via SOAP. Below is an example of a Web Service connection
string: url=http://MyServer/MyWebService.asmx

Web services methods are similar to .NET Assembly methods with the following
exceptions:

e Methods do not need to be static

e Methods must return a serialized XML string. The returned XML must follow the
structure used by the C# method DataSet.GetXML. See this section for an
example of the xml format.

Excel and XML Files

Exago can use Microsoft Excel and XML files as Data Sources. Remember though that
Excel and XML files are not databases. Simply put, these Data Sources do not offer the
speed, performance, security or heavy lifting of a real database. Using Excel and XML files
is recommended only if your dataset is small or if the information is only available in this
format.

Excel

Each worksheet in the Excel file will be read as a separate table. Each worksheet’s name
will be read as the table’s title. The top row will be read as the column header, and the
remaining cells will be read as the data. Do not leave any blank rows or columns.

28 Exago Inc.

file://Server1/ShareName/MyAssembly.dll;class=Main
http://myserver/MyWebService.asmx

Exago Technical Guide EXag0o

EH9~™-|=

Home Insert Page Layout Formulas Data Review View Acrobat T

| % & cut Calibri 11 v A AT %] B S wrap Text

Paste LN B 7 U~ | i~ &~ A~ = = &= iF Mer & Cents
= yFormat Painter = = — = = == = g8 LS
Clipboard [P} Font [F} Alignment
2 - (- £ |
A B £ D E F G H |
1 LastName FirstName PatientlD S5N Age Gender Street City State
2 |Chambers Janet 4321 333224444 32 °f Mainst. MNew Paltz NY
3 |Cherry Randall 5678 530167036 44 m 474 Camd Poughkipsie NY
4 Tucker Frederick 9876 263846521 38 m 4557 Stew Kingston NY

5

100w

XML

The XML document must begin with the schema. After defining the schema the data must
be placed into the appropriate tags. For reference see the working example below:

<ExagoData>
<xs:schema id="ExagoData" xmlns="" xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">
<xs:element name="ExagoData" msdata:IsDataSet="true"
msdata:UseCurrentLocale="true">
<xs:complexType>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="Call">
<xs:complexType>
<xs:sequence>
<xs:element name="CallID" type="xs:unsignedInt" minOccurs="0" />
<xs:element name="StaffID" type="xs:string" minOccurs="0" />
<xs:element name="VehicleUsed" type="xs:unsignedInt" minOccurs="0"
/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Staff">
<xs:complexType>
<xs:sequence>
<xs:element name="StaffID" type="xs:unsignedInt" minOccurs="0" />
<xs:element name="Rank" type="xs:string" minOccurs="0" />
<xs:element name="LastName" type="xs:string" minOccurs="0" />
<xs:element name="FirstName" type="xs:string" minOccurs="0" />
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:choice>
</xs:complexType>
</xs:element>
</xs:schema>

<Call>
<CallID>890</CallID>
<StaffID>134</StaffID>
<VehicleUsed>12</VehicleUsed>

29 Exago Inc.

Exago Technical Guide

EXX200
D

</ Call >
< Call >
<CallID>965</CallID>

<StaffID>228</StaffID>
<VehicleUsed>4</VehicleUsed>

</ Call >
< Call>
<CallID>740</CallID>

<StaffID>1849</StaffID>
<VehicleUsed>2</VehicleUsed>
</ Call >
<Staff>
<StaffID>134</StaffID>
<Rank>Captain</Rank>
<LastName>Renolyds</LastName>
<FirstName>Malcom</FirstName>
</Staff>
<Staff>
<StaffID>228</StaffID>
<Rank>Lieutenant</Rank>
<LastName>Brown</LastName>
<FirstName>Bill</FirstName>
</Staff>
<Staff>
<StaffID>1849</StaffID>
<Rank>Sergeant</Rank>
<LastName>John</LastName>
<FirstName>Pepper</FirstName>
</Staff>
</ExagoData>

Parameters

Parameters are used throughout the Exago application to store values. Although
parameters can be created and given a default value in the Administration Console,

parameters are designed to be set at runtime through the API.

In Exago parameters can be used to:

e Pass values to Web Services, .NET Assemblies, or custom SQL Data Objects.
e Set tenant values to assure security in a multi-tenant environment. For more

information see Data Objects

e Pass values into cells and formulas of a report. To display a non-hidden parameter
in a cell type ‘=@ParameterName@’. Note parameters ARE case sensitive.
e Pass values into custom functions. For more information see Custom Functions.

All existing Parameters are listed in the Main Menu under Data. All the parameters you

are adding or editing will be displayed in a Tab entitled Parameters.

e To add a new parameter click ‘Parameters’ in the Main Menu then click the add

button (*).

e To edit a parameter either double click it or select it and click the edit button (»/;).

30

Exago Inc.

Exago Technical Guide EXago

e To delete a parameter select it and click the delete button (x).

e To save changes click the ‘Ok’ button () or press the ‘Apply’ button

(5 aepy),

Each Parameter has the following properties:
¢ Name - a name for the parameter.
e Type -the type of parameter being used.

e Value - the default value of a parameter. This is intended to be overwritten at
runtime through the API. Date values should be entered in yyyy-MM-dd format.

e Hidden - check hidden to disable this parameter from being used by users in cells
and formulas.

¢ Prompt Text - give non-hidden parameters a prompt text to query the user for a
value at the time of report execution. Leave blank to use the default value.

Data Objects

Data Objects are the tables, views, methods, stored procedures, functions and custom
SQL that you want to make accessible for reports.

All existing Data Objects are listed in the Main Menu under Data. All the Data Objects are
adding or editing will be displayed in a Tab entitled Objects.

e To add a new Data Object click ‘Objects’ in the Main Menu then click the add button
).

e To edit a Data Object either double click it or select it and click the edit button

7).

e To delete a Data Object select it and click the delete button (x).

e To save changes click the Ok button () or press the ‘Apply’ button
cxTm)

Each Data Object has the following properties:

¢ Name - Select the Data Object’s Source from the first dropdown. In the second
dropdown select a Data Object. Note: This will display all the of the Source’s
tables, views, methods, stored procedures and functions.

o To add custom SQL click the ‘Add Custom SQL’ button (%) next to the Data
Object dropdown. For more details see Custom SQL Objects.

Note: The name of tables or views should not contain commas.

31 Exago Inc.

Exago Technical Guide

EXX200
D

Alias - the user friendly name for the Data Object. The alias will be displayed to
end-users.

o Note: Alias should not contain the characters ‘@’, '{*, '[}, or',.
Unique Key Fields - the columns which uniquely identify a row.

Category - the ‘folder’ used to group related Data Objects. Sub-categories can be
created by entering the category name followed by a backslash then the sub-
category name. Ex. ‘Sales\Clients’".

Id - a unique value for the Data Object. Ids are required when creating multiple
Data Objects with that have the same name but come from distinct Data Sources.
Ids can also be used to optimize Web Service and .Net Assembly calls. For more
information see Using Data Object Ids.

Parameters - parameters that are passed to stored procedures, table functions,
Web Services or .NET assembly methods. Clicking in the dropdown will bring up a
menu. Click the add button (9) and select the parameter from the dropdown list.
For more information see Parameters, Stored Procedures and Web Services &
.NET Assemblies.

o Note: parameter values are passed in the order in which they are listed in
the Data Object. It is critical to ensure that the order is correct.

Tenants Columns - specify which columns contain tenant information and link the
parameters accordingly.

o This setting is used to filter data when multiple users’ information is held
within the same table or view and a column(s) holds information identifying
each user. Exago will only retrieve the rows where the column value(s)
matches the corresponding parameter(s).

Column Metadata - Specify any columns that should not be filterable, visible or
that should be read as a specific data type. See Column Metadata for more
information.

Schema Access Type - Specify how Exago should retrieve the schema for the
Data Object. There are three possibilities:

o Default - Follow the global Schema Access Type setting in Other Settings.
o Datasource - Queries the Data Source for the schema.
o Metadata - Reads the schema from the stored metadata.

Note: For more information see Note on Retrieving Data Object Schemas.

Filter Dropdown Object — Specify an alternative Data Object to be queried when
a user clicks the value dropdown in the Filters Menu. This setting is most likely to
be used when the Data Object is a Stored Procedure, Web Service or .Net Assembly
that takes more than a few seconds to return data. In this scenario a table or view
can be designated to increase performance.

32

Exago Inc.

Exago Technical Guide EXago

Note: The Filter Dropdown Object must have a column with the same name as
each column in the main Data Objects.

Stored Procedures

Stored Procedures offer the ability to use high level code to modify the data set before it
is sent to Exago. It is important to note that stored procedures must know what sorts and
filters the user has set and whether to return the schema, a single column, or the entire
data set. To accomplish this use the Call Type, Filter, Column and Sort Parameters in the
Programmable Object Settings. These parameters will be passed from Exago to
identically named parameters in the Stored Procedure. Additional parameters may be
passed by setting them in the Data Object Tab.

Important Note for SQL Server:

SQL Server has an attribute called ‘FMTONLY’ that must be handled by all stored
procedures.

FMTONLY has two possible values:

ON : The stored procedure will only return the column schema. However all IF
conditional statements are ignored and all of the code will be executed. This setting will
fail if the stored procedure contains any temp tables.

OFF: The stored procedure returns all of the data and the column schema. The
stored procedure will correctly execute IF conditions.

The ON setting will cause problems if there are IF conditions in the procedure; However,
only using the OFF setting will hurt performance if the Call Type Parameter in the
Programmable Object Settings is not used.

The following example demonstrates how to use the Call Type, Column, Filter and Sort
Parameters to maintain efficiency. For SQL Servers note that FMTONLY is set to OFF.

ALTER PROCEDURE [dbo].[sp webrpt person]

@callType INT, --optional but should be implemented for efficiency and dropdown
support

@columnStr varchar (1000), --optional; used for limiting data for efficiency
@filterStr varchar (1000), --optional; used for limiting data for efficiency
@fullFilterStr varchar (1000), --optional; used for limiting data for efficiency
@sortStr varchar (1000) -optional; may improve performance a bit if used

AS

SET NOCOUNT ON --for performance reasons
SET FMTONLY OFF --force procedure to return data and process IF conditions

declare @sgl varchar (2000)
declare QcolumnInfo varchar (1000)

if @callType = 0 --return schema; don't need to return any rows
begin

set @sql = 'select * from vw webrpt person' where 0 = 1
end
else

33 Exago Inc.

Exago Technical Guide EXago

if @callType = 1 --return all data for execution
begin

set @sgql = 'select ' + @columnStr + ' from vw webrpt person where ' +
@filterStr + ' order by ' + @sortStr
end
else
if QcallType = 2 --return filter dropdown values; limit # rows to some value
begin

set @columnInfo = '[' + @columnStr + ']'

set @sgl = 'select top 100 ' + @columnInfo + ' from vw webrpt person where ' +
@columnInfo + ' >= ' + @filterStr + ' and ' + @fullFilterStr + ' order by ' +
@columnInfo
end

exec (@sqgl)

Table Value Functions

Table Value Functions can be used as Data Objects. Any available table value functions of
a Data Source will be displayed in the Data Object menu under Functions. Exago handles
table value functions similar to views and tables except it will pass any parameters set in
the Data Object Tab or in the Programmable Object Settings.

Custom SQL Objects

Exago can use custom SQL as Data Objects. Parameters can be embedded in these SQL
statements to enable you to change the statement at runtime.

To add or edit a Custom SQL Data Object click the ‘Custom SQL’ button (&) and a dialog
will appear.

¢ Data Object Name - the name of the Data Object to be displayed in the
Administration Console.

e Data Source - the Data Source that will be sent the SQL.

e Parameter/Insert - select the parameter you want to embed in the statements.
Use the ‘add’ button to move the selected parameter into the SQL statement where
your cursor is located. Parameters may also be added manually between @ symbols
(ex. @userld@).

Test

Use the ‘TEST’ button () to verify that the SQL statement is correct.

Press Ok to save the SQL statement or Cancel to close the dialog without saving.

34 Exago Inc.

Exago Technical Guide EXag0o

| custom sQL Object
Object Name Data Source Parameter Test
Pivot Table Northwind + pageNumber ~ (5P Add)

=elect

id,
1 max (case when fieldId=1 then wvalue else null end) as color,
max (case when fieldId=2 then wvalue else null end) as weight
o from Pivot Example

i group by id

| W OK 3 Cancel

Data Object Macros

‘Macros’ can be embedded in Custom SQL Data Objects to make them even more
dynamic. Each ‘macro’ allows for different SQL to be used according to the circumstances
in which the Data Object is being called. Below are the details and examples of available
macros.

IfExecuteMode (string trueCondition, string falseCondition)

Description Will include the trueCondition if a user is executing a report. Will include the
falseCondition otherwise.

Example select * from vw_webrpt_optionee IfExecuteMode("where [State] = 'CT"™,"")

IfExistReportDataObject’ (string dataObjectName, string trueCondition, string
falseCondition)

Description | Will include the trueCondition if dataObjectName exists inside the full Exago SQL
statement to the data source. Will include the falseCondition otherwise.

Examp|e select * from vw_webrpt_optionee IfExistReportDataObject("fn_webrpt_grant", join
on fn_webrpt_grant...", "")

Column Metadata

Column Metadata refers to the properties of each column in the Data Objects. Normally
Exago gets the metadata for each column directly from the Data Source. However, in
some cases it may be helpful to override or add additional information to the metadata.

The following properties of each column can be modified:

e Column Alias - The name of the Data Field that the end-users see.

35 Exago Inc.

Exago Technical Guide EXago

e Data Type - The type of data Exago should treat the Data Field as (ex. DateTime).

o Valid values for Data Type include: String, Date, Datetime, Time, Int,
Decimal, Image, Float, Boolean, and Guid.

¢ Filterable - If set to False the Data Filed will not be listed in the Filters menu.

e Visible - If set to False the Data Field will not be listed for users.

To modify the metadata of a column select it and click the ‘add’ button or double click it.
Enter a Column Alias or use the Data Type, Filterable and Visible dropdowns to set the
desired properties.

Click the ‘Read Schema’ button ([5’ “"“"“"’““‘j) to quickly create column metadata for
each column in the Data Object.

To remove Column Metadata for a column select it in the right panel and click the delete
button (X)

To save changes to Colum Meta data click the ‘Ok’ button (@). Click the ‘Cancel’
button to discard changes.

Column Metadata
‘Select columns to mask

Address
BithDate
City

Country
EmployeelD
nnnnnn

Retrieving Data Object Schemas

Many of the dialogs throughout Exago require schema information (ex. column name,
data type, etc.). By default these dialogs query the Data Sources for the schema. This
process, however, may cause performance issues if the Data Sources take a considerable
amount of time to return the schema.

To enhance performance, schema information can be stored as Column Metadata. Then
Exago can read the Column Metadata instead of querying the Data Source.

36 Exago Inc.

Exago Technical Guide EXago

Note: While storing the schema as Column Metadata improves performance,
updates to the Column Metadata will be required whenever columns are added,
removed or retitled.

For Exago to retrieve schema information from Metadata:

1. In Other Settings, set ‘Schema Access Type’ to ‘Metadata’. This will force Exago
to get all schema information from Metadata for all Data Objects.

Note: Alternatively this setting can be overwritten for individual Data Objects by
setting the ‘Schema Access Type’ property.

2. For each Data Object open the Column Metadata Menu.

a. Click the ‘Read Schema’ button (). A message will appear

asking you to confirm you want to continue. Click Ok.
b. Click Ok to close the Column Metadata Menu.
c. Press Apply or Ok to save the Data Objects.

Note: Other metadata options such as aliasing can still be utilized.
Data Object Ids
There are three ways in which you can utilize Data Object Ids.
Adding Multiple Data Objects with the Same Name

Ids are used distinguish Data Objects that have the same name but come from different
Data Sources. When adding multiple Data Objects with the same name make sure each
Data Object has a unique Id.

Avoiding Issues from Changes to Object Names

Providing Ids for all the Data Objects will avoid issues if the name of the underlying
tables, views, stored procedures, is changed.

Calling a Single Web Service/.Net Assembly/Stored Procedure

Web Services, .Net Assemblies, and Stored Procedures comprise a group called
Programmable Data Objects. These Objects can retrieve parameters from Exago and the
host application in order to control what data is exposed to the user.

Generally for Web Services and .Net Assemblies each Data Object calls a distinct method.
Similarly each Stored Procedure is its own Data Object. By using Data Object Ids a single
method/stored procedure can be called. This method can then return data or schema
based on the Data Object Id.

To call a single Web Service/.Net Assembly/Stored Procedure:

37 Exago Inc.

Exago Technical Guide

EXX200
D

e Provide a name for ‘Data Object ID Parameter Name’ in Programmable Object
Settings

e Create a method/ procedure in your Service/Assembly/Procedure that utilizes the
Object Id Parameter to return the appropriate data/schema. (see example below)

e For each Data Object:

O

O

O

@)

O

Select ‘Object’ in the Main Menu and click the ‘add’ button
Select the single Service/Assembly/Procedure

Provide an Alias and an Id for the Object

Select the key columns

Click Apply or Ok to save the Object.

Ex. This stored procedure uses the Object Id Parameter (@objectID) to return different
data/schema information for different Object Ids.

ALTER PROCEDURE "dbo"." Exago_Example"

@callType INT,

@objectID nvarchar(max)

AS

SET NOCOUNT ON
SET FMTONLY OFF

if @objectID

begin

= 'Produce’

if @callType = 0

begin

SELECT ProductlID,

ProductName,
SupplierID,
UnitPrice,
UnitsInStock

FROM Products
WHERE CategoryID = 1001

end

else if @callType = 1

begin

SELECT ProductID,

ProductName,
SupplierID,
UnitPrice,
UnitsInStock

FROM Products
ORDER BY ProductID

end

else if @callType = 2

begin

SELECT ProductID,

ProductName,
SupplierID,
UnitPrice,
UnitsInStock

FROM Products
ORDER BY ProductID

38

Exago Inc.

Exago Technical Guide

EXX200
D

end

begin

end
if @objectID = 'Orderse’
if @callType = ©
begin
SELECT OrderID,
OrderDate,
RequiredDate,
ShippedDate,
CustomerID

end

Reading Images from a Database

FROM Orders
WHERE CustomerID = 0
end
else if @callType = 1
begin
SELECT OrderID,
OrderDate,
RequiredDate,
ShippedDate,
CustomerID
FROM Orders
ORDER BY OrderID
end
else if @callType = 2
begin
SELECT OrderID,
OrderDate,
RequiredDate,
ShippedDate,
CustomerID
FROM Orders
ORDER BY OrderID
end

Exago can read images from a database and load them directly into a cell of a report.
When images are stored in a database as a binary string there are two ways that Exago

can load them into a report.

1. In the Administration Console edit the Data Object that contains the images. Open
the Column Metadata Menu and for the image column set Data Type to ‘Image’.
Next, simply place the Data Field containing the images into the desired cell of a

report. Upon execution the images will be loaded into the cell.

. Place the Data Field that contains the images into the LoadImage function. Upon

execution Exago will interpret the binary and load the images into the cell.

Joins

Joins specify to Exago the relationship between Data Objects.

All existing Joins are listed in the Main Menu under Data. All the joins you are adding or

editing will be displayed in a Tab entitled Joins.

39

Exago Inc.

Exago Technical Guide EXago

e To add a new join click ‘Joins’ in the Main Menu then click the add button (+).
e To edit a join either double click it or select it and click the edit button (j).

e To delete a join select it and click the delete button (x).

e To save changes and new join click the Ok button ().
Each join has the following properties:

e From Object -the first Data Objects you would like to join.

e To Object - the other Data Object you would like to join.

o Note: The order of the Data Objects is important if you have a one-to-many
relation type or a Left/Right Outer Join type. See below for details.

e Join Column(s) - specify the field(s) of each Data Object that must match to join
an entity in the From Object to an entity(s) in the To Object.

e Join Type - specify whether rows from either Data Object that do not have a
match should or should not be included.

o Inner: only includes rows of the From Object that have a match in the To
Object and vice versa.

o Left Outer: includes rows of the From Object that do not have a match in the
To Object but not vice versa.

o Right Outer: includes rows of the To Object that do not have a match in the
From Object but not vice versa.

o Full Outer: includes rows in either Data Object that do not have a match.
e Relationship Type - specify if the join type is one-to-one or one-to-many.

o One-to-One: Each row in the From Object can join to at most one row from
the To Object.

o One-to-Many: Each row in the To Object can join to any humber of rows from
the To Object.

¢ Weight - give a join weight in order to set its precedence when multiple join paths
exist between Data Objects. The path with the higher weight will be utilized.

o Ex. A report contains three Data

Objects ‘Students’, ‘Professors’ and Students -_— Pm

‘Comp Sci 101." Students is joined to \

‘Professors’ and ‘*Comp Sci 101. 0 ~
Additionally ‘Professors’ is joined to @@jﬂl}@ @@ﬂ ﬂ@ﬂ

‘Comp Sci 101." There are two

available join paths between ‘Students’ and ‘Comp Sci 101.” Adding weight to
a join will clarify which of the two paths Exago should use.

40 Exago Inc.

Exago Technical Guide EXago

Modifying Joins

Although joins are created in the Administration Console they are saved within each
individual report. For Join changes in the Administration Console to take effect edit the
report and use the ‘Recreate’ button in the Advanced Options menu. For instructions on
how to access the Advanced Options please see the User Guide.

Important Note: It is important to make sure that all of the joins are set to your desired
specifications in the Administration Console before you begin building numerous reports.

Note About Cross Source Joins

Data Objects from different Data Sources can be joined in Exago. Because the Data
Objects come from distinct databases they must be joined through code by Exago. Though
Exago strives for efficiency this process may be memory intensive for large data sets.

General

This chapter details the available settings to enable, disable and modify various features
of Exago. Settings made in General will be set for all users unless specifically overwritten
in Roles.

| WebReports_ xml El

+ /R

+ & Data

¥ General
% Main Settings
£F Culture Settings
£+ Feature/Ul Settings
£+ Programmable Object Settings
£+ Filter Settings
£+ Database Settings
£+ Scheduler Settings
£+ User Settings
£+ Other Settings

r 8 Roles

r J Functions

r Ed Server Events

To edit any of the settings double click the category or select it and click the edit button.

(f)

Main Settings

The main settings are the basic options for Exago.

41 Exago Inc.

Exago Technical Guide EXago

A General =
Parameter Value

Main Settings x
Report Path \Reports
Temp Path ¢ \TempFiles
Temp Clowd Service
Language File en-us, en-us-getfing-started
Temp URL
Allow direct access to eWebReports (bypassing API) | True =]
Allowed Output Types HTML Excel PDF RTF csv
Default Cutput Type | POF [=]

The following settings are available:
e Report Path - The parent folder for all reports. The Report Path may be:
o Virtual Path
o Absolute Path - used to provide increased security (ex. C:\Reports)

o Web Service URL or .NET Assembly - using a Web Service or .Net
Assembly allows reports and folders to be managed in a database. For more
information see Report Folder Storage & Management.

¢ Temp Path - The location where temp files are stored. The Temp Path may be:
o Blank - All temp files and images will be saved to ./Temp.
o Virtual Path

o Absolute Path - Temp files will be saved to the absolute path and image
files will be saved to ./Temp

¢ Temp Cloud Service — Web Service, .Net Assembly or Azure Authentication string
used to integrate into a Cloud Environment. For more information see Cloud
Environment Integration.

¢ Language File - List of the xml files that specify language strings. See Modifying
Select Language Elements for more details.

e Temp URL - Overrides the portion of the temporary URL used to store images
from HTML exports. Temp URL can override just the scheme (i.e. https) or the full
URL.

e Allow direct access to Exago — A boolean setting:
o True - allows users direct access to Exago with no security.

o False - users must be authenticated by the host application to enter Exago.
Users that try to directly access Exago will receive a message saying ‘Access
Denied.’

Note: We highly recommend setting this to False before deploying Exago in
a production environment.

42 Exago Inc.

Exago Technical Guide

EXX200
D

Allowed Output Types — The available formats for exporting all reports. Check
the box of the formats that should be available.

Default Output Type - The export format that appears when a new report is
selected unless a specific export format is set in the Options Menu of the Report
Designer.

Note: The Default Output Type must be one of the available Allowed Output Types.

Culture Settings

The culture settings give administrators control over formats and symbols that vary
amongst geographic location (e.g. $ is the currency symbol in the U.S.A but € is the
symbol used in Europe). These settings can be overwritten for a specific user or group of
users by modifying the Role. For more information see Roles.

/& General x
Parameter Value
Culture Settings =
Date Format Middiyy
Time Format
DateTime Format MK/ddiyyyy hh:mm &t
DateTime Values Treated As DateTime -
MNumeric Seperator Symbol
Mumeric Currency Symbol 5
MNumeric Decimal Symbol
Numeric Decimal Places 0 s

The following settings are available:

Date Format - The format of date values. May be any .NET standard (ex.
MM/dd/yyyy).

Time Format - The format of time values. May be any .NET standard (ex.
h:mm:ss tt).

DateTime Format - The format of date-time values. May be any .NET standard
(ex. M/d/yy h:mm tt).

Note: For more details on .NET Date, Time and DateTime Format Strings please
visit http://msdn.microsoft.com/en-
us/library/8kb3ddd4%28v=vs.71%29.aspX.

Date Time Values Treated As — Choose to format DateTime as Date or DateTime
values. To change this setting for specific columns see Column Metadata.

Numeric Separator Symbol - Symbol used to separate 3 digit groups (ex.
thousandths) in numeric values. The default is ',

Numeric Currency Symbol - Symbol prepended to numeric values to represent
currency. The default is '$".

43

Exago Inc.

http://msdn.microsoft.com/en-us/library/8kb3ddd4%28v=vs.71%29.aspx
http://msdn.microsoft.com/en-us/library/8kb3ddd4%28v=vs.71%29.aspx

Exago Technical Guide

EXX200
D

Numeric Decimal Symbol - Symbol used for numeric decimal values. The default
is ..

Numeric Decimal Places - Default number of decimal places for numeric fields to
show. Leave blank to keep variable by field.

Numeric Decimal Places - Default number of decimal places for numeric fields to
show. Leave blank to keep variable by field.

Apply Numeric Decimal Places to General Cell Formatting - Set to true to
apply the Numeric Decimal Places to any cell that has Cell Formatting set to General
but contains a number. Default value is false.

Server Time Zone Offset —Value that is used to convert server to client time (the
negation is used to convert client to server time). Leave blank to use server time,
or to use External Interface to calculate value.

Note: This offset is NOT applied to data coming from Data Sources. It is utilized by
the Exago UI such as the Scheduling Service.

Features/UI Settings

The Features/UI settings allow administrators to hide various features in the user
interface. As each heading indicates settings may apply to specific report types or the
entire application.

a4 Exago Inc.

Exago Technical Guide

EXX200
D

Show Express Reporis
Show Standard Reports

Show Crosstab Reporis

& General x
Parameter Value
Available Report Types

| True

| True

| True

Express Report Designer Settings
Show Styling Teolbar

Show Themes
Show Grouping

Show Formula Button

| True

| True

| True

| True

Standard Report Designer Settings
Show Chart Wizard

Chart Colors

Show Decument Template:

Show Decument Template Upload Button
Show Linked Report

Show Insert Image

Show Advanced Window

Show Advanced Joins

Show Linked Reports in New Tab

| True

0000FF FFCCOO0,008600,FFE600,9%00CC, 00CCFF, CCOO00,00FFO0, FFFFOO,FFCCFF

| True

| Falze

| True

| True

| True

| True

| Falze

Common Settings
Show Help Button
Custem Help Source
Show Exports in Tab

Show IE Download Button

Show Join Fields

Show HTML Export Grid Lines

Available Report Types

| True

| True

| False

| True

| Falze

{1 | o) [{ | Em | e | Cn i [En R Emflim)y [|im | CnEn i

These settings enable/disable report types.

e Show Express Reports — Displays/Hides the Express Report Wizard.

e Show Standard Reports - Displays/Hides the Standard Report Wizard and Report

Designer.

Note: If 'Show Standard Reports’ is False then attempts to edit Standard or
Crosstab reports will cause an ‘access denied” message. Additionally if False, users
will not be able to create Crosstab reports.

e Show Crosstab Reports - Displays/Hides the Crosstab Report Wizard and Insert
Crosstab button in the Report Designer.

e Show Dashboard Reports - Displays/Hides the Create New Dashboard button.

Express Report Designer Settings

45

Exago Inc.

Exago Technical Guide EXago

These settings only apply to the Express Report Wizard.

Show Styling Toolbar - Displays/Hides the styling tools in the Layout tab of the
Express Report Wizard.

Show Themes - Displays/Hides the Theme dropdown in the Layout tab of the
Express Report Wizard.

Show Grouping - Displays/Hides the grouping tools in the Layout tab of the
Express Report Wizard.

Show Formula Button - Displays/Hides the formula editor button in the Layout
tab of the Express Report Wizard.

Standard Report Designher Settings

These settings only apply to the Report Designer.

Show Chart Wizard - Displays/Hides the Insert Chart button in the Report
Designer. Set to False to disable users from creating or editing charts.

Show Map Wizard - Displays/Hides the Insert Map button in the Report Designer.
Set to False to disable users from creating or editing maps.

Note: The first time Show Map Wizard is set to true a dialog appears prompting
you to accept the terms of using the Google Charts Api. Type “I accept” in the first
box and your full name in the second to accept the terms and enable mapping.

X

e\WebReports uses the Google Charts APl to provide mapping functionality.

Please read through the terms available here:
https://developers google com/chart/terms#license

To indicate that you accept the terms, type "l accept” into the input box:

|

Your digital signature (full name):

|

l_ ¥ cancel)

Chart Colors - Lists the values used for default chart colors. Hexadecimal values
should be separated by commas (or semicolons).

Map Colors - List the values used for default chart colors. Hexadecimal values or
css color names should be separated by commas (or semicolons).

Show Document Template - Displays/Hides the Document Template Menu. Set
to False to disable users from using the Document Template Menu.

46

Exago Inc.

Exago Technical Guide

EXX200
D

Show Document Template Upload Button - Set to True to allow users to upload
Document Templates to the Report Path. Set to False to prevent users from
uploading Document Templates.

Show Linked Reports Button - Displays/Hides the Linked Report button in the
Report Designer. Set to False to disable users from creating Linked Reports.

Show Insert Image Button - Displays/Hides the Insert Image button in the
Report Designer. Set to False to disable users from inserting images.

Show Advanced Window - Displays/Hides the Joins Menu under Advanced. Set
to False to disable users from modifying joins.

Show Advanced Joins — Displays/Hides additional options in the Joins Menu. Set
to True to enable advanced users to apply Event Handlers for the report. See
Server Events for more information.

Show Events Window - Displays/Hides the Events Menu under Advanced. Set to
True to enable advanced users to create, delete, and modify joins.

Show Linked Reports in New Tab - Specify how to display Linked Reports. Set
to True to open Linked Reports in a new tab. Set to False to display Linked Reports
in a floating window above the parent report.

Show Group Headers Formula Button - Displays/Hides the Formula Editor
Button in the Group Header/Footer Menu. Set to False to disable users from
grouping on formulas.

Dashboard Report Designer Settings

These settings only apply to the Dashboard Designer. If ‘Show Dashboard Reports’ is false
these settings will be ignored.

Prompt user for Parameters/Filters on Execution — Default setting indicating
whether to prompt the user for filter and/or parameter values when executing a
dashboard. The option can be overwritten on an individual dashboard in the Options
menu.

Show URL Item Button - Display/Hide the New URL item in the Toolbox of the
Dashboard Designer.

Common Settings

Show Help Button - Displays/Hides the Help button in the top right corner of
Exago. Set to False to disable users from accessing Context Sensitive help.

Custom Help Source - Specifies the URL that contains custom Context Sensitive
Help content. See Custom Context Sensitive Help for more details.

Show Exports in Tab - Set to True to open PDF reports in a tab in Exago. Set to
False to prompt the user to download the PDF.

47

Exago Inc.

Exago Technical Guide

EXX200
D

Show IE Download Button — Set to True if Internet Explorer is not automatically
prompting users to download PDF, XLS, RTF or CSV reports.

Show Join Fields - Displays/Hides any Data Fields that are used as Unique Keys
or Joins. Set to False to hide all unique key and join Data Fields from users. To hide
specific Data Fields see Column Metadata.

Show HTML Export Grid Lines — Sets the default value for the HTML output
option to show grid. This can be modified in the Options Menu of the Report
Designer.

Save on Report Execution - Set to False to disable automatic saving of reports
when executing from the Report Designer.

Enable Right-Click Menus - Set to False to disable right click menus Exago.

Enable Reports Tree Drag and Drop - Set to False to disable the dragging of
reports and folders in the Main Menu.

Show Report Upload/Download Options - Set to True to enable users to upload
and download report files by right clicking on folders and reports. Default value is
False.

Allow interactive HTML - Set to False to disable interactive HTML capabilities
including changing column width, styling output and interactive filters.

Default interactive HTML dock is open - Set to False to have the HTML Dock
minimized by default.

Interactive HTML default dock placement - Specify if the HTML Dock should
appear on the right or left of HTML output.

Allow save to report design for interactive HTML - Set to False to prevent
users from saving interactive html changes onto the report.

Programmable Object Settings

The Programmable Object Settings enable you to specify names for parameters that will
be passed from Exago to stored procedures, web services or .NET Assemblies. Using these
parameters will allow filtering to be done before the data is sent to Exago which will
increase performance and reduce server resources. For more information on these types
of Data Objects see Web Services & .NET Assemblies.

Programmable Data Object Settings x
‘Call Type Parameter Name calType

‘Column Parameter Name columnStr

Fiter Parameter Name fiterstr

Full Fiter Parameter Name

‘Sort Parameter Name soristr

Data Category Parameter Mame

Data Object ID Parameter Name

 General x

Parameter Value

48

Exago Inc.

Exago Technical Guide

EXX200
D

Names for the following Parameters can be set:

Call Type Parameter Name- Integer that specifies what Exago needs at time of
the call. There are three possible values.

o 0 :Schema - return a DataSet with no rows.
o 1 : Data - return a full DataSet.

o 2 : Filter Dropdown Values - returns data for the filter dropdown list. The
Data Field requested is passed in the Column Parameter and the filter value
is passed in the Filter Parameter (see below).

Column Parameter Name - Name of the column being requested by the user.
Only this column needs to be returned to Exago.

Filter Parameter Name -

o CallType = 1: The filter string specific to the Data Object being called
passed as standard SQL.

o CallType = 2: The current value of the filter whose dropdown is being
requested.

Full Filter Parameter Name -
o CallType = 1: The filter string for the entire report passed as standard SQL.
o CallType = 2: The Tenant and Row Level filters passed as standard SQL.

Sort Parameter Name - The sort string for the report. This is for informational
purposes only as Exago sorts data upon return from stored procedures and Web
Services.

Data Category Parameter Name - The Data Object’s Category. Can be used in
conjunction with the Data Object ID Parameter.

Data Object ID Parameter Name - Id of Data Object being called. For more
information see Calling a Single Web Service/.Net Assembly/Stored
Procedure.

Filter Settings

The Filter Settings provide control over what filter options are exposed to users and how
dropdowns in filters behave.

/ General x
Parameter Value
Filter Settings =
Show Group (Min/Max) Fitters True -
Allow New Fitters at Execution True -
Read Database for Fitter Values True -
Allow Filter Dependencies True -
Show Filter Description True -
49 Exago Inc.

Exago Technical Guide

EXX200
D

Names for the following Parameters can be set:

Show Group (Min/Max) Filters - Displays/Hides the Min/Max Filter menu. Set to
False to disable users from using Min/Max filters.

Allow New Filters at Execution - Controls the creation of new filters when a user
is prompted for a filter value at the time of report execution. Set to False to disable
new filters from being created at execution.

Read Database for Filter Values - Enables/Disables filter dropdowns to contain
values from the database. Set to false only if retrieving values for the dropdown will
take more than a couple of seconds.

Allow Filter Dependencies - Causes filter dropdowns to retrieve values
dependent on the filters above them in the menu. Set to True to enable.

o Note: This setting only works for Data Objects from databases and will not
change dropdowns from Web Services, .NET Assemblies, stored procedures,
etc.

o Note: Dropdowns after an ‘OR’ filter will not be dependent on previous
filters.

Show Filter Description - Enables/Disables reports to have a description text for
the filters menu. The filter description is set in the Description tab of the New
Report Wizard or the Description Menu. A help button will appear in the Filters
menu and display the filter description when clicked.

Default Filter Execution Window - Species the type of filter execution window to
new reports should use by default.

o Standard - New reports display the standard filter execution window.

o Simple with Operator — New reports display a simplified filter execution
window that only allows the operator and value to be changed.

o Simple without Operator — New reports display a simplified filter window
that only allows the value to be changed.

Allow User to Change Filter Window - Enables/Disables reports to change the
type of filter execution window that is displayed.

Include Null Values for 'NOT' Filters — Indicates to include NULL values for
filters with using the operators ‘not equal’ or ‘not one of".

Custom Filter Execution Window - Specifies a control or URL that contains
Custom Filter Execution Window. See Custom Filter Execution Window for more
details.

Database Settings

50

Exago Inc.

Exago Technical Guide EXago

The Database Settings allow administrators to adjust how Exago interfaces with
databases. Additional type-specific settings allow you to specify which driver to utilize
when connecting to each data source.

General x
Parameter Value
Database Settings =
Database Timeout 0 =
Database Row Limit 0 =
Disable Non-Joined Data Objects True -

The following Database Settings are available:

¢ Database Timeout - Maximum number of seconds for a single query to run.

Note: This setting will also control the maximum number of seconds that a
Web Service Api method can run. If set to ‘0’ the Web Service time out will
be ‘infinite".

¢ Database Row Limit - Maximum number of rows returned on a query. This only
applies to Tables, Views and Functions. Set to ‘0’ to return all rows.

e Disable Non-Joined Data Objects - If True users are not able to add Data
Objects to a report that does not have a join path with at least one other Data
Object on the report. Set to False to disable this behavior.

e Enable Special Cartesian Processing - If True any on-to-many Joins will cause
special processing to avoid data repeating on the report. Set to False to disable this
behavior.

Type-Specific Database Settings

Each Type of Data Sources has the following settings available.

¢ Data Provider - The name that can be used programmatically to refer to the data
provider. This matches the InvariantName found as a property of
DbProviderFactories in the machine.config file. See
http://msdn.microsoft.com/en-us/library/12kxkt25(v=vs.80).aspx for
more information.
Table Schema Properties - Specifies how to retrieve the schema of tables.

¢ View Schema Properties - Specifies how to retrieve the schema of views.
Function Schema Properties - Specifies how to retrieve the schema of
Functions.

e Procedure Schema Properties - Specifies how to retrieve the schema of
Procedures.

Note: For any of the Schema Property settings you can dynamically refer to properties
from the Data Source’s connection string by surrounding the property name in @ symbols.
Ex. "@database@" will be replaces with the database name from the connection string of
the Data Source being queried.

51 Exago Inc.

http://msdn.microsoft.com/en-us/library/12kxkt25(v=vs.80).aspx

Exago Technical Guide EXag0o

Scheduler Settings

Reports can be emailed or scheduled for recurring automated delivery to an email

address. The Scheduler settings are used to configure these services. Before adjusting
the settings ensure that the scheduler service ‘ExagoScheduler’ is installed, running and
set to automatically start. For more information see Installing the Scheduler Service.

The Remote Execution service can be used to move processing to a different server or to

provide load balancing across multiple servers. For more information see Load
Balancing.

/# General x |
Parameter Value
Scheduler Settings =
Enable Report Scheduling True -
Show Report Scheduling Option True -
Show Email Report Options. True -
Show Schedule Reports Manager True -
Show Schedule Ne End Date Option Falze -
Scheduler Manager User WView Level Current User -
Schedule Remeting Host tcpiflocalhost:2002
Enable Remote Report Execution Falze -
Remote Execution Remoting Host tep:flocalhost: 2002
Delete Schedules upon Report Deletion Falze -
Default Email Subject The scheduled report "@reportName@’ has been completed for @companyld@.
Default Email Body Thiz mez=age has been zent automatically from @browserTitle@ to inform you that the reguest to execute the report '‘@reportial
4 Password Reguirements (Only for pdf documents)
4| | Custom Scheduler Recipient Window

The following Scheduler Settings are available:

e Enable Report Scheduling - If False will override Show Report Scheduling
Option, Show Email Report Options, & Show Schedule Manager to False.

e Show Report Scheduling Option — Displays/Hides the scheduler icon on the Main
Menu. Set to False to disable users from creating scheduled reports.

e Show Email Report Options - Displays/Hides the email report icon on the Main
Menu. Set to False to disable users from emailing reports.

e Show Schedule Manager - Displays/Hides the scheduler manager icon on the
Main Menu. Set to False to disable users from editing existing schedules.

e Show Schedule No End Date Option - Controls if users must set an end date for
recurring report schedules. Set to False to force users to set a limit to the schedule.

e Show Schedule Intraday Recurrence Option - Displays/Hides options in the
Recurrence tab to have a schedule repeat throughout the day it is scheduled.

e Show Schedule Intraday Recurrence Option — Displays/Hides options in the
New Schedule Wizard to have the schedule repeat throughout the day it is run. Set
to False to disable users having schedules repeate during its execution day.

52 Exago Inc.

Exago Technical Guide EXago

e Scheduler Manager User View Level - Controls what information each user can
see in the Schedule Manager. These levels utilize the Parameters companyld and
userld. There are three possible values:

o Current User: Can only view and delete report jobs that have been created
by that user. This setting will hide the Host, User Id and Company Id columns
of the Schedule Manager.

o All Users in Current Company: User can only view and delete report
schedules for their company. This setting will hide the Host and User Id
columns of the Schedule Manager.

o All Users in All Companies: User can view and delete report schedules for
all companies (administrator).

¢ Email Scheduled Reports - Set to False to have the Scheduling Service save
reports to a repository instead of attaching them to emails. For more details see
Saving Scheduled Reports to an External Repository.

¢ Show Schedule Delivery Type Options — Set to true to allow users to choose the
output option (e.g. email or archiving) with each schedule. When enabled the
default value will reflect whatever is set in the 'Email Scheduled Reports' setting.

¢ Schedule Remoting Host- Sets the server and port for the ‘ExagoScheduler’
windows service.

¢ Enable Remote Report Execution — Permits report execution to be done on a
different server via the scheduler service. Set to True to enable this behavior.

e Enable Access to Data Sources Remotely - Permits all non-execution data base
calls to be done on a different server via the scheduler service. Set to True to
enable this behavior. Example calls include Filter value dropdowns, Data Object
Schema retrieval, and Data Source schemata retrieval in the Administration
Console.

¢ Remote Execution Remoting Host - Specifies the server(s) to use for remote
execution. The Port is set in the schedule remoting configuration of the scheduler.
Separate multiple servers with commas or semicolons. Ex.
http://MyHttpServer1:2001,tcp://MyTcpServer:2001.

e Delete Schedules upon Report Deletion — When a report is deleted
corresponding schedules can be deleted automatically by Exago. Set to True to
enable this behavior.

o Default Email Subject — Set a default subject that will be displayed in the
schedule report wizard. Parameters such as @reportName@ may be utilized in this
area.

o Default Email Body - Sets a default body that will be displayed in the schedule
report wizard. Parameters such as @reportName@ may be utilized in this area.

e Password Requirement (for PDFs only) — Requires a password for PDF export.
This parameter can be made up of the following values:

53 Exago Inc.

Exago Technical Guide EXago

o A: requires an upper case letter for each ‘A’.
o a: requires a lower case letter for each ‘a’.

o n: requires a numeric character for each ‘n’
o 4: password must have at least 4 characters.

Ex. ‘AAnna6’ would require a password of at least six characters with 2 capitals, 1
lower case and 2 numeric characters..

e Custom Scheduler Recipient Window - Provides URL, height and width for
custom Scheduler Recipient window. See Custom Scheduler Recipient Window for
more information.

User Settings

The User Settings give administrators choices about how to store and utilize users’
preferences such as which Dashboards and/or Reports to execute when they enter Exago.

& General x

Parameter Value
User Settings x
User Preference Storage Method | Cookie EI
Startup Report(s) Replace Getting Started | Falze [=]
Maximum Number of Startup Reports 1 @

The following User Settings are available:

e User Preference Storage Method - How to store User Preferences such as which
Dashboards and/or Reports to execute when a user enters Exago. There are two
possible values:

o None - Users will not have the ability modify User Preference features. The
User Preferneces button will be hidden.

o Cookie - User Preferences are stored in the browsers cookie. This is the
default behavior as it does not require any additional setup. However a user’s
preferences will not be carried over to other machines or browsers and will
be lost if the user deletes their browser’s cookies.

Note: A user is identified by the values of the Paramters userId and
companyld.

o External Interface - User Preferences are stored and retrieved via the
External Interface. This requires the host application to implement the
methods SetUserPreference and GetUserPreferences in the External
Interface but User Preferences will be preserved for a user across browsers
and machines.

54 Exago Inc.

Exago Technical Guide

EXX200
D

Startup Report(s) Replace Getting Started - Set to False to display both the
Getting Started Content and any Dashboard and/or Reports that were set to run
at startup. Set to True to hide the Getting Started Content if any Dashboards and/or
Reports execute when a user enters Exago.

Maximum Number of Startup Reports - Sets the number of Dashboards and/or
Reports that can be executed when a user enters Exago.

Other

Administrative options that do not fall into any of the previous categories are found in the
Other category.

General x |
Parameter Value
Other Settings x
Excel Export Target 2003 -
External Interface bhy=c\Exagola by D celbinlA bhyD ce.dl;ch WebReports. Services ApiEndpoint
Enable HTML Paging Falze -
Renew Session Automatically True -
Write Log File True -
Enable Debugging Falze -
Maximum Age for Temp Files 1440 2
Enable Web Service / Assembly Data Mapping Falze -
Limit Report to One Category True -
Cache External Services True -
Allow Multiple Sessions. True -
Auto Close APl Window Trug -
i ‘"Loadimage’ Cell Function Parameter Prefix
i Ignore Inaccessible Report Folders Falze -
i User ID
Password
Confirm Password
Debug Pazsword ~ ssssssss
eWebReports Expiration Date
Custom Code Supplied by Exago

The following Other Settings are available:

Excel Export Target - Choose the type of Excel export you would like. Choosing
2003 will automatically split the workbook into multiple worksheets when Excel’s
row limit is reached.

External Interface - Provide a Web Service URL or .NET Assembly to interface
with the external module. For more information see External Modules.

Enable HTML Paging - Controls when data for HTML output is sent to the client.
Set to true to send data as each page is requested (this will cause multiple hits to
the server). Set to False to send all the data to the client browser at once.

Renew Session Automatically - This setting is used to bypass the session
timeout property set in web.config. Set to True to send a server side AJAX callback
every two minutes to keep the session from expiring. Note: this will only work if the
timeout period set in web.config is greater than two minutes.

55

Exago Inc.

Exago Technical Guide

EXX200
D

Write Log File - Set to True to write a log file for debugging purposes. For more
information see Read the Log File.

Enable Debugging - Set to True to enable debugging. For more information see
Manually Creating a Debug Package.

Maximum Age for Temp Files - Maximum number of minutes a temp file can
exist before Exago’ automatic cleanup of temp files will remove it. It is important to
understand that setting the maximum age too low may cause an error as users
might spend some time viewing a report executed in HTML which uses AJAX to read
temp paging files. The default value is 1440 minutes (1day). The minimum this
value can be set to is 30 minutes.

Enable Web Service/Assembly Data Mapping - Allows Web Service and .NET
Assembly methods to replace Data Field names.

Limit Report to One Category - Limits reports to Data Objects within a single
category. Set to True to enable this behavior.

Cache External Services - Caches external Web Services and .NET Assemblies.
Setting to False may reduce performance due to loading/unloading of services.

Schema Access Type - Specifies whether to query the Data Source for an
Object’s schema or to read it from Column Metadata. See Note on Retrieving
Data Object Schemas for more information.

Allow Multiple Sessions - Allows multiple sessions of Exago per user. Set to True
to enable this behavior.

‘LoadImage’ Cell Function Parameter Prefix - A string that is prepended to
the LoadImage Function when the report is run. This setting allows an
administrator to hide the report path of images on your server.

Ignore Inaccessible Report Folders - If False Exago throws an error message if
a folder has an accessibility issue. Set to True to ignore the error and hide the
inaccessible folder.

User ID - User Id to gain Access to the Administration Console. Leave blank to
permit unverified access to the Administration Console.

Password - Used in conjunction with User ID to gain access to the Administration
Console.

Confirm Password - Used to confirm the value of “Password.”

Debug Password - A password that enables clients to send a debug package
directly to Exago Inc. Leave blank to disable Debug Extraction. When set to true,
correct permissions must be set on the ./Debug Folder. For me details see
Submitting a Debug Package.

eWebReportion Expiration Date - A date when users will no longer be able to
access Exago.

Custom Code Supplied by Exago - Used for custom functionality.

56

Exago Inc.

Exago Technical Guide EXago

Roles

This chapter explains how to use the Roles to control access to Data and override the
General settings.

WebReports.xml -

+ 7 R

+ & Data
» & General
- & Roles
r 8 Admin
- & Travis
& Main
& General
& Folders
& Objects
& Filters

e To add a new role select ‘Roles’ in the Main Menu then click the Add button (+).
e To edit a role either double click it or select it and click the edit button (L'f).

e To delete a role select it and click the delete button (x).

About Roles

Roles are created to specify how a user or group of users interfaces with Exago. Roles can
restrict access to folders or Data Objects. Roles can also override the general settings.

Note:

Exago was desighed to be an integrated reporting solution for other applications
using the application’s own security and authentication methods. Although you can
create Roles through the Administration Console, Roles are typically created through
the API to dynamically set the users access. For more information see chapters
Integration and API.

Roles have five sections to control access: Main, General, Folders, Objects, & Filters.

Main - controls the broad properties of the Role.

General - overrides General Settings.

Folders - controls which report folders a role can see and edit.
Objects - controls which Data Objects a role can access.
Filters - provides row level filters on Data Objects.

57 Exago Inc.

Exago Technical Guide EXago

Creating Roles

To create a Role click ‘Roles in the Main Menu and click the Add button (+). This will
open the Main Section.

Main Settings

The main settings control the broad properties of the Role.

% New Role x

Main -
1] Active Include All Folders All Folders Read Only Allow Folder Managment Include All Data Objects

The Main settings control:

e Id - A name for the role.

Active - Check to activate the role.

e Include All Folders - If checked all folders that are not listed in Folder Access will
be available. If unchecked only those listed in Folder Access will be available.

e All Folders Read Only - If checked all folders that are not specified in Folder
Access will be execute-only. If unchecked only those specified in Folder Access will
be execute-only.

¢ Allow Folder Management - Displays/Hides the Folder Management Icon and
functionality.

e Include All Data Objects - If checked all Data Objects that are not listed in
Objects Access will be available. If unchecked only those listed in Objects Access
will be available.

General Settings

The General Settings of a Role override the Global General Settings. Utilize the API in
order to overwrite additional settings for a user or group of users. For more information
see API.

58 Exago Inc.

Exago Technical Guide EXago

& Travis
General x
Report Path C\Reports
Date Format
Time Format
DateTime Fermat
Numeric Separator Symbol
Numeric Currency Symbol €
Numeric Decimal Symbol
Show HTML Export Grid Lines | Falze
Show Crosstab Reports | Falze
Show Express Reports | True

Show Styling Toclbar |

Show Themes

Show Grouping

Show Formula Button

Show Standard Reports

Database Timeout

Show Report Scheduling Option

Show Email Report Options

Show Schedule Reports Manager

O) = i) |

|
|
|
|
|
Read Database for Filter Values |
|
|
|
|

Scheduler Manager User View Level

The following settings cane be overwritten:
¢ Report Path - The parent folder for all reports. The Report Path can be:
o Virtual Path
o Absolute Path - used to provide increased security (ex. C:\Reports)

o Web Service URL or .NET Assembly - using a Web Service or .NET
Assembly allows reports and folders to be managed in a database. For more
information see Report Folder Storage & Management. A Web Service
should be formatted as ‘url=http://WebServiceUrl.asmx’. A .NET Assembly
should be formatted as ‘assembly = AssemblyFullPath.dll;class-
Namespace.ClassName'.

¢ Date Format - The format of date values. Can be any .NET standard (ex.
MM/dd/yyyy). Leave blank to use the browser culture.

e Time Format - The format of time values. Can be any .NET standard (ex.
h:mm:ss tt). Leave blank to use the browser culture.

e Date Time Format - The format of date-time values. May be any .NET standard
(ex. M/d/yy h:mm tt). Leave blank to use the browser culture.

Note: For more details on .NET Date, Time and DateTime Format Strings please
visit http://msdn.microsoft.com/en-
us/library/8kb3ddd4%28v=vs.71%29.aspX.

59 Exago Inc.

http://msdn.microsoft.com/en-us/library/8kb3ddd4%28v=vs.71%29.aspx.
http://msdn.microsoft.com/en-us/library/8kb3ddd4%28v=vs.71%29.aspx.

Exago Technical Guide

EXX200
D

Numeric Separator Symbol - Symbol used to separate 3 digit groups (ex.
thousandths) in numeric values. The default is ',

Numeric Currency Symbol - Symbol prepended to numeric values to represent
currency. The default is '$".

Numeric Decimal Symbol - Symbol used for numeric decimal values. The default
is ..

Server Time Zone Offset — Value that is used to convert server to client time (the
negation is used to convert client to server time). Leave blank to use server time,
or to use External Interface to calculate value.

Show HTML Export Grid Lines — Sets the default value for the HTML output
option Show Grid. This can be modified in the Options Menu of the Report Designer.

Show Crosstab Reports - Displays/Hides the Crosstab Report Wizard and Insert
Crosstab button in the Report Designer.

Show Express Reports — Displays/Hides the Express Report Wizard.

Show Styling Toolbar - Displays/Hides the styling tools in the Layout tab of the
Express Report Wizard.

Show Themes - Displays/Hides the Theme dropdown in the Layout tab of the
Express Report Wizard.

Show Grouping - Displays/Hides the grouping tools in the Layout tab of the
Express Report Wizard.

Show Formula Button - Displays/Hides the Formula Editor button in the Layout
tab of the Express Report Wizard.

Show Standard Reports — Displays/Hides the Standard Report Wizard and Report
Designer.

Note: If 'Show Standard Reports’ is False then attempts to edit Standard or
Crosstab reports will cause an ‘access denied’ message. Additionally if False, users
will not be able to create Crosstab reports.

Database Timeout - Maximum number of seconds for a single query to run.

Read Database for Filter Values - Enable/Disables filter dropdowns to contain
values from the database. Set to false only if retrieving values for the dropdown will
take more than a couple of seconds.

Show Report Scheduling Option - Displays/Hides the scheduler icon on the Main
Menu. Set to False to disable users from creating scheduled reports.

Show Email Report Options - Displays/Hides the email report icon on the Main
Menu. Set to False to disable users from emailing reports.

Show Schedule Manager - Displays/Hides the scheduler manager icon on the
Main Menu. Set to False to disable users from editing existing schedules.

60

Exago Inc.

Exago Technical Guide EXago

e Scheduler Manager User View Level - Controls what information each user can
see in the Schedule Manager. These levels utilize the Parameters companyld and
userld. There are three possible values:

o Current User: Can only view and delete report jobs that have been created
by that user.

o All Users in Current Company: User can only view and delete report
schedules for their company.

o All Users in All Companies: User can view and delete report schedules for
all companies (administrator).

Folder Access

The Folder Access controls which report folders are visible and executable for the Role.

§ Administratior =
foiders A
‘ 0*‘
Customer Reports lg »

@ Note

If Include All Folders is checked this list will deny access to the folders added, if
unchecked the list will allow access to the folders added.

If All Folders Read Only is checked this list will overwrite the setting when a folder
is added without the Read Only option checked.

e To add a folder click New ().

e Click in the Folder Name column and select the Folder you want to add.
e To make the folder execute only check the box in the Read Only column.
e To delete a folder click the delete button (*).

Object Access

The Objects Access controls which Data Objects are accessible to the Role. A report can
only be executed if the Role has access to all the Data Objects on the report.

61 Exago Inc.

Exago Technical Guide EXago
§ Administratior =

Categories
New SOL Object

(& aga)

E Note

If Include All Data Objects is checked this list will deny access to the Data Objects
added, if unchecked the list will allow access to the Data Objects added.

e To add a Data Object click New (@).

e Click in the Data Object Name column and select the Object you want to add.
e To delete an Object click the delete button (*).

Row Level Access

The Row Level Access provides a means to filter a Data Object by Role.

& Administratior

o] owsomom-wn x

(& aaa)

To add a Data Object click New (m).
e C(lick in the Data Object Name column and select the Object you want to add.
e Enter the filter string in the Filter String Column. The filter string should be
Standard SQL. This string will be added to the Where clause.
o To delete a Data Object click the delete button (X).

Functions

This chapter explains how to create Custom Functions that can be utilized when creating
reports.

62 Exago Inc.

Exago Technical Guide EXago

| WebReports xml El

+ 7 R

+ & Data

r & General

+ & Roles

+ fie Functions
& DayOfvear
M UnixTimeToDateTime
& InflationRate

e To add a new function select ‘Functions’ in the Main Menu then click the add button

(EH-)-

e To edit a function either double click it or select it and click the edit button (i).

e To delete a function select it and click the delete button (x).
About Functions

Exago comes with a large number of predefined functions that can be used to make
formulas in the Formula Editor. As an administrator you may create additional custom
functions using high level coding languages. Custom functions will be accessible to users
in the Formula Editor or by typing their name into a cell of a report. Functions can be
added to a preexisting function category or a function can be put into a new custom
category.

Functions can be written in C#, JavaScript or VB. Net. Functions can take as few or many
arguments as inputs, provided that the max number of arguments is greater than or equal
to the minimum number of arguments.

Functions written in C# and VB.Net can get and set elements from the current session of
Exago such as Parameter values. See Exago Session Info for more information.

Functions
To create a custom function, select ‘Functions’ in the Main Menu and click the Add button

(*). This will open a Custom Function tab.
Each Custom Function has the following properties:

e Name - A name for the function that will be displayed to the end users.

e Description — A description of the function that will be displayed to the end users.
Note: To support multi-language functionality, if the description matches the
id of any element in the language files then the string of that language
element will be used instead of the description. For more information see
Multi-Language Support.

63 Exago Inc.

Exago Technical Guide

EXX200
D

Minimum Number of Arguments — The minimum number of values that an end
user must enter in the function separated by commas.

Maximum Number of Arguments - The maximum number of values that an end
user may enter in the function separated by commas.

Note: Arguments are passed to your code as an array of generic objects so
there can be as many arguments as desired. The argument array is accessed
by args[].Arguments are passed into the function as objects.

Category - A way of grouping similar functions. You can assign custom functions
to an existing Exago Category or create a new Category. To create a new Category,
select “"Other”. An input field will appear. Leaving this field blank will assign your
Function to the “Other” Category in the Exago Formula Editor. A non-empty value
in this field tells Exago to create a new Category with the specified name.

Note: To support multi-language functionality, if the custom category
matches the id of any element in the language files then the string of that
language element will be used instead of the description. For more
information see Multi-Language Support.

Language - The high-level language of the code for the function. May be C#,
JavaScript or VB.Net.

Reference - A semicolon-separated list of any dlls that need to be referenced by
the Custom Function. If the dlls are not accessible in the GAC then the dlls must be
copied to the Bin folder of Exago or the reference should point to their physical
path.

Note: System.dll does not need to be listed as a reference as it is already
available.

Program Code - The program code for your Custom Function. Press the green
check mark to verify the code executes properly ().

Note: Parameters may be referenced within custom functions by placing
their name between @’s.

& DayOfYear =
Name DayOfvear
Description Returns the day of the year in a standard Gregorian date based on a 2586-day
Winimum Mumber of Arguments 1 @
Maximum Number of Arguments 1 @
Category | E'
Language CSharp EI References System.dil

1 return System.Convert.ToDateTime (args[0]).Day0f¥ear.ToString ()

64

Exago Inc.

Exago Technical Guide EXago

Exago Session Info

Custom Functions can access the Exago session state through a “sessionInfo”
variable. Access to sessionInfo allows powerful new capabilities such as the ability to
persist values across function invocations, allowing each invocation to be aware of
previous calls and behave accordingly.

Note: sessionInfo can also be accessed by Server Events. For more information see
Server Events.

The second example in the next section provides a function that returns the line number
of the report being written by creating and incrementing a Stored Value which exists only
for the report execution.

The following properties are available:

e Pagelnfo - this is the parent of all information in the current session. This includes
the active Report and SetupData objects.

Note: Since the Report and SetupData objects are accessed frequently, direct
pointers are include for these objects.

¢ Report - an object that contains all of the report’s Data Object, sort, filter and
layout information.

e SetupData - an object that contains all of the session’s configuration setting
including Filters, Parameters, Data Objects, Joins, Roles, etc.

e Companyld - contains the value specified by the companyld Parameter.
e UserlId - contains the value specified by the userIld Parameter.

The following methods are available:

e GetReportExecuteHtmli(string reportName) - a method that executes the
specified report and returns its html output. This could be used to embed a report
within a cell of another report. Note: the reportName is relative to the session’s
report path.

e GetParameter(string parameterName) - a method that returns the specigied
Parameter Object. GetParameter first looks in the Report Parameter collection,
parameters beign utilized by the report, and then in the Config Parameter
collection, other parameters such as hidden parameters or multi-tenant values.

e GetReportParameter(string parameterName) - a method that returns the
specified Parameter object that is utilized by the report being executed. Ex. If a
parameter is prompting a user for a value it will be available with the prompted
value.

65 Exago Inc.

Exago Technical Guide

EXX200
D

GetConfigParameter(string parameterName) - a method that returns the
parameter object stored in the default configuration. Ex. Any parameter that is not
being utilized by the report being executed.

WriteLog(string text) - a method that writes the specified text to the
eWebReport’s log file.

Note: The following methods utilize Stored Values which are objects that can be
created and set by custom functions during report execution to pass data between
custom function calls. Stored Values only exist for the duration of report execution.

GetStoredValue(string valueName, object initialvValue = null) - a method that
retrieves a Store Value. If a there is no Stored Value with the specified valueName,
then one will be created with the specified initialValue.

SetStoredValue(string valueName, object newValue) - a method that sets the
value of a Store Value. Setting newValue to null will delete the Stored Value.

Example

The following are two examples of Custom Functions.

Name - ReverseString

Description - Reverses characters in the input string
Minimum Number of Arguments - 1

Maximum Number of Arguments - 1

Language - C#

Category - Other

Program Code -
string inputString = args[@].ToString();
char[] inputChars = inputString.ToCharArray();
System.Text.StringBuilder reverseStringSb = new System.Text.StringBuilder("");

for (int i = inputChars.Length - 1; i >= 0; i--)
{

}

return reverseStringSb.ToString();

reverseStringSb.Append(inputChars[i]);

Name - LineNumber

Description - Displays the number of the line of the report.
Minimum Number of Arguments - 0

Maximum Number of Arguments - 0

Language - C#

Category - Other

Program Code -
// this function creates a Stored Value and increments the value by 1 each time
the value is rendered on a report
int i = (int)sessionInfo.GetStoredValue("IncrementNumber", 0);

// increment the value by 1 and return
sessionInfo.SetStoredValue(“IncrementNumber", ++i);

66

Exago Inc.

Exago Technical Guide EXago

return ij;

Server Events

In an effort to meet the reporting needs of unique and varied environments, Exago offers
numerous extensibility features. As part of this effort Exago makes available certain
events during the report execution process. When these events occur, an Event Handler
consisting of a .Net Assembly method or custom code snippet can be executed to make
impactful changes on the report execution process.

This chapter explains how to create Events Handlers that run custom code when reports
are executed.

| WebReports_xml El

+ /7 R

» = Data

r & General

r 8 Roles

r J= Functions

- Ed Server Events
& Decompress_WebSve_Data
B Sort_By_Formula

e To add a new Event Handler select ‘Server Events’ in the Main Menu then click the
add button (:‘F).
e To edit an existing Event Handler either double click it or select it and click the edit

button ({;).
e To delete an Event Handler select it and click the delete button (x).

Event Handlers

Event Handlers provide code that Exago can execute when certain events happen during
the report execution process. This code can either come from a .Net Assembly method or
within Exago configuration.

All existing Event Handlers are listed in the Main Menu under Server Events. All the
Event Handlers you are adding or editing will be displayed in a Tab entitled Server Events.

Each Event Handler has the following properties:

e Name - Provides a unique identifier for each Event Handler

67 Exago Inc.

Exago Technical Guide EXago

e Function - Can either be Custom Code or a .Net Assembly method.

o Custom Code - To save code directly in Exago, select Custom Code from the
first function dropdown. Clicking on the second dropdown opens the custom
code menu.

See Custom Code for information on how to access the arguments for each

Event. Press the green check mark to verify the code executes properly ().
Custom Code has three properties:
*» Language - Code can be written in C#, Javascript or VB. Net.

= References - A semicolon-separated list of any .Net Assembly dlls
that need to be referenced by the Event Handler

Note: System.dll does not need to be listed as a reference as it is already
available.

» Code - The code that will be executed by Exago when called.

Custom Code X

Language CSharp EI References System. Data.dll; System.Xml.dll
1 System.Data.DataTable dt = (System.Data.DataTable) args[0]:
2
3 // prevent unauthorized users from knowing the age of an employee, they can know tl
4 ff TODD: actually check userId/companyId to see if they can view year
5 | bool shouldCensor = true;
6
7 if (shouldCensor && dt.Columns.Contains ("Employees.BirthDate™))
8 {
g foreach (System.Data.DataRow row in dt.Rows)
10 {
11 for (int i = 0; i < row.ItemArray.Length; i++)
1z {
13 row ["Employees.BirthDate™] = ((DateTime)row["Employees.BirthDate™]) .Ad:
14 }
15 ¥
16|}
17| return dt;

< m | 3

7 o

o .Net Assembly Method - To utilize a .Net Assembly method first create a
.Net Assembly Data Source. Select the desired assembly from the first
Function dropdown. Clicking on the second dropdown will open a list of
available methods.

See .Net Assemblies for information on how to access the arguments for
each Event.

Note: The Assembly’s dll will be locked by Exago when it is first accessed. To
replace the dll, unlock it by restarting the IIS App pool.

Note: If you want to utilize the sessionInfo object that is passed to all Event
Handlers the Assembly must include a reference to WebReportsApi.dlIl. For
more information see Session Info.

68 Exago Inc.

Exago Technical Guide EXago

Note: All methods used as Event Handlers must be static.

EJ Server Events x]['D Getling Started]

OnDataCombinedAssemblyCensorEmployeeBirthYear x
Name: OnDataCombinedAssembhyCensorEmployeeBirth ear

Function | EventSourceOnOKFitersDialog [=] (=]
Global Event [Wone |

- EventSourceOnOkFiltersDialog
= Methods

Returntull
ReturnBlank
ReturnWhite Space
ReturnText
ReturnLanguageld
LogCrderDateFilervalue

Vo

e Global Event - In this dropdown select an Event to indicate that the Event Handler
should be called whenever this event occurs for all report execution. Leave Global
Event set to ‘None’ to indicate the Event Handler is meant for a specific report.

o Specified Event - The Event Handler will be called when the specified Event
happens during the execution of all reports.

Ex. Selecting OnReportExecuteStart from this dropdown will cause the Event
Handler to be called whenever any Report Execution begins.

o None - The Event Handler will not be called automatically for all reports, but
can be set to run for the execution of specific reports. See Setting Event
Handlers on Specific Reports for more information.

Custom Code

Event Handler custom code can be saved directly in Exago via the Administration Console.
There are two objects that custom code can utilize to access information relevant to an
Event.

e sessionInfo - Without any special references, all custom code can make use of a
sessionInfo object that provides access to elements of Exago current session such
as parameters, filters, the logger, etc.

e arguments array - Custom code can also access an array of input values called
args[]. For each Event the content of the args array will be different. The content of
this array is detailed in Full Description of Events.

.Net Assemblies

Event Handlers can also reside in .Net Assemblies. The following are important details for
using .Net Assemblies as Event Handlers.

69 Exago Inc.

Exago Technical Guide

EXX200
D

The Assembly’s dll will be locked by Exago when it is first accessed. To replace the
dll, unlock it by restarting the IIS App pool.

The first argument of all Event Handlers is the sessionInfo object which can be
used to access elements within the Exago session. To make use of this object the
assembly must reference WebReportsApi.dll.

If the code does not need to make use of sessionInfo then the method signature in
the assembly can declare sessionInfo as an object instead of as a sessionInfo data
type. For more information see Available Events.

Setting Event Handlers on Specific Reports

Event Handlers can either be set to run during the execution of every report or to only be
called when executing specific reports.

Note: When multiple Event Handlers are set to run for a single Event, all the Event
Handlers are run using the same input values and then the first non-null return value is
used by Exago. This means that the return value of Report-specific Event Handlers will
take precedence over global Event Handlers.

Ex. Suppose there is a global Event Handler for OnExecuteSqlStatmentConstructed
that logs each reports SQL query and a report specific Handler that modifies the
Where clause of the SQL. When the specified report is run, both Handlers will be
executed and return an SQL string. If non-null, the modified SQL from the report
specific Event Handler will be utilized by Exago to query the database.

To set an Event Handler to be report specific:

In the Administration Console:

1.

2.

Set the Event Handler’s Global Event to None. Click Apply or Ok.

In the Feature/UI Settings set Show Events Window to True. Click Apply or Ok.

In the Reporting Application:

1.

2.

In the Main Menu select the desired report and double click or click the edit button

).

Select the Report Options drop-down menu and hover over Advanced. Click Events.
This will cause the Events Menu to appear.

70

Exago Inc.

Exago Technical Guide EXago

= = B @R | Aral

Template
Advanced Joins

Even

In the Event Menu click the Add button (@).
From the Event dropdown select when the Event Handler should be called.

From the Action dropdown select which the desired Event Handler.

o o > w

Click Okay and save the report.

OnOkFitersDialog E Log_Order_Date_Filer_Value

Displaying User Messages from Server Events

Some Server Events are designed to displays messages to the user based return value.
However for the other server events* a user message can be displayed by throwing the
following excetion method.

WrUserMessage(string messageOrld, wrUserMessageType Type)

Displays a message to the user.

wrUserMessageType can either be Text or Id.

Text - The user message will display the string messageOrld

Id - The user message will display the string associated with the Id in the
Language Files.

71 Exago Inc.

Exago Technical Guide EXag0o

This requires a reference to WebReports.Api.Common

Example //0OnWebServiceExecuteEnd, inspect the returned value and throw a
//message if it matches any of the error messages.

object webServiceResult = args[0];
switch(webServiceResult.ToString())
{

case "messagel” : throw new WrUserMessage("Some Message to User",

WrUserMessageType.Text);

// add any other messages

}

return webServiceResult;

*Note: This cannot be used for the Events OnConfigLoadStart or OnConfigLoadEnd.

Quick List of Events

The following Events can be assigned Event Handlers for runtime invocation.

OnDataCombine - occurs when data is combined and initially processed; expects a Data
Table to be returned.

OnReportExecuteStart - occurs when report execution begins; expects a string to be
returned to indicate if execution should proceed.

OnReportExecuteEnd - occurs when a report execution finishes; any return value will
be ignored.

OnWebServiceExecuteEnd - occurs when a web service data source returns data;
expects an xml string to be returned.

OnExecuteSqlStatmentConstructed - occurs before the data source is queried for
report execution; expects an SQL string to be returned.
OnFilterSqlStatmentConstructed - occurs before the data source is queried to
populate the filter dropdown; expects an SQL string to be returned.

OnOKkFiltersDialog - occurs when Ok is clicked on the Filter Execution Window; expects
a string to be returned to indicate if execution should proceed.

OnOkParametersDialog - occurs when Ok is clicked on the Parameter Execution
Window; expects a string to be returned to indicate if execution should proceed.
OnScheduledReportExecuteSuccess - occurs when a scheduled report is executed;
expects a Boolean to be returned to indicate if the report should be sent as scheduled or
intercepted.

OnRenameFolderStart - occurs when a user attempts to rename a folder; expects a
string to be returned to indicate if execution should proceed.

OnRenameFolderEnd - occurs when a folder has been renamed; any return value will
be ignored.

OnConfigLoadStart - occurs when the configuration of Exago is initially loaded; expects
a void return.

72 Exago Inc.

Exago Technical Guide EXag0o

OnConfigLoadEnd - occurs after the last Api changes have been made to of Exago’
configuration; expects a void return.

Note: For the following descriptions the data type WebReports.Api.Reports.SessionInfo is
refered to as SessionInfo. The class System.Data.DataTable is referred to as DataTable.

Full Description of Events

OnDataCombined

The OnDataCombined Event allows the inspection and/or modification of the raw data set
after retrieval from the Data Sources and initial combining within Exago. A common use
of this event is to modify or blank sensitive data fields in a Report depending on the
authorizations available to the user executing the report.

Signature

For custom code the args array is structured as follows:
args[] contains a single DataTable of the combined data in position zero.

For .Net Assmblies the method signature is as follows:
DataTable EventHandlerName(SessionInfo sessionInfo, DataTable combinedData)

Expected Return

The OnDataCombined Event expects a DataTable to be returned. The schema of the
DataTable must match that of combinedData.

Notes

In the DataTable, if a Data Object has an Id then that will be used as the column names,
otherwise the database name will be used. Data Fields will always use their database
names despite any Column Metadata.

Example

The following example checks a Parameter called AllowViewSSN and then censors the
columns named SocialSecurityNumber.

System.Data.DataTable dt = (System.Data.DataTable) args[0];
if (sessionInfo.GetConfigParameter(“AllowViewSSN”) == “true &&
dt.Columns.Contains("Employees.SocialSecurityNumber™))

{
//change the value of SSN to blank
foreach (System.Data.DataRow row in dt.Rows)
{
for (int i = @; i < row.ItemArray.Length; i++)
{
row["Employees.SocialSecurityNumber"] = “Xxx-XX-XXXX;
}
}
}
return dt;

73 Exago Inc.

Exago Technical Guide EXag0o

Note: This assumes the column SocialSecurityNumber is saved as a string. If trying to set
a date or date time field to blank use System.DBNull.Value.

The following example filters the data based on a calculated age value.
// get field name and age from parameters to compare against

string fieldName = sessionInfo.GetParameter("fieldName").Value;

int age = int.Parse(sessionInfo.GetParameter("age").Value);

// log parameters
sessionInfo.WriteLog("FilterByAge fieldName: " + fieldName);
sessionInfo.WriteLog("FilterByAge age value: " + age.ToString());

// get DataTable view and filter
System.Data.DataTable dt = (System.Data.DataTable)args[0];
System.Data.DataView dv = dt.DefaultView;

foreach(System.Data.DataRowView drv in dv)

{
if (drv[fieldName] == System.DBNull.Value || (int)((System.DateTime.Today -
(System.DateTime)drv[fieldName]).Days / 365) < age)
drv.Delete();

}

// return filtered DataTable
return dv.ToTable();

OnReportExecuteStart

The OnReportExecuteStart Event occurs at the beginning of the Report Execution process.
This Event could be used to check properties of a report and log or stop execution.

Signature

For custom code the args array is structured as follows:
args[] is empty.

For .Net Assmblies the method signature is as follows:
string EventHandlerName(SessionInfo sessionInfo)

Expected Return

The OnReportExecuteStart Event expects a string to be returned. Based on the return
string there are three possible results.

e Null / Whitespace - If the string is null or whitespace then the report
execution will continue as expected.

e Languageld - If the string matches the id of any element in the language
files then the string of that language element will be displayed as a message
to the user and the report execution will terminate. For more information see
Multi-Language Support.

e Other - If the string does not match the id of any element in the language
files then the returned value will be displayed as a message to the user and
the report execution will terminate.

74 Exago Inc.

Exago Technical Guide EXag0o

Notes

The report being executed can be accessed through the sessionInfo object by using
sessionInfo.Report.

Example

The following example shows how each report execution can be written to a log file.

//Writes the current time, companyId, userId and report name to a specified log file.
File.WriteAllText(“C:\ReportExecutionLogFile”, String.Format(“{@}, {1}, {2}, {3}”,
DateTime.Now.ToString(), sessionInfo.CompanyIld, sessionInfo.UserId, sessionInfo.Report.Name));
//returns null to proceed with execution

return null;

OnReportExecuteEnd

The OnReportExecuteEnd Event occurs at the end of the Report Execution process. This
Event could be used to track which report executions return data.

Signature

For custom code the args array is structured as follows:
args[] contains a single Boolean indicating if Data qualified (True), or not (False).

For .Net Assemblies the method signature is as follows:
string EventHandlerName(SessionInfo sessionInfo, bool DataQualified)

Expected Return

Anything can be returned to the OnReportExecuteEnd Event. Any return value will be
ignored.

OnWebServiceExecuteEnd

The OnWebServiceExecuteEnd Event occurs when data is returned from a Web Service
Data Source. This Event could be used to decompress or decrypt data being returned from
a Web Service Data Source.

Signature

For custom code the args array is structured as follows:
Args[] contains a single string of the data coming from the Web Service in position
zero.

For .Net Assemblies the method signature is as follows:
string EventHandlerName(SessionInfo sessionInfo, string webServiceXml)

Expected Return
The OnWebServiceExecuteEnd Event expects a string to be returned.
Note

This Event is only occurs when the callType Parameter has the value 1.

75 Exago Inc.

Exago Technical Guide EXag0o

Example

The following example shows how information from a web service could be decompressed.

byte[] compressedBuffer = Convert.FromBase64String((string)args[@]);
using (System.IO.MemoryStream stream = new System.IO.MemoryStream())

int uncompressedLength = BitConverter.ToInt32(compressedBuffer, 0);
stream.Write(compressedBuffer, 4, compressedBuffer.Length - 4);
byte[] uncompressedBuffer = new byte[uncompressedLength];

stream.Position = 0;
using (System.IO.Compression.GZipStream compress = new
System.IO.Compression.GZipStream(stream, System.IO.Compression.CompressionMode.Decompress))

{
compress.Read(uncompressedBuffer, 0, uncompressedBuffer.Length);
compress.Close();
return System.Text.Encoding.UTF8.GetString(uncompressedBuffer);
}

OnExecuteSqlStatementConstructed

The OnExecuteSqlStatementConstructed Event occurs just before SQL is sent to the Data
Source to retrieve data for report execution. This Event could be used to inspect, log or
modify the SQL that is being used for report execution.

Signature

For custom code the args array is structured as follows:
args[] contains a string representing the execution SQL in position zero.

For .Net Assemblies the method signature is as follows:
string EventHandlerName(SessionInfo sessionInfo, sting exectuionSql, SqlObject
sqlObject)

Expected Return
The OnExecuteSqlStatementConstructed Event expects a string to be returned.
Example

The following example shows how report execution SQL can be written to a specified log
file.

//Writes the current time, companyId, userId and report name to a specified log file.
File.WriteAllText(“C:\ReportSqlLogFile”, String.Format(“{@}, {1}, {2}, {3}”,
DateTime.Now.ToString(), sessionInfo.CompanyIld, sessionInfo.UserId, args[@]));
//returns null to proceed with execution

return args[0];

OnFilterSqlStatmentConstructed

76 Exago Inc.

Exago Technical Guide EXago

The OnFilterSqlStatementConstructed Event occurs just before SQL is sent to the Data
Source to retrieve data to populate the filter dropdown menu of Exago. This Event could
be used to inspect, log or modify the SQL that is being used to populate the filter
dropdown menu.

Signature

For custom code the args array is structured as follows:
args[] contains a string representing the filter SQL in position zero.

For .Net Assmblies the method signature is as follows:
string EventHandlerName(SessionInfo sessionInfo, sting filtersSql, SqlObject
sqlObject)

Expected Return
The OnFilterSqlStatementConstructed Event expects a string to be returned.
Note

This Event will provide the SQL for the Filter Dropdown Object if that feature is being
utilized. See Data Objects for more information on Filter Dropdown Objects

Example

The following example shows how the filter dropdown SQL can be modified to provide the
top 200 results instead of the top 100.

//this code example assumes SQL Server as a Data Source
string sql = args[@].ToString();

string newSqul = sql.Replace(“Top 100” , “Top 200”);
return newSql;

OnOkFiltersDialog

The OnOkFiltersDialog Event occurs when a user clicks on the Ok button in the Filter
Execution Window. This window only displays if prompt for value was checked for a filter.
This Event could be used to see what filters are being used on the report and/or assure
that a filter exists.

Signature

For custom code the args array is structured as follows:
args[] is empty.

For .Net Assemblies the method signature is as follows:
string EventHandlerName(SessionInfo sessionInfo)

Expected Return

The OnOKkFiltersDialog Event expects a string to be returned. Based on the returned string
there are three possible results.

¢ Null / Whitespace - If the string is null or whitespace then the report
execution will continue as expected.

77 Exago Inc.

Exago Technical Guide EXago

e Languageld - If the string matches the id of any element in the language
files then the string of that language element will be displayed as a message
to the user and the report execution will terminate. For more information see
Multi-Language Support.

e Other - If the string does not match the id of any element in the language
files then the returned value will be displayed as a message to the user and
the report execution will terminate.

Notes

The filters of the report being executed can be accessed through the sessionInfo object by
using sessionInfo.ReportExecFilters.

Example

The following example provides C# code that will prevent the Filter Execution Window
from closing if there are no filters specified. This and similar checks can help prevent
users from executing Reports that result in unnecessarily-large queries going against the
Data Source(s).”

string hasFilters = null;

if(sessionInfo.Report.Filters.Count() > 9)

{
}

return hasFilters;

hasFilters = “Please add Filters to the Report.”;

OnOkParametersDialog

The OnOkParametersDialog Event occurs when a user clicks on the Ok button of the
Parameter Prompt Window. The window will only displays if the report has a non-hidden
parameter with a prompt text. This Event could be used to see what values the user is
setting for each prompting parameter.

Signature

For custom code the args array is structured as follows:
args[] is empty.

For .Net Assmblies the method signature is as follows:
string EventHandlerName(SessionInfo sessionInfo)

Expected Return

The OnOkParametersDialog Event expects a string to be returned. Based on the returned
string there are three possible results.

e Null / Whitespace - If the string is null or whitespace then the report
execution will continue as expected.

78 Exago Inc.

Exago Technical Guide EXago

¢ Languageld - If the string matches the id of any element in the language
files then the string of that language element will be displayed as a message
to the user. For more information see Multi-Language Support.

e Other - If the string does not match the id of any element in the language
files then the returned value will be displayed as a message to the user.

Notes
This Event cannot override the value of Parameters for the report execution.

The Parameters of the report being executed can be accessed through the sessionInfo
object by using sessionInfo.Report.

Example

The following example provides C# code that will prevent the Parameters Execution
Window from closing if a specified parameter is blank. The user will be prompted with a
message from the language file.

//assumes the language file has an element with the id “PleaseEnterParam”
return (String.IsNullOrWhiteSpace(sessionInfo.GetReportParameter("promptName").Value) ?
"PleaseEnterParam” : null);

OnScheduledReportExecuteSuccess

The OnScheduledReportExecuteSuccess Event occurs when scheduled report execution is
finished. This event can be used to create an audit log of scheduled reports or check
values on the report and determine if they should be sent as scheduled or interrupted.

Signature

For custom code the args array is structured as follows:
args[] is empty.

For .Net Assemblies the method signature is as follows:
bool EventHandlerName(SessionInfo sessionInfo)

Expected Return

The OnScheduledReportExecuteSuccess Event expects a Boolean to be returned.
Returning True will prevent the scheduled report from being sent. Returning False will
allow the report schedule to proceed with processing.

Note: This server event is called for Remote Execution of reports. However, the
return value will be ignored as there is no email to be prevented.

OnConfigLoadStart

The OnConfigLoadStart Event occurs after the configuration file is loaded.This may happen
in the Api when the api object is initialized or in Exago when entering the application
directly. This event can be used to change any configuration information on-the-fly via
the SessionInfo object, such as decrypting database connection strings.

79 Exago Inc.

Exago Technical Guide EXago

Signature

For custom code the args array is structured as follows:
args[] is empty.

For .Net Assmblies the method signature is as follows:
void EventHandlerName(SessionInfo sessionInfo)

Expected Return

The OnConfigLoadStart Event has a void return value.
OnConfigLoadEnd

The OnConfigLoadEnd Event occurs after all Api changes are made and the host
application container is redirected to Exago. If entering Exago directly this event is occurs
immediately after OnConfigLoadStart. If the Api is being used but the host application
does not redirect to Exago (such as using the direct Report.GetExecuteData method) the
event can manually be called using the public method
Api.SetupData.FireOnConfigLoadEndEvent().

Similar to the OnConfigLoadStart event, this event can also be used to change
configuration information on-the-fly via the sessionInfo object. However making these
changes after the Api calls can provide extra convience. For example if the host
application is using the Web Service Api it can set a single parameter value using the
WebService and then based on that parameter make further configuration changes within
this event. This provides better performance, security and a reduction of http requests.

Signature

For custom code the args array is structured as follows:
args[] is empty.

For .Net Assemblies the method signature is as follows:
void EventHandlerName(SessionInfo sessionInfo)

Expected Return

The OnConfigLoadEnd Event has a void return value.
OnRenameFolderStart

The OnRenameFolderStart Event occurs when a user attempts to rename a folder. This
event happens before the folder is renamed permitting you to stop the renaming if
desired.

Signature

For custom code the args array is structured as follows:
args[] is contains two strings, the first represents the fully qualified current folder
name, the second is the new folder name.

For .Net Assemblies the method signature is as follows:

80 Exago Inc.

Exago Technical Guide EXago

string EventHandlerName(SessionInfo sessionInfo, string currentFolderName,
string newFolderName)

Expected Return

The OnRenameFolderStart Event expects a string to be returned. Based on the returned
string there are three possible results.

¢ Null / Whitespace - If the string is null or whitespace then the report
execution will continue as expected.

¢ Languageld - If the string matches the id of any element in the language
files then the string of that language element will be displayed as a message
to the user. For more information see Multi-Language Support.

e Other - If the string does not match the id of any element in the language
files then the returned value will be displayed as a message to the user.

OnRenameFolderEnd

The OnRenameFolderEnd Event occurs after user has renamed a folder.
Signature

For custom code the args array is structured as follows:
args[] is contains two strings, the first represents the fully qualified old folder
name, the second is the new folder name.

For .Net Assemblies the method signature is as follows:
string EventHandlerName(SessionInfo sessionInfo, string currentFolderName,
string newFolderName)

Expected Return

Anything can be returned to the OnRenameFolderEnd Event. Any return value will be
ignored.

Custom Options

This chapter explains how to create Custom Options. Custom Options provide a modifiable
menu for end users to set values that can be utilized by Custom Functions, Server Events
or the API.

81 Exago Inc.

Exago Technical Guide EXago

| WebReports xml v |

+ /7 R

|Searn::h b |

¢ 1 Data
¢ & General
8 Roles
¢ fi Functions
v Ed Server Events
4]| Custom Options |
Custom_Option_Int
Custom_Option_Decimal
T Custom_Option_Text
® Custom Options_Bool2

e To add a new Option select ‘Custom Options’ in the Main Menu then click the add
button (*).

e To edit an existing Option either double click it or select it and click the edit button

(4)-
e To delete an Option select it and click the delete button (x).

About Option

Custom Options enable you to define settings that users can be modify on a per report
basis in the Report Designer. Options can be accessed during report execution by Server
Events or Custom Functions.

The name of each option can be controlled on a per-user basis using our multi-language
feature. Custom Options can store several types of data such as integer, boolean, text,
etc. Each data type provides an appropriate UI element for the user to select a value.

Creating Options

To create a Custom Option, select ‘Custom Options’ in the Main Menu and click the Add

button (*). This will open a Custom Options tab.
Each Custom Option has the following properties:

e Id - The unique id of the option. The Id is used in accessing the option and may be
displayed in the Custom Options Menu as the user sets its value on a report.
Note: To support multi-language functionality, create an element in the language
file(s) with an Id that matches the Option’s Id. The string of that language element
will be displayed to the user in the Custom Options Menu. For more information see
Multi-Language Support.

82 Exago Inc.

Exago Technical Guide EXag0o

e Type - The data type the Option should display. Each data type will display an
appropriate input element in the Custom Options Menu. The following types are

available.
314
o Int - Represents a whole number. &
o Decimal - Represents a decimal. 214 <

. ¥/ Custom_Option
o Bool — Represents a Boolean value. A checkbox is displayed. * custom_Optin

|Exa mple Text |

o Text — Represents text and displays a text box.
o List — Represents a choice from among multiple values. Click the add button
(%) to define choices.

A
B
C

& Custom Options = = Getting Started

Custom_Option1
d Custom_Option

Type List v
Int

Decimal

Bool

Text

Setting Options

After Custom Options are created the Custom Options Menu will be available in the Report
Designer of Standard and Crosstab Reports. In the Custom Options Menu, options can be
set using the UI elements displayed above.

Note: The Custom Options Menu will only display if Custom Options exist.

- =] @- B 7 Arial v
=L |l Honlid uAd [
= Rename
o A

= Description 1 |
&= Categories 2
é[Sorts 3 L Employeell

. 4 Employees. Empl
f Filters =
& Options Y @ General .
@] Template Z Html -

&7 Advanced » &b Custom .

83 Exago Inc.

Exago Technical Guide

EXX200
D

Accessing Options

The .Net Api, Server Events and Custom Functions can access Custom Options values
through the SessionInfo object by using the following method:

string GetCustomOptionValue(string id)

Description

Returns the value of the specified Custom Option as a string.

Remarks

For Bool options the value returned will be “true” or “false”.

For List Options, the chosen Id is returned.

Note: List options will return the Id of the selected value and not the displayed
language string.

Example

A Custom Function could use the following C# code to return the value of a Custom
Option. The Id of the Option is entered as an argument of the Custom Function.

return sessionInfo.GetReportCustomOptionValue(args[0].ToString());

84

Exago Inc.

Exago Technical Guide EXago

Integration

The following chapter details how to integrate Exago into your host application.

This chapter will assume that you have already used the Administration Console to
establish the desired data structure, general settings and roles.

About

Exago is designed to be seamlessly integrated into the host application. Integration can
entail either styling Exago’ interface to match the host or making API calls such as report
execution directly from the host application. To access the user interface, Exago can either
be embedded in a div or iframe or users can be directed to a separate page.

Whether you are exposing the provided interface or calling API methods it is important to:

e Ensure users are verified through the host application: Users should be signed in
through the API to access Exago. To ensure that this happens, disable direct access
to Exago by setting the parameter ‘Allow direct access to Exago’ to False in the
Main Settings.

e Assure the correct permissions and features are available to the user: As the user is
signed in, activate the correct role and set values for any necessary parameters to
assure that the user can only access the data, features, folders and reports that
he/she has permission to use. For more information see Roles.

To further integrate Exago you can:

Re-style the user interface to match the aesthetic of your application. See Styling.

Translate or modify any text that appears in the user interface. See Multi-
Language Support.

Customize the Getting Started Tab and/or create additional custom tabs. See
Customizing Getting Started Content.

Integrate the Exago installer into the host application’s installer. See Manual
Application Installation.

Integration utilizes several types of files. The diagram below details the role of these files:

85 Exago Inc.

Exago Technical Guide EXag0o

styling and multi-language capabilities. ¢ ContainseWebReports control.

* SurroundseWebReports with visualelementssuch asa
logo and headerimage.

eWebReporis 2012.1 provides per-user m * Userisredirected to this page by hostapplication. Location

<Root> indicates

To utilize these features eWwebReports eWebReports' root folder.

employs three types of session files; home,

Default is
configuration, and language ftab files. ExagoHome.aspx | * CONtainscustom CSSto style elements of eWebReports.
—
4

This diagram details the function of each

type of file and where they are located
within the eWebReports folder structure. The aspx page may specify the name of the configuration xmlto read.
Settings can also be modified through the APL

* Contains most of the settings of eWebReports, including: —p
o Data configuration f@@mm
I o Generalsettings ’
. o Role based restrictions and settings
WEE&:?:;SAN * Specifies which Language and Tab Content files to utilize.

+ Specifiesthe string to be used for each text + Containsthe HTML that is displayed in the

! element in eWebReports. Getting Started tab.

* Multiple language files can be specified in * Additional custom tabs can be created.
configuration. TS * JavaScript methods are available to perform
| en-us-getting- basic functions such as Report Execution.
started.xml

Styling

Visually modifying and rebranding the user interface is a simple but effective step toward
integrating Exago into the host application. For styling purposes Exago can be thought of
as a control that sits within a div on an .aspx page. Aesthetic changes can be made for
single users or groups of users by directing each user/group to different custom .aspx
pages.

To visually integrate Exago make a copy of the.aspx example below and modify the
elements surrounding the Exago control or override the CSS of the user interface itself.

Note: Do not make changes directly to ExagoHome.aspx as they will be overwritten
during upgrades. Instead use the example below to create a custom .aspx page.

Styling Exago’ Surroundings

The example below demonstrates an .aspx page that contains the Exago control. In this
page basic html and CSS are used to change the title and the background color of the
page. Additionally, a logo image is added as an example.

<%@ Page Language="C#" EnableViewState="false" %>
<%@ Register src="WebReportsCtrl.ascx" tagname="WebReportsCtrl" tagprefix="wr" %>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head id="Headl" runat="server">
<title>NorthWind Reports</title>
<style type="text/css">

86 Exago Inc.

Exago Technical Guide

EXX200
Yo]

html, body

{
height:100%;
width:100%;
overflow:auto;

margin:0;
padding:0;
background-color:white;
}
#BodyFade
{
position:absolute; top:@px; left:0; right:0; height:80px;
background: #023f6b;
background: -moz-linear-gradient(top, #023f6b 0%, #ffffff 95%);
background: -webkit-gradient(linear, left top, left bottom, color-
stop(0%,#023f6b), color-stop(95%,#ffffff));
background: -webkit-linear-gradient(top, #023f6b 0%, #ffffff 95%);
background: -o-linear-gradient(top, #023f6b 0%,#ffffff 95%);
background: -ms-linear-gradient(top, #023f6b 0%,#ffffff 95%);
background: linear-gradient(top, #023f6b 0%,#ffffff 95%);
filter: progid:DXImageTransform.Microsoft.gradient(startColor-
str="#023f6b', endColorstr="#ffffff',GradientType=0);
}
#WebReportsContainer
{
position:absolute;
top:80px;
bottom:7px;
left:7px;
right:7px;
overflow:hidden;
}
#Logo {position:relative;}
</style>
</head>
<body>

<form id="forml" runat="server">
<div id="BodyFade"></div>
<l--
-->
<div>
<div id="WebReportsContainer">
<wr:WebReportsCtrl ID="WebReportsCtrl" runat="server" />
</div>
</div>
</form>

</body>

</html>

The effect of these changes is seen below.

Exagohome.aspx:

87

Exago Inc.

Exago Technical Guide

EXX200
D

HEB#e

€« €' | ® localhest/Exago/eWebReports/branches/v2011.2 Working/UI/Home.aspx DA S
Welcome to e\WebReports™
% . E f Getting Started -} @

This content is

by andlor client

» £ Customer Reports
» 1 Employee Reports
» €1 Product Information
» £ Sales Reports
» £ Travis' Reports

Please refer to Technical Guide for additional information

Welcome to e\WebReports™
Static and interactive features can be defined in this area. In this content area you can:
- Provide custom HTML by language and/ar client

- Add the HTWL content of one or more report executions that loads via page load, or on an event trigger
- Add events that load other custom content tabs

- Add events that trigger eWebReports functionality, such as creating a new report
Some usage examples:

Click here to create a new report
ls| Click here to load anather custom tab
Click here to visit the Exago blog

The following demonstrates embedding an iframe to another URL, and loading report execution content:

To load a report in this area wa page load, embed the
Tollowing attribute in the definition of this DIV:

EXé.gO - ' e

1N

T

Report Description

< i J

NorthWindHome.aspx:

{ () eWebReports x

«

orth Wi

() NorthWind Reports x

C' | ® localhost/Exago/eWebReports/branches/v2011.2_Working/Ul/northwindHome.aspx

EELY
TS

1 Getting Started x}

This contentis tomizabl

by | andior client

» B Customer Reports
» £ Employes Reports
» £ Product Information
» £ Sales Reports
» £ Travie' Reports

Please refer to Technical Guide for additional information

Welcome to eWebReports™
Static and interactive features can be defined in this area. In this content area you can:
- Provide custom HTML by language and/or client

- Add the HTML content of one or more repart executions that loads via page load, or on an event trigger
- Add events that load other custom content tabs

- Add events that trigger eWebReports functionality, such as creating a new report
Some usage examples:
Click here to create a new report

Click here to load another custom tab
Click here to visit the Exago blog

The following demonsirates embedding an iframe to another URL, and loading report execution content:

To load a report in this area via page load, embed the
following attribute in the definition of this DIV-

exago - st
ENTERFRISE REPORTING

SOLUTIONS

T

Report Description

EvaseE

« (T

D

Exago Control Properties

Within each .aspx page several properties can be set on the Exago Control to modify
various settings and behaviors of Exago. The following properties can be set.

88

Exago Inc.

Exago Technical Guide

EXX200
D

e ConfigFile - Loads a configuration file other than that created by the
Administration Console (ex. ConfigFile="NorthwindConfig.xm1").

Note: If entering Exago through the Api this parameter is ignored.

e Language File - Specify which language file(s) to use in place of the ‘Language
File" parameter of Main Settings in the configuration file. (ex. LanguageFile ="es-mx,
gettingstartedcustom").

e ForcelECompatMode - Setting to True will force certain JavaScript functions to
working in ‘compatibility’ mode. Currently this property only needs to be set if
dragging a Data Field into a cell of the Report Designer does not work properly.
(eX. ForceIECompatMode="true").

e XUaCompat - Setting that controls wether to remove the meta u-ax-comptaible
tag when running reports to PDF in IE8. The default is ‘false’” which removes the
tag. If you are experiencing issues downloading PDF reports in IE8 setting this flag
to True may resolve the issue. (ex. xuaCompat="true").

Changing CSS

All of the CSS used by Exago can be modified at the bottom of the .aspx page. This means
that every individual element or class of objects can be modified. To do make changes,
add <style type="text/css"></style> to your .aspx page in the line above </body>. Between
these style tags place the desired modifications to the CSS.

The table below details the recommend CSS classes for styling.

Class Feature Property Example
Text Elements
.wrMain Modifies text throughout Exago. color .wrMain { color:Red; }
.wrlnputText Modifies the text of input boxes and | color .wrInputText { color:Blue; }
dropdowns.
.wrTree Modifies the text of tree controls color .wrTree { color:Green; }
such as the reports in the Main
Menu or the Data Fields in the
Report Designer.
.wrTreeltemSelected Modifies the selected item in a tree color .wrTreeltemSelected{color:
control. yellow; }
.wrTabItem Modifies the text of unselected tabs. | color .wrTabItem { color:Aqua; }
.wrTabItemSelected Modifies the text of the selected color .wrTabItemSelected{color:
tab. #FFOOFF; }
.wrDialogTitle Modifies the text of the title of color .wrDialogTitle{color: Orange; }
dialog menus
Background Elements
.wrMainLeftPaneGradient | Modifies the gradient at the top of background .wrMainLeftPaneGradient{backgrou
the Main Menu nd: -webkit-gradient(linear,
left top, left bottom,
from(white), to(Blue));}
.wrMainLeftPane Modifies the background of the Main | background- .wrMainLeftPane{background-
Menu color color: Blue;}
.wrTabContent Modifies the background of all Tabs background- .wrTabContent{background-color:
color Blue;}
89 Exago Inc.

Exago Technical Guide

EXX200
Yo]

.wrTabContentWizard Modifies the background of all background- .wrTabContentWizard{background-
Wizards (ex. the New Report color color: Blue;}
Wizard)
.wrDialogShadow Modifies the background of all background .wrDialogShadow
dialog menus (ex. the Filters Menu) {background: -webkit-
gradient(linear, left top, left
bottom, from(white), to(Blue));}
.wrPopupMenu Modifies the background of all background .wrPopupMenu{ background: -
popup menus (ex. the Folder webkit-gradient(linear, left
Management Menu) top, left bottom, from(white),
to(blue));
.wrDesignLeftPane Modifies the background of the Data | background- .wrDesignLeftPane{background-
Field Menu in the Report Designer color color: Blue;}
.wrDsgnTbContainer Modifies the background of the background- .wrDsgnTbContainer{background-
Report Designer color color: Blue;}
.wrTabItem Modifies the background unselected | background- .wrTabItem{background-color:
tabs color Blue;}
.wrDsgnTbSection Modifies the gradient behind the background .wrDsgnTbSection{background: -

buttons on the Report Designer

webkit-gradient(linear, left
top, left bottom, from(white),
to(Blue));}

Selected Elements

.wrTabItemSelected Modifies the selected tab background .wrTabItemSelected{background: -
webkit-gradient(linear, left
top, left bottom, from(white),
to(Blue));}

.wrTreeltemSelected Modifies the selected item in a tree background- .wrTreeltemSelected{background-

control color color:Purple; }

.wrPopupMenultemHover, | Modifies the selected item popup background- .wrPopupMenuItemHover,

wrPopupMenultem:hover | menu (ex. the Report Folder color .wrPopupMenuItem:hover{backgroun

Management) d-color:Purple; }

.wrTbImgHover, Modifies the background of tool bar | background- .wrTbImgHover,

.wrMainTbImgHover, images when they are hovered color .wrMainTbImgHover,

.wrTbImg:hover over. .wrTbImg:hover{background-
color:Orange;}

Other Elements

.wrImageButton, Modifies the buttons (ex. Ok, background .wrImageButton, .wrButtonl

.wrButton1 Cancel) {background: -webkit-
gradient(linear, left top, left
bottom, from(white), to(Blue));}

.wrLine Modifies the lines used throughout border-top, .wrLine{border-top: solid 1px

Exago border- #55D8F2; border-bottom: solid 1px
bottom blue;}

.wrDialogDragBar Modifies the bar atop all dialog background .wrDialogDragBar{background: -

menus (ex. the Filters Menu) webkit-gradient(linear, left
top, left bottom, from(white),
to(Blue));}

.wrMainReportDescription | Modifies the report description in border .wrMainReportDescriptionContaine

Container

the Main Menu

r{border: solid 1px blue;}

20

Exago Inc.

Exago Technical Guide EXag0o

The code below demonstrates an example of custom CSS styling.

Code:

<style type="text/css">
.wrMain { color:Red; }
.wrInputText { color:Blue; }
.wrTree { color:Green; }
.wrTreeItemSelected { background-color:Purple; }
.wrTabItem { color:Aqua; }
.wrTabItemSelected { color: Pink; }
.wrDialogTitle { color: Orange; }
</style>

Before:

Customers List][') Getting Started] @

& & :

; Aria - = i
- -
{0 B 7 U = ==
4 Botea | I
+ 1 Customer Reports - |)
@] Employee Reports
{| Number of Sales by Emplo o
gﬁﬂ yEme Report Filters
» £ Payworks exam ple Select fiter fields to include on report Switch 1o GROUP (WINMAX) Filters
| ot Cusomes - oy
» B Travis' Reports Address | | Customers. City | ANy X1 Rhiact j;n.__‘ - '_H“ESI"_
City - - -
CompanyMame
ContactMame A
4 ContactTitle
Country Ell4
4 CustomerlD ¢
4 Fax Equal To + |Barcelona -
Ez g?aTCOde AND With Next Fitter -
Region - Group With Next Fiter
Prompt For Value
SUMMARY
Customers.City = 'Barcelona’
] m 3
W8 Description plast

Standard government WS form for
each employee.

! Add |

After:

91 Exago Inc.

Exago Technical Guide EXago

= # Customers List *]|'¢ Getting S-'.:'.“‘.ed] @
@ g E Customers - - a I E | £
B o B I
‘ mm M
- & Employee Reports —
MNumber of Sales by Emplo .
gwg yEmeiey Report Filters
» £1 Payworks example Select fitter fields to include on report S DESIALLIRYES
» £ Product Information Customers - Fiter By
» £ Sales Reports B T vl X N Ci
» 5 Travis' Reports Address .| | Customers.City | bntact Name Cit
City etomers. ContacttCus
CompanyMame
ContactName P
4 ContactTitle
¢ Country El4
CustomerlD P
4 Fax Egqual To ~ |Barcelona w
EE;{:CU . AND With Next Fiter -
Region - Group With Next Filter
Prompt For Value
SUMMARY
Customers.City = ‘Barcelona’
Ll I J *
Report Description v 0K
| .I

Changing Icon Images

To further eWebReport’s integration capabilities, any icon in Exago can be changed on a
per-company or per-user basis.

To change the icons of Exago:
1. Create the custom images you would like to display.

2. Identify the Id of the image you want to change. See Finding Image Ids for more
details.

3. Create a language file that maps the Ids to the location of the custom images. See
Multi-Language Support for more information.

EX. <element id="ExportTypeMenuHtml" image=
"Config\Images\Custom\HTMLExecutIconLarge.png"></element>

Hovering Images

For icons that have hover effects (ex. the next page button on report output) there is a
special naming convention.

To change cusom icons with hover effects:

1. Follow the steps above to create the non-hover icon.

92 Exago Inc.

Exago Technical Guide EXago

2. Create the custom icon with the hover effect. Save it to have the same name as the
non-hover icon and append “_h" to its name.

Finding Image Ids

To find the Ids of icons in Exago:
1. Open Exago in a browser.

2. Use the browser’s developer tools to inspect the icon you want to change. For most
browsers this can be done by pressin F12.

3. Look at the id property of the icon. There will be several words separated by
underscores. Use the last element as the image Id (see example below).

Eag =T
o B ol

img#kebReportsCtrl_MainSplitter_wrMainMenuExportSelectCtrl|ExecuteReportBtnlwrThImg Z6px = 26px
b @l Customer CXECUE SEECTET REPUI |

% Getting Started =

Styling the Administration Console

Though we strongly recommend against exposing the administration console to end-
users or clients, it can be stylized much like the Exago interface.

To style the administration console:

1. Make a copy of ExagoHome.aspx and give it a unique name (ex.
CompanyAdmin.aspx)

2. At the top of this copy change the source from WebReportsCtrl.ascx to
WebAdminCtrl.ascx (see example below.

<%@ Page Language="C#" EnableViewState="false" %>
<%@ Register src="WebAdminCtrl.ascx" tagname="WebAdminCtrl" tagprefix="wr" %>

3. Modify surrounding styles and css in the same manner described in the sections
above.

Multi-Language Support

Note:

The language elements discussed in this section do not include those created by users or
administrators such as reports, folders, express report/crosstab themes or Data Field
names. To modify Data Field names please see Column MetaData. To modify theme
names please see Express Report and Crosstab Themes.

To help localize Exago, any text in the application can be translated or modified. This can
be accomplished by creating xml files in the Language folder that map ID’s to strings. Any
place within Exago that displays text has an associated ID. When a text element is

93 Exago Inc.

Exago Technical Guide EXag0o

required in the application Exago will read the file(s) specified in the ‘Language File’
parameter of Main Settings and use the string that is mapped to the ID.

Exago comes with both a standard English file ‘en-us.xml’ and a Spanish translation ‘es-
mx.xml’. Below is an example of the multi-language functionality. Notice that the prompt
text in the New Report Wizard can be set by changing the string associated with the id
NewReportLb1l.

En-us.xml:

<NewReport>
<element id="NewReportLbl">Complete the steps in the wizard below to create a new re-
port</element>

</NewReport>

% New Standard Report !]

Complete the steps in the wizard below to create a new report

Name][Categnries][Sorts][Filters][Laynut]

Enter the report name

Es-mx.xml:

<NewReport>
<element id="NewReportLbl">Complete los pasos en el asistente para crear un nuevo infor-
me</element>

</NewReport>

% Nuevo Informe Estandar *]

Complete los pasos en el asistente para crear un nuevo informe

Nnmbre][Categorias][Drdenas][Filtrns][[]iseﬁn]

Intreduzca el nombre del informe:

Note: Some language strings contain special place holders between curly brackets (ex.
{03}). These hold the place of elements that must be filled in dynamically by Exago. Do
not translate anything inside curly brackets. The place holders may be moved within
the string but do not delete them.

The example below demonstrates three place holders that will be replaced by dropdown
menus in the Scheduling Wizard.

<element id="ScheduleRecurrenceRelativeMonthlyTxt">The {DayPosition} {DayOfWeek} of every
{MonthNumber} month(s)</element>

) The first * day v ofevery |1 % month(s)

94 Exago Inc.

Exago Technical Guide EXago

Translating Exago

To translate the entire interface, make a copy of the file ‘en-us.xml’ and give it a different
name. Make sure this copy is in the folder ‘<webapp_dir>/Config/Languages’. Without
changing the IDs translate the strings as desired (see example above). Then set the
‘Language File’ parameter of Main Settings to specify the desired translation.

Note: If you are using the Exago Scheduler Service be sure to copy all custom language
xml files to the ‘<scheduler_dir>/Languages’ folder of the Scheduler Service.

Modifying Select Language Elements

To change specific language elements without copying the entire mapping you can use a
base file and specify changes in separate language files. When you set the parameter
‘Language File’ list the all of the files you want to load separated by comas or semicolons.
Exago will load the files from left to right, meaning the first file listed will be used as a
base and can be changed by the files loaded after it.

As an example you can create the file en-custom.xml which only contains the lines:

<?xml version="1.0" encoding="utf-8" ?>
<element id="GettingStartedTab">Home</element>

Set the ‘Language File’ parameter to ‘en-us, en-custom’ and the Getting Started tab will
reflect the change made in the custom file.

= Home x

Note: Begin all language xml files with the line ‘<?xml version="1.0" encoding="utf-8" ?>’

Customizing Getting Started Content

The Getting Started tab is displayed as a user enters Exago. This tab can be customized
by loading custom html. This is done by modifying the language element
‘GettingStartedContent’ in the file ‘en-us-getting-started.xml’. To assist in customizing the
Getting Started tab, Exago provides several JavaScript functions to open the New Report
Wizard, execute reports, open other custom tabs and display reports as dashboards.

The example below demonstrates a custom tab with links to the New Report Wizard and
Dashboards.

95 Exago Inc.

Exago Technical Guide EXag0o

< Getting Started * @

Welcome to North Wind Reporting

Use the menu on the left to create, edit and run reports.

Shortcuts:
Click here to create a new report.
Click here to go to www.exagoinc.com.

Quick Reports Tab:

Quick Reports
Dashboards:
26.93%
1.20% -, Employee Number of Sales
1182% Buchanan, Steven M7
Callahan, Laura 260
6.14% — 3 Davolio, Mancy 343
- 30.06% Dodsworth, Anne 104
Fuller, Andrew 235
16.83% King, Robert 176
207%' 5.14% Levering, Janet 319
Peacock, Margaret 420
We=verges W Confections WGrins/Careals WrFroducs Suyama, Michael 168
[condiments [osiry Products EMeatvPoutry [Hs=afood Total Number of Sales 2,146.00

Note: It is recommended to make custom tabs in a separate language file to make it easy
to change tabs by user or groups of users. See Modifying Select Language Elements.

Creating Additional Custom Tabs

Addition custom tabs can be created by creating two language elements with unique
names. One element specifies the title of the custom tab and the second contains the html
content. Custom tabs can be opened with the JavaScript function wrAddTabbedContent
(see Available JavaScript Functions).

The example below demonstrates a custom tab that has buttons to launch reports.

<element id="QuickReportsTabName">Quick Reports</element>
<element id="QuickReportsTab">
<style type="text/css">
.Button
{
height:20px;
width: 60px;
color: black;
font-size:8pt;
margin-right:5px;
}

.divProductDescription

{

}

</style>

<p style="font-family:Arial; font-size:12pt; font-weight:bold; text-decoration:underline;
text-align:center; margin-bottom:10px;">Click the format below the report you want to run. </p>

<div class="divProductDescription"”>

margin-bottom:3px;

96 Exago Inc.

Exago Technical Guide EXag0o

Revenue by Category (with drilldown) - Complete list of revenue generated
by each category of products.
</div>
<div class="divProductButtons">
<input type="button" class="Button" value="HTML" onclick="wrExecuteReport('Sales
Reports\\Revenue by Category', 'html')" />
<input type="button" class="Button" value="EXCEL" onclick="wrExecuteReport('Sales
Reports\\Revenue by Category', 'excel')" />
<input type="button" class="Button" value="PDF" onclick="wrExecuteReport('Sales
Reports\\Revenue by Category', 'pdf')" />
<input type="button" class="Button" value="RTF" onclick="wrExecuteReport('Sales
Reports\\Revenue by Category','rtf')" />
<input type="button" class="Button" value="CSV" onclick="wrExecuteReport('Sales
Reports\\Revenue by Category','csv')" />
</div>
</element>

Available JavaScript Functions

To assist with the creation of custom tab content, Exago provides a small number of
JavaScript functions to allow custom html to call features of Exago.

void wrStartNewReportWizard()

Description | Opens the New Report wizard in a new tab.

Example Ex. Click <span style="text-decoration:underline; cursor:pointer;"
onclick="wrStartNewReportWizard();">here to create a new
report.

void wrStartDuplicateReportDialog(string reportFolder\\reportName):

Description | Opens the Duplicate Report dialog.

Remark If the report name is null or blank Exago will use the report selected in the Main
Menu.

Example Ex. Click <span style="text-decoration:underline; cursor:pointer;"
onclick=" wrStartDuplicateReportDialog();">here to create a
duplicate this report.

void wrExecuteReport(string reportFolder\\reportName, string format)

Description | Executes the specified report in the specified format.

Example Ex. <input type="button" class="Button" value="HTML"
onclick="wrExecuteReport('Sales Reports\\Revenue by Category’,'html")

string wrGetSelectedReportName()

97 Exago Inc.

Exago Technical Guide

EXX200
D

Description

Returns the name of the report that is selected in the Main Menu.

Remark

The returned string will include the folder structure of the report separated by
slashes.

void wrAddTabbedContent(string ContentID, string TabName)

Description Opens a new tab and loads the html stored in the element of the Language file that
corresponds to the Content ID.
Remark The ContentID should match the element ID of the html you want to load.

The TabName should make the element ID of the name you want the tab to display.

dat

a-onloadreportname= “"ReportFolder\\ReportName”

Description | Executes a report as HTML and loads it into a div or iframe.
Remark The report string should be formatted as Report Folder \\ Report Name.
Note: When using this function make sure the setting Enable Debugging in Other
settings is False.
Example Ex. <div class="Report" data-onloadreportname="Employee

Reports\\Number of Sales by Employee"></div>

data-useviewer ="True/False"

Description Specifies to load a report as raw html or utilize Exago dynamic report viewer.
Remark Default value is True. In cases where the dynamic capabilities of the Exago viewer is
not need set to False to load raw html.
Example Ex. <div class="Report" data-onloadreportname="Employee

Reports\ \Number of Sales by Employee" data-useviewer= “False”></div>

dat

a-enablescrolling ="True/False"
Description Specifies whether or not to show scroll bars.
Remark Default value is True. This can helpful for certain reports that may not fit exactly
within the startup content.
Example Ex. <div class="Report" data-onloadreportname="Employee

Reports\ \Number of Sales by Employee" data-enablescrolling=
“"False”></div>

data-reloadinterval="n"

98

Exago Inc.

Exago Technical Guide EXag0o

Description | Reloads a report every n seconds.

Remark This function is used in conjunction with data-onloadreportname.

Example Ex. <div class="Report" data-onloadreportname="Employee
Reports\ \Number of Sales by Employee" data-reloadinterval="2"></div>

data-allowexport="0/1"

Description | Srecifies wether or not to show the re-export menu for the report.

Remark The default value is 0 (does not show the menu). Set to 1 to have the re-export
options display.

Examp|e Ex. <div class="Report" data-onloadreportname="Employee
Reports\ \Number of Sales by Employee" data-reloadinterval="1"></div>

Themes: Charts, Crosstabs, Express Reports &
Maps

Themes allow a user to quickly stylize reports or elements of reports such as maps and
charts. Exago comes with several themes pre-installed. Additional custom themes can also
be created.

Pre-installed themes are saved in the Themes folder of Exago. By default custom themes
are saved in the Report Path, which is specified in Main Settings. Alternatively the host
application can manage theme storage by implementing the GetTemplate,
GetTemplateList, and SaveTemplate functions. See Report and Folder Management for
more information.

Note: To support multi-language functionality, if the theme name concatenated with
'_wrThemeld’ matches the id of any element in the language files then the string of
that language element will be displayed to the user instead of the theme name. Ex.
For the Basic theme that is installed with Exago, there exists a language id
‘Basic_wrThemeld’. The string associated with this id is displayed. For more
information see Multi-Language Support.

Chart Themes

A user can quickly select colors for Charts by applying a chart theme.
To create custom Chart themes:

1. In folder specified in the Report Path of Main Settings create a text file containing
a comma separated list of the css values of the desired colors. Save the file and
change the extension to ‘wrth’.

99 Exago Inc.

Exago Technical Guide EXago

Note: The file name will be displayed to the end user. To translate the name of a
custom theme, see the note above section.

Ex: The theme 'Cocktails In Miami.wrth’ contains the list: Navy,
#00ff00,Yellow,Orange,Red.

Crosstab Themes

A user can quickly style Crosstabs by applying a crosstab theme. Crosstab themes can
specify background color, foreground color, section shading, borders, fonts and text size.

To create custom Crosstab themes:

1. Create a Crosstab with as several Tabulation Data, Row Headers, Column Headers
as well as sub-totals and grand totals.

Note: If a user adds more Tabulation Data, Row Headers or Colum Headers than
existed on the theme they will appear without styling. We recommend Crosstab
Themes have five Row Headers, Column Headers, Tabulation Data, sub-total rows,
and sub-total columns as well as a grand total row and a grand total column.

2. In the Report Designer stylize each cell of the Crosstab as desired.

3. Move your cursor over the Crosstab. Notice a dropdown menu appears in the
bottom left corner.

4. Hold Alt+Ctrl+Shift and click on the dropdown.

=Month{{Orders.
3 Category Product Month OrderDate})
4 |Categories.Cate| ooy v ProduciName Orders.OrderlD| Orders.OrderlD
goryMame

Orders.Order DG e R Ty 1)

5. Click ‘Save as Theme'.

6. Enter a name for the Theme. This name will be displayed to the end-users.

Enter name of theme

.newtheme |

Express Report Themes

100 Exago Inc.

Exago Technical Guide EXago

A user can quickly style Express Reports by applying an express report theme. Express
report themes can specify background color, foreground color, section shading, borders,
fonts and text size.

To create custom Express Report themes:

1. Create an Express Report with Headers, Footers and a Page Header/Footer and a
Grand Total.

Note: If a user adds more Columns, Headers, or Footers than existed on the theme
they will appear without styling. We recommend Express Report Themes utilize
many Columns, Headers and Footers.

2. In the Layout tab stylize the report as desired.

3. Hold Alt+Ctrl+Shift and click on the save button (g).

4. Enter a name for the theme. This name will be displayed to the end-users.

Enter name of theme

new theme

Map Themes

A user can quickly select colors for Maps by applying a map theme.
To create custom Map themes:

1. In folder specified in the Report Path of Main Settings create a text file containing
a comma separated list of the css values of the desired colors. Save the file and
change the extension to ‘wrtm’.

Note: The file name will be displayed to the end user. To translate the name of a
custom theme, see the note above section.

Ex: The theme ‘Cocktails In Miami.wrtm’ contains the list: Navy,
#00ff00,Yellow,Orange,Red.

Using Exago within a WinForm

To embed Exago within a WinForm application the following properties should be set
within the WebReportsCtrl line of the .aspx page that contains Exago (default is
Exagohome.aspx).

e WinFormsApp - Set to True to ensure proper functionality within Exago.

101 Exago Inc.

Exago Technical Guide EXago

e BrowserEmulation - Forces Exago to emulate the behavior of a specific browser.
Valid Values are as follows: IE7, IE8, IE9, Firefox, Chrome, and Safari.

The example below shows these properties being set to force emulation of IE9 and make
Exago aware that it is running within a WinForms application.

<wr:WebReportsCtrl ID="WebReportsCtrl" runat="server" BrowserEmulation="IE9" WinFormsApp="true"
/>

Note: The Host application can disable right clicking within Exago by setting the property
IsWebBrowserContextMenuEnabled on the browser control to False.

Cloud Environment Integration

By default, Exago stores temp files and images in a folder on a single machine. The
location of this folder is either *./Temp’ or specified in the ‘Temp Path’ property set in the
Main Settings of the Administration Console. The storage of temp files limits the
integration of Exago into a cloud environment as it relies on a single machine and some
cloud environments do not support shared folders.

Exago now provides direct support for Microsoft Azure environments. All other cloud
environments can be supported by building a .NET Assembly or Web Service to handle the
storage and retrieval of temp folders and images.

Azure Cloud Support

To integrate into an Azure environment provide an Azure authentication string in the Temp
Cloud Service of the Main Settings in the Administration Console. The string should be of
the following format:
‘type=azure;credentials='UseDevelopmentStorage=true;DevelopmentStorageProxyUri=ht
tp://123.4.5.6'

With the authentication string in in place Exago will read and write temp files directly to
Azure blob storage.

.Net Assembly/Web Service Cloud Support

To integrate Exago into a cloud environment create and specify a .Net Assembly or Web
Service in the Temp Cloud Service of the Main Settings in the Administration Console.

Note: .NET Assembly format should be ‘assembly = AssemblyFullPath.dll;class-
Namespace.ClassName’. Web Service should be formatted as
‘url=http://WebServiceUrl.asmx".

The .Net Assembly/Web Service must have the following functions:

void SetValue (string companyld, string userld, string key, byte[] value)

Description | Provides the byte content of the temp file to be saved.

102 Exago Inc.

Exago Technical Guide

EXX200
Yo]

Remark The key is the name of the file being stored.

byte[] GetValue (string companyld, string userld, string key)

Description | Returns the byte content of the temp file.

Remark The key is the name of the file being retrieved.

void SetValue (string companyld, string userld, int maxFileAge)

Example

Description | Optional function to delete old temp files.

using System;
using System.IO;
namespace Exago.Services

{

public class TempStorage

{

public static void SetValue(string companyld, string userld,
string key, bytel[] value)
{
File.WriteAllBytes (@"c:\Exago\AssemblyDataSource\Temp\" +
key, wvalue);
}
public static byte[] GetValue(string companyld, string userld,
string key)
{
return
File.ReadAllBytes (@"c:\Exago\AssemblyDataSource\Temp\" +
key) ;
}

public static void Cleanup(string companyId, string userId, int
maxFileAge)
{
try
{
DateTime expiredTime =
DateTime.Now.AddMinutes (maxFileAge * -1);
DirectoryInfo dirInfo = new DirectoryIn-
fo(@"c:\Exago\AssemblyDataSource\Temp") ;
FileInfo[] files = dirInfo.GetFiles();
foreach (FileInfo file in files)

{

103

Exago Inc.

Exago Technical Guide EXago

if (file.LastWriteTime < expiredTime)

{
try { file.Delete(); }

catch { /* not critical */ }

}
}

catch { /* not critical */ }

}

Multi-Tenant Environment Integration

Exago supports a variety of approaches to make sure that users can only access the data
that is assigned to them. These approaches can eliminate the need to create different
reports for each user. This can be done in one of four ways. Using either column, schema,
database, or custom SQL based tenancy.

Column Based Tenancy

The most basic multi-tenant environment is when each table, view and stored procedure
has one or more columns that indicate which user(s) has access to each row.

To set column based tenancy in Exago:

1. Create a Parameter for each tenant column. Note: For these parameters set
Hidden to False.

2. For each Data Object click the Tenant Columns dropdown. Use the Tenant Columns
menu to match each tenant column in the Data Object with its corresponding

Parameter.

3. When initializing Exago through the Api, set the value of each tenant parameter for
the current user.

104 Exago Inc.

Exago Technical Guide

EXX200
D

[@ Objects x |[< Getling Started |

m
Mame | Marthwind El Customers = G
Alias Customers
Unigue Key Fields CustomeriD
Category MNorthwind
id
Parameters E|
Tenant Columns E|
Column Metadata

Tenant Columns | Tenant Parameters
Schema Access Type CustomeriDy E| CustomerlD E| Y

(v ok) (% cancel)

Schema Based Tenancy

Some multi-tenant environments create multiple tables/views/stored procedures with the
same name and columns but different database schema. Information is then stored in the
appropriate table based on database schema.

To set schema based Tenancy in Exago:

1.
2.

E Sources x |

On the Data Source set ‘Schema/Owner Name (blank for default)’ to any valid value.

For each table/view/stored procedure create a Data Object. In the Name dropdown
select the object that utilizes the schema value used in step 1. This will tell Exago that
for this Data Object it should retrieve the schema from the Data Source.

When initializing Exago through the Api, set the schema on the Data Source for the
current user.

MName Morthwind

Type | mzaq| El
Schema/Owner Name (blank for default) example

Ceonnection String Server=<seryvername:>;latabase=<database>,vid=<user=,pwd=<passwords=;

Database Based Tenancy

105 Exago Inc.

Exago Technical Guide EXago

Another way to assure that each user can only access their data is to provide a separate
database for each user. In this situation each database should have the same tables,
views and stored procedures.

To support database based tenancy in Exago:

1. Create a Data Source and corresponding Data Objects using any one of the
Databases.

2. When initializing Exago through the Api, set the connection string on the Data Source
to access the appropriate database for the current user

' Sources =

Northwind =
Mame Morthwind
Type | mzzq| El

Schema/Owner Name (blank for default)

Connection String Server=<gervername:;Database=<database> vid=<user=,pwd=<password=;

Custom SQL Based Tenancy

Multi-Tenant security can also be assured by using Custom SQL for all Data Objects.
Exago can pass parameter values into each SQL statement to filter data based on user.

To set Custom SQL based tenancy in Exago:

1. For each Data Object open the Custom SQL menu and create the desired SQL
utilizing parameters to assure only appropriate information is available. Note:
Parameters should be surrounded by single quotes.

2. When initializing Exago through the Api, set the value of any parameters utilized in
the SQL for the current user.

106 Exago Inc.

Exago Technical Guide EXago

(& Objects =][B Suurces]

H::nrthaﬂ:inrl’ _ e —————————

o Custom SQL Object L
S Data = Parameter

nigue Ke : ata Source Test

e Uchfe?”ﬂme Northwind =] 'CustomerD [+| E
L) ustomers orthwin

Do remetors | [SE1ECE * -
= From Customers

enant L Where Tenant Column = '@TenantParam@’ B

(v ok] (% cancel)

Manual Application Installation

If the host application is deployed on site it may prove convenient and advantageous to
integrate the installation of Exago into the host'’s installer. This section will detail how to
integrate the installation. To accomplish this task there must be an existing installation of
Exago, Exago Web Service Api and Exago Scheduler from which to copy files and
directories.

This section will show how to integrate the installation of:

Exago and Exago Web Service Api
Exago Scheduler Service

Note: Due to significant differences in IIS before and after version 7, some sections will
provide separate explanations for versions prior to IIS 7 and after IIS 7.

Exago and Exago Web Service Api Installer Integration

Summary

The installer integration of Exago and/or the Exago Web Service Api has four steps:
Copy the Exago and/or the Exago Web Service Api files to installation folders.
Create IIS Virtual Directory to point to Exago/Exago Web Service Api.
Configure IIS as required for Exago/Exago Web Service Api setup.

> W bh =

Modify the system registry (optional).

107 Exago Inc.

Exago Technical Guide EXago

Note: The installation of Exago Web Service Api is only used for clients who wish to
develop using the Web Service Api instead of the .NET Assembly.

Directory Structure

The directory structure should be preserved as follows:

Exago:
e [Exago Physical Directory]
o /Bin
o /Config
o /Images
o /[Temp

Exago Web Service API:

e [ExagoApi Physical Directory]
o /Bin
o /Config

File Installation

The host installer should create a copy of all the files that are initially created by the
Exago/Exago Web Service Api Installer.

Note: (optional)

The following configuration files are not part of the initial Exago/Exago Web Service Api
installation. Including the configuration files with the installation will help to minimize
manual configuration. The files are stored in the following directory tree:

Exago:
e /Config/
o WebReports.xml and/or WebReports.xml.enc

Exago Web Service Api:
e /Config
o WebReportsApi.xml

IIS Configuration

The method of creating new web applications and services differs depending on what
version of IIS the server is using. Microsoft made significant changes to IIS versions 7+
which simplified creating new Web Sites, Virtual Directories, etc.

Note: Verify that the Virtual Directory does not exist before attempting to create the new
one.

IIS Version 5.0-6.0

108 Exago Inc.

Exago Technical Guide EXago

Create Virtual Directory
A virtual directory requires the following input:

o siteName - Name of the IIS Web Site where it will be installed. (ex. ‘Default
Web Site’)

e vDirName - Name of Virtual Directory for the installation (ex. ‘Exago’ or
‘ExagoApi’)

e physicalPath - Physical installation path. (ex. ‘C:\Program Files\Exago\Exago’)

The following C# code provides an example of how to set these properties.

public void CreateVDir(string siteName, string vDirName, string physicalPath)

{

System.DirectoryServices.DirectoryEntry oDE;
System.DirectoryServices.DirectoryEntries oDC;
System.DirectoryServices.DirectoryEntry oVirDir;

oDE = new DirectoryEntry(siteName + "/Root");

//Get Default Web Site
oDC = oDE.Children;

// Delete before it re-create
bool isVDirExists = true;

try
{
DirectoryEntry dirtEnt = oDC.Find(vDirName, oDE.SchemaClassName.ToString());
if (dirEnt != null)
{
//Changed to Update virtual directory physical path.
//If virtual directory already exist do not delete and
//recreate.
dirEnt.Properties["Path"].Value = physicalPath;
dirknt.CommitChanges();
}
}
catch (DirectoryNotFoundException)
{
isVDirExists = false;
}
catch (COMException comEx)
{
if (comEx.Message == "Exception from HRESULT: ©x80005008")
return;
else
throw;
}
if (isVDirExists)
return;
//Add row

oVirDir = oDC.Add(vDirName, oDE.SchemaClassName.ToString());

//Commit changes for Schema class File
oVirDir.CommitChanges();

109 Exago Inc.

Exago Technical Guide

EXX200
Yo]

//Create physical path if it does not exists
if (!Directory.Exists(physicalPath))

{
}

Directory.CreateDirectory(physicalPath);
//Set virtual directory to physical path
oVirDir.Properties["Path"].Value = physicalPath;

//Set read access
oVirDir.Properties["AccessRead"][@] = true;

//Create Application for IIS Application (as for ASP.NET)
oVirDir.Invoke("AppCreate", true);

oVirDir.Properties["AppFriendlyName"][@] = vDirName.Substring(vDirName.LastIndexOf('/"') +

1);

oVirDir.Properties|["DefaultDoc"][@] = "Home.aspx";
oVirDir.Properties["EnableDefaultDoc"][@] = false;
oVirDir.Properties["AppIsolated"][0] = 2;

//Save all the changes
oVirDir.CommitChanges();

Configure Framework

All Exago components require .NET Framework 4.0. Thus, IIS needs to be set to an app
pool that also uses .NET Framework 4.0. The host installer should verify that this

Framework is currently installed on the web server.

The following C# code provides an example of how to check and set the proper

Framework.

public static void SetFramework(string webSitePath)

{
try

{

string frameworkPath = Environment.GetEnvironmentVariable("WINDIR") +

@"\microsoft.net\framework";

// Check to see if the system has the 64 bit version of .NET

if (Directory.Exists(frameworkPath + "64"))
{

frameworkPath += "64";

}

// Set the .NET Framework to .NET 4.0

string strExe = frameworkPath + @"\v4.0.30319\aspnet_regiis.exe";

if (File.Exists(strExe))
{

ProcessStartInfo pi = new ProcessStartInfo();
pi.FileName = strExe;

pi.Arguments = "-s " + webSitePath.Replace(@"IIS://localhost/", "");

pi.UseShellExecute = false;
pi.CreateNoWindow = true;
Process proc = Process.Start(pi);

110

Exago Inc.

Exago Technical Guide

EXX200
Yo]

proc.WaitForExit();

throw;

IIS Version 7+

The following is a C# code sample of how to create a new IIS installation of Exago/Exago
Web Service API, using Microsoft.Web.Administration.dll. The code requires the following

input:

o siteName - Name of the IIS Web Site where it will be installed. (ex. ‘Default
Web Site’)

e vDirName - Name of Virtual Directory for the installation (ex. ‘Exago’ or
‘ExagoApi’)

o physicalPath - Physical installation path. (ex. ‘C:\Program Files\Exago\Exago’)

public new void CreateVDir(string siteName, string vDirName, string physicalPath)

{
try
{
ServerManager iisManager = new ServerManager();
string virtDirName = @"/" + vDirName;
// Check if Application/Virtual Directory exists
if (iisManager.Sites[siteName].Applications[virtDirName] != null)
{
iisManager.Sites[siteName].Applications[virtDirName].VirtualDirectories[@"/
"1.PhysicalPath =
physicalPath;
}
// Create new Application/Virtual Directory
else
{
iisManager.Sites[siteName].Applications.Add(virtDirName, physicalPath);
Microsoft.Web.Administration.Application app =
iisManager.Sites[siteName].Applications[virtDirName];
app.ApplicationPoolName = "DefaultAppPool";
}
// Commit changes to the webserver
iisManager.CommitChanges();
}
catch
{
throw;
}
}
111 Exago Inc.

Exago Technical Guide EXag0o

Exago Scheduler Installer Integration

Summary

The installer integration of the Exago Scheduler has six steps:

1. Check to see if the Exago Scheduler is running as a Windows Service (if so stop this
service).

Copy the Exago Scheduler files to installation folders.
Modify the system registry (optional).
Modify the security settings on the Exago Scheduler directory.

Create a new Windows Service for the Exago Scheduler

o 0k W N

Enable the Exago Scheduler service.
File Installation

Before running the installation, the Windows Services should be checked to see if the
Exago Scheduler is currently installed and/or running as a service. If the Exago Scheduler
is currently installed and/or running as a service it should be shut down. The host installer
should then create a copy of all the files that are initially created by the Exago Scheduler
Installer.

Note: Overwrite the file ExagoScheduler.xml with a version configured for the host
application.

The following C# code provides an example of how to stop the scheduler service if it is
running.

ServiceState serviceSt = WindowsServiceInstaller.GetServiceStatus(“ExagoScheduler”);

// check to see if the Exago Scheduler service exists
if (serviceSt != ServiceState.NotFound && serviceSt != ServiceState.Unknown)

{
CreateServiceDelegate stDel = new
CreateServiceDelegate(WindowsServiceInstaller.StopService);
stDel(“ExagoScheduler”);

for (int ProgCtr = @; ProgCtr <= 120; ProgCtr++)

{
Thread.Sleep(1000);

serviceSt = WindowsServiceInstaller.GetServiceStatus(“ExagoScheduler”);

if (serviceSt == ServiceState.Stop)
break;

if (InvokeRequired)
Invoke(new Change(OnChange), ProgCtr);

(sender as BackgroundWorker).ReportProgress(ProgCtr);

112 Exago Inc.

Exago Technical Guide EXag0o

}
Directory Security Settings

The Exago Scheduler service will require changes to the security settings of the
installation directory to enable Windows to run the program scheduler.exe as a Windows
Service.

The following C# code provides an example of how to make the necessary security
changes. It requires the following input.

e dirName - Physical path to Exago Scheduler (ex. ‘c:\Program
Files\Exago\ExagoScheduler\")

private void SetDirSecurity(string dirName)
{
try
{
if (dirName == null)
return;

if (!Directory.Exists(dirName))
return;

DirectoryInfo dirInfo = new DirectoryInfo(dirName);

// get a DirectorySecurity object that represents the current
// security settings
DirectorySecurity dirSecurity = dirInfo.GetAccessControl();

// Add the FileSystemAccessRule to the security settings
dirSecurity.AddAccessRule(new FileSystemAccessRule("LOCAL SERVICE",
FileSystemRights.FullControl, AccessControlType.Allow));
dirSecurity.AddAccessRule(new FileSystemAccessRule("LOCAL SERVICE",
FileSystemRights.FullControl,
InheritanceFlags.ContainerInherit | InheritanceFlags.ObjectInherit,
PropagationFlags.InheritOnly, AccessControlType.Allow));

// Set the new access settings
try
{

}
catch (Exception ex)

{
}

dirInfo.SetAccessControl(dirSecurity);

MessageBox.Show(ex.Message);

}

catch (Exception ex)

{

MessageBox.Show(this,"Unable to set privileges on install directory: + dirName +
". Please set 'LOCAL SERVICE' privileges.\n\nException: " + ex.Message,
"Error");

}

Windows Service Creation

113 Exago Inc.

Exago Technical Guide EXag0o

Before installing the Exago Scheduler as a new service, verify that it is not installed
and/or running. If the Exago Scheduler is not installed, install the software and make sure
it is running.

The following C# code provides an example of how to make this check.

serviceSt = WindowsServicelnstaller.GetServiceStatus(“ExagoScheduler”);
// 1is Exago Scheduler already installed as a service
if (serviceSt == ServiceState.NotFound || serviceSt == ServiceState.Unknown)

/I install Exago as a new Windows Service
WindowsServicelnstaller.Install(“ExagoScheduler”,“ExagoScheduler”,
filePath + “ExagoScheduler.exe”);

for (int timeCtr = 0; timeCtr <= 120; timeCtr++)
{

serviceSt = WindowsServicelnstaller.GetServiceStatus(“ExagoScheduler”);

if (serviceSt == ServiceState.Stop)

{

}

if (InvokeRequired)
Invoke(new Change(OnChange), timeCtr);

break;

(sender as BackgroundWorker).ReportProgress(timeCir);

}

RegistryKey key = Registry.LocalMachine.OpenSubKey("'SYSTEM\CurrentControlSet\\Services\\" +
“ExagoScheduler”, true);

if (key !=null)
{
key.SetValue("Description”, "Exago Scheduler Windows Service");
}
}
// found service already installed, check to see if it is running
else
{
/I if the service is not running, attempt to start it
if (this.initialStatus != ServiceState.Stop)
{
CreateServiceDelegate stDel = new CreateServiceDelegate(WindowsServicelnstaller.StartService);
stDel(“ExagoScheduler”);
for (int timeCtr = 0; timeCtr <= 120; timeCtr++)
{
serviceSt = WindowsServicelnstaller.GetServiceStatus(“ExagoScheduler”);
if (serviceSt == ServiceState.Starting || serviceSt == ServiceState.Run)
{
break;
}
if (InvokeRequired)
Invoke(new Change(OnChange), timeCitr);
(sender as BackgroundWorker).ReportProgress(timeCitr);
}
}
}

Optional Setup Information

114 Exago Inc.

Exago Technical Guide

EXX200
D

Registry keys may be added to better enable reinstallation functionality (ex. pre-selecting
values such as installation path, virtual directory name, etc.). These keys are optional and
are not required for installer integration.

Creating a Registry

A new registry item will need to be created in the path
HKEY_LOCAL_MACHINE/SOFTWARE. Below are examples of such paths for the
application, the Api and the scheduler.

Exago:
¢ HKEY_LOCAL_MACHINE
o SOFTWARE
= Exago
e Exago

o Default Web Site/WebReports

Exago Web Service Api:
e HKEY_LOCAL_MACHINE

o SOFTWARE
= Exago
e ExagoAPI

o Default Web Site/WebReportsAPI
Exago Web Service Api:
e HKEY_LOCAL_MACHINE
o SOFTWARE
= Exago
e ExagoScheduler

Values in a Registry

The following values can be added to the appropriate registry folders:

CreateDate - Initial Installation date (ex. 6/17/2012 12:35:60)
DisplayName - Has two possible values
o Exago/Exago Web Service Api - Set to the Installation Web Site followed
by the Virtual Directory Name (ex. Default Web Site/Exago).
o Exago Scheduler - Set to the directory name where the Exago Scheduler
was installed (ex. Exago).
Location - Physical installation path (ex. c:\Program Files\Exago\Exago).
UpdateDate - Initially set to the installation date. Should be updated whenever
Exago is reinstalled.
Version — Set to the version of Exago being installed (ex. 2012.1.1). This value
can be found by pressing ‘Ctrl + Shift+ V' in Exago.

Example of Registry

The following C# code provides an example of how to add items to the registry. It
requires the following input.

115 Exago Inc.

Exago Technical Guide

EXX200
Yo]

public static

{

application - Set to ‘ExagoScheduler’, *‘Exago’ or ‘ExagoApi’.

path - Set to the installation path.

website - Set to the IIS Web Site where Exago is installed. Leave blank for
the Exago Scheduler.

vdir - Set to the virtual directory that Exago is set up as. Leave blank for
the Exago Scheduler.

void AddRegistryKey(string application, string path, string webSite, string vdir)

try
{
string ExagoRegKey = application;
if (application != “ExagoScheduler”)
vdir = vdir.Replace(@”’\”, @”/”);
ExagoRegKey += @”\” + webSite + @”/” + vdir;
}
RegistryKey registryKey = Registry.LocalMachine.OpenSubKey(REGISTRY_KEY_ROOT +
ExagoRegKey, true);
if (registryKey == null)
{
registryKey = Registry.LocalMachine.CreateSubKey(REGISTRY_KEY_ROOT
+ ExagoRegKey);
if (registryKey == null)
throw (new Exception("Error creating RegistryKey"));
else
registryKey.SetValue("CreateDate",
System.DateTime.Now.ToString(CultureInfo.InvariantCulture));
}
using (registryKey)
registryKey.SetValue("DisplayName", ExagoRegKey);
registryKey.SetValue("UpdateDate",
System.DateTime.Now.ToString(CultureInfo.InvariantCulture));
registryKey.SetValue("Location", path);
registryKey.SetValue("Version",
System.Reflection.Assembly.GetExecutingAssembly().GetName().Version)
5
}
return;
}
catch
{
throw;
}
116 Exago Inc.

Exago Technical Guide EXago

Extensibility

The following chapter details features of Exago that can be enhanced or extended by the
host application to provide additional functionality.

Load Balancing Execution

Report execution can be balanced across servers to improve performance. As one
execution is being processed subsequent report execution calls will be sent to different
servers in the order they are specified.

To load balance report execution:

e Install Exago Scheduling Service.

e Set the '‘Enable Remote Report Execution’ to True in the Report Scheduling
Settings.

e In ‘Remote Execution Remoting Host' list the servers you want to use separated by
commas (ex. http://MyHttpServer1:2001, tcp://MyTcpServer:2001).

Multiple Data Models

In some cases a user may want the same Data Objects to be joined together differently..
To accomplish this, Data Objects and Joins can be placed into Categories to create
multiple data models. When an end user selects a Data Object from a Category it
indicates which joins to use.

The following steps detail how to create multiple data models.

1. In the Administration Console open Other Settings and set ‘Limit Report to One
Category’ to True.

2. Open the configuration file (WebReports.xml) in the Config folder.

3. In the <webreports> section, begin by creating a <category> for each data model.
Note: Each xml tag must be closed (ex. <category> must be closed with </category>).
4. For each data model:

1. Specify an ID with the <category_id> tag. The ID should be a unique identifier for the
data model and will be utilized by the Data Objects and Joins.

2. Give the model a name that will be displayed to the end user using the
<category_name> tag.

Note: The <category_name> tag - acts as a ‘folder’ to group Data Objects. Sub-
‘folders’ can be created by entering the category name followed by a backslash then
the sub-category name. Ex. ‘Sales\Clients'.

117 Exago Inc.

Exago Technical Guide EXag0o

Example:

<category>
<category_name>Exago University\Advisors</category_name>
<category_id>advisorModel</category id>

</category>

5. For each Data Object (<entity> tag):
1. With the <category> tag, create a comma separated list of IDs for each data model in
which you want the Object to be available. In the example below two data models
are specified by their IDs (advisorModel & classesModel).

Example:

<entity>
<entity name>Professors</entity_name>
<db_name>Professor</db_name>
<category> advisorModel,classesModel</category>
<datasource_id>7</datasource_id>
<object_type>xmltable</object_type>
<key>

<col _name>ID</col_name>

</key>

</entity>

6. For each Join (<join> tag):

1. With the <category> tag, create a comma separated list of IDs for each data model in
which you want the Join to be utilized. In the example below a Join between two
Data Objects is being set to one data model (advisorModel).

Example:

<join>
<entity_from_name>Professor</entity_from_name>
<entity_to_name>Student</entity_to_name>
<join_type>rightouter</join_type>
<relation_type>1M</relation_type>
<weight>0</weight>
<category>advisorModel</category>
<joincol>
<col_from_name>ID</col_from_name>
<col_to_name>Advisor</col_to_name>
</joincol>
</join>

Example

The following configuration example demonstrates how three Data Objects are made
available in two different relational models. In the advisorModel model Students are joined
directly to Professors, while in the classesModel model Students are joined to Professors
indirectly through Classes.

Models:

<category>
<category name>Exago University\Advisors</category_name>

118 Exago Inc.

Exago Technical Guide EXago

<category_id>advisorModel</category_id>

</category>

<category>
<category_name>Exago University\Classes</category_name>
<category id>classesModel</category_id>

</category>

Data Objects:

<entity>
<entity_name>Classes</entity_name>
<db_name>Class</db_name>
<category>advisorModel,classesModel</category>
<datasource_id>7</datasource_id>
<object_type>xmltable</object_type>
<key>
<col_name>ID</col_name>
</key>
</entity>
<entity>
<entity_name>Students</entity_name>
<db_name>Student</db_name>
<category> advisorModel,classesModel </category>
<datasource_id>7</datasource_id>
<object_type>xmltable</object_type>
<key>
<col_name>ID</col_name>
</key>
</entity>
<entity>
<entity_name>Professors</entity_name>
<db_name>Professor</db_name>
<category>advisorModel,classesModel</category>
<datasource_id>7</datasource_id>
<object_type>xmltable</object_type>
<key>
<col_name>ID</col_name>
</key>
</entity>
Joins:

Note: The Professors => Classes join is utilized by both Data Models because no
<category> is set.

<join>
<entity_from_name>Professor</entity_from_name>
<entity_ to_name>Student</entity_to_name>
<join_type>rightouter</join_type>
<relation_type>1M</relation_type>
<weight>@</weight>
<category>advisorModel</category>
<joincol>
<col_from_name>ID</col_from_name>
<col_to_name>Advisor</col_to_name>
</joincol>
</join>
<join>
<entity_from_name>Professor</entity_from_name>
<entity_to_name>Class</entity_to_name>

119 Exago Inc.

Exago Technical Guide EXag0o

<join_type>inner</join_type>
<relation_type>1M</relation_type>
<weight>0</weight>
<joincol>
<col_from_name>ID</col_from_name>
<col_to_name>Professor</col_to_name>
</joincol>
</join>
<join>
<entity_from_name>Student</entity_from_name>
<entity to_name>Class</entity_to_name>
<join_type>inner</join_type>
<relation_type>1M</relation_type>
<weight>0</weight>
<category>classesModel</category>
<joincol>
<col from_name>Enrolled in</col_from_name>
<col_to_name>Title</col_to_name>
</joincol>
</join>

External Interface

There are certain features of Exago that the host application may want to control directly.
In some cases Exago provides the ability for the host application to do this by calling out
to a specified Web Service or .NET Assembly with specific methods.

To utilize the External Interface:
1. Create a Web Service or .Net Assembly that contain the functions described below.

2. Specify the Web Service or .NET Assembly in the External Interface property of
Other Settings.

Note: A different external interface can be specified within the Scheduling Service
configuration. For more details see Configuring Scheduler Settings.

Note: The Web Service should be formatted as ‘url=http://WebServiceUrl.asmx".
The .NET Assembly should be formatted as ‘assembly =
AssemblyFullPath.dll;class=Namespace.ClassName’. For a .NET Assembly all
methods should be static.

The functions below will use the parameters ‘companyld’, and ‘userId’ which should be
set through the Api as users enter Exago.

Report Execution Start Event

To enable the host to track report executions, Exago and the Exago Scheduling Service
will fire an event at the start of each report execution. The following method will be used.

void ReportExecuteStart(string companyld, string userld, string reportName)

120 Exago Inc.

Exago Technical Guide EXag0o

Description | Used to track report execution by user.

Remark Should not return any value.

User Preference Management

By default Exago will store User Preferences such as which Dashboard Reports to execute
on startup in a browser’s cookie. While convenient this means if a user switches browsers
or machines their preferences will be lost. Instead the host application can manage how
these User Preferences are stored using the External interface.

To handle the storage of User Preferences:

1. In the User Settings, set User Preference Storage Method to “External Interface”
2. Implement the following methods:

void SetUserPreference(string companyld, string userld, string id, string value)

Description | Used to set a particular user preference value. The id is a unique identifier for the
user preference, and the value is the user preference value (may be null).

Remark Should not return any value.

string GetUserPreference(string companyld, string userld, string id)

Description | Used to retrieve the value parameter of most recent SetUserPrefernce call for the
companyld and userld.

Remark Returns a string

Handling Time Zones

A server in one time zone may be utilized by users around the globe. This presents
problems when handling functions that run on the server such as Now(). There are two
ways to handle such a situation: Use the Culture Setting, Server Time Zone Offset, or
use the external interface functions below.

Note: For these functions to be called the Culture setting Sever Time Zone Offest must be
blank.

DateTime ConvertToServerDateTime(string companyld, string userld, DateTime
clientDateTime)

Description | Used to adjust clients time to server’s time zone.

121 Exago Inc.

Exago Technical Guide EXag0o

Remark Returns a DateTime.

DateTime ConvertToClientDateTime(string companylId, string userld, DateTime
serverDateTime)

Description | Used to adjust server time to client's time zone.

Remark Returns a DateTime.

Email List for Report Scheduling

Through the external interface, the Exago Scheduling Service can retrieve email
distribution groups from the host application. This prevents having to maintain separate
lists of email addresses within Exago.

When a report is scheduled, a call out is made to the host application to get the list of
email addresses and distribution groups for the user to select from. This is done with the
following method.

string GetEmailListXml(string companyld, string userld)

Description Returns a string listing folders and report names in xml format (see example).

Remark Leave the tag <email> blank for an entry to indicate it is a distribution group.

<emailAddressList>
Example <item>
<name>John Smith</name>
<email>jsmith@mycompanydomain.com</email>
</item>
<item>
<name>Sales Group</name>
<email></email>
</item>
</emailAddresslList>

If a scheduled report uses a distribution list then the following method will be called at the
time the report is executed.

string GetEmailDistributionListXml(string companyld, string userld, string listName)

Description | Returns a string listing folders and report names in xml format (see example).

Remark Do not leave the <email> tag blank. The name item does not need to be returned
for this method.

<emailAddressList>

Example <item>. o))
<email>jsmith@mycompanydomain.com</email>

</item>

122 Exago Inc.

Exago Technical Guide EXag0o

<item>
<email>tmcgrath@Exagoinc.com</email>
</item>
</emailAddressList>

Custom Scheduler Recipient Window

To utilize the Custom Scheduler Recipient Window feature the following function may exist
in the External Interface. See Custom Scheduler Recipient Window for more
information.

string GetEmailList(string controlData)

Description | Sends the external interface the Control Data previously provided by host
application when a user clicks OK in the Custom Scheduler Recipient window.

Remark Returns a string of email addresses separated by commas or semi colons.

Scheduler Repository Notification

When ‘Email Scheduled Reports’ is set to False in the Administration Console the
following method will call the External Interface to let the host application know when a
scheduled report has been saved in the Scheduler Repository.

See Saving Scheduled Reports to External Repository for more information.

void ScheduledReportExecutionComplete(string companyld, string userId, string
reportName, string exportFileName, int statusCode, string statusMsg)

Description | Sends the external interface a notification that a scheduled report has been saved
to the Scheduler Repository.

Remark statusCode is 0 if the execution was successful, 1 if an error occurred or no data
qualified.

statusMsg details the result of the execution (eg. "Report has successfully
executed", or "There were errors in the report layout; please edit or contact your
administrator").

Return value is void.

Custom Scheduler Recipient Window

When the functions GetEmailListXml and GetEmailDistributionListXml exist in the
External Interface the To and Cc buttons on the Schedule Report Wizard become
clickable and open a dialog for users to select email addresses or groups. This dialog can
be replaced with a custom window created by the host application.

123 Exago Inc.

Exago Technical Guide EXag0o

To utilize a Custom Scheduler Recipient Window:

1. Set a URL, height and width in the Custom Scheduler Recipient Window parameter
in the Scheduler Settings. Ex
url=www.CustomScheduler.com;height=100;width=300;

Note: Height and Width are numbers that represent the dimensions of the window
in pixels.

2. In the custom window utilize the following JavaScript functions:

wrGetScheduleRecipientWindowEmailAddressData ()

Description | Use this function to retrieve any existing email address data the user has entered
into the Schedule Report Wizard.

wrSetScheduleRecipientWindowEmailAddressData (string displayData, string
controlData)

Description | Call this function when the user clicks OK to tell Exago the email address data.

Remark The displayData will appear in the To or Cc box of the Recipients window.

The controlData will be passed back to the Host application when the Scheduled
report is run and sent out.

wrCancelScheduleRecipientWindow ()

Description | Call this function to close the custom window.

3. Create the function GetEmailList(string controlData) in the External Interface to
convert the control data into the actual email addresses when the scheduled report
has been run and is ready to be sent.

Custom Filter Execution Window

When a report is executed, a filter execution dialog will appear if any of the filters on the
report are set to ‘Prompt for Value’. This dialog can be replaced with a custom window
created by the host application. The custom window can be either a control saved within
Exago or a separate webpage outside of Exago

To create Custom Filter Execution Window as a control within Exago:

1. Create an ascx file in the installation directory of Exago. Ex
CustomFilterWindow.ascx

2. Set the control, height and width in the Custom Filter Execution Window parameter
in the Filter Settings. Ex
control=CustomFilterWindow.ascx; height=100;width=300;

124 Exago Inc.

Exago Technical Guide EXag0o

Note: Height and Width are numbers that represent the dimensions of the window
in pixels. These settings are optional. If omitted, the dialog is sized to the value in
the wrDialogMasterContainerCentered css class, which is currently 70%.

3. In the control use the JavaScript functions described below to show the custom
filter window and create or modify filters before report execution begins.

To create Custom Filter Execution Window as a web page:

1. Set a URL, height and width in the Custom Filter Execution Window parameter in
the Filter Settings. Ex
url=www.CustomFilterExecution.com;height=100;width=300;

Note: Height and Width are numbers that represent the dimensions of the window
in pixels.

Note: To notify the host application the user’s language the URL will be appended
with the ‘Language File’ of Main Settings and a context parameter (listed below).
Ex. www.CustomFilterExecution.com?language=en-us

2. In the custom webpage use the JavaScript functions described below to show the
custom filter window and create or modify filters before report execution begins.

Note: all the JavaScript functions must begin with ‘parent.” as the page is placed
inside an iFrame by Exago.

Available JavaScript Functions

The following JavaScript functions are available for the Custom Filter Execution Window.

object[] wrGetFilterWindowData()

Description | Gets the report’s existing filters created in Exago as an array.

Remark Returns an array of filter objects. For more information on the filter objects see
wrReportFilter().

object[] wrGetFilterWindowDataObjects()

Description | Gets the Data Categories of the report and their associated Data Fields.

Remark Returns an array of representing the available Data Categories.

Each Data Category has a string providing its Name and a sub array representing
the Data Fields.

Each Data field has a string providing its Name and an integer representing its Data
Type. This integer uses the Data Type Constant described below.

DataType Constants:
0 - String

1 - Date

2 - Integer

3 - Bit

4 - Numeric

5 - Float

125 Exago Inc.

Exago Technical Guide EXag0o

6 - Decimal

7 - Guid

8 - DateTime

9 - Time - not currently used
10 - Image

Note: All the Categories names being passed are the Alias for each Data Object.
Similarly the Data Fields will return the name specified in column metadata if
provided.

string wrGetActiveReportName()

Description | Returns the name of the report being executed.

Remark The returned string includes the folder path of the report separated by slashes.

bol wrShowFilterWindow()

Description Displays the custom filter execution window.

void wrReportFilter()

Description | Creates a Filter object that can be added to the Filters array returned by
wrSetFilterWindowData().

Remark Filter Objects have the following properties:

Name - The name of the data field being used.

Operator — Operator for filter. Uses enumeration wrFilterOperator

Values - Value(s) of filter

AndFlag - Boolean to set And/Or with next filter.

GroupWithNext — Boolean to group with next filter.

GroupStartCount - The number of opening parentheses that were manually added
to the filter using ctrl + [.

GroupEndCount - The number of closing parentheses that were manually added to
the filter using ctrl +].

DataType - the type of data being filtered. Uses constants DataType (see below.

DataType Constants:

0 - String

1 - Date

2 - Integer
3 - Bit

4 - Numeric
5 - Float

6 - Decimal
7 - Guid

8 - DateTime
9 - Time - not currently used
10 - Image

bol wrSetFilterWindowData(object[] filters)

Description Sets the filters for the report, closes the custom filter execution window, and then
begins report execution.

126 Exago Inc.

Exago Technical Guide EXago

Remark Returns a Boolean to indicate success.

This or wrCancelFilterWindow() should be the last function called by the custom
filter execution window.

bol wrCancelFilterWindow()

Description | Closes the custom filter execution window without changing the report’s filters.

Remark Returns a Boolean to indicate success.

This or wrSetFilterWindowData() should be the last function called by the custom
filter execution window.

Example Custom Filter Execution Control

<%@ Control Language="C#" ClassName="MyCustomFilterDialog" EnableTheming="false" %>
Hello Custom Filter Dialog
<input type="button" value="0k" onclick="0nOk();" />
<input type="button" value="Cancel"” onclick="OnCancel();" />
<script type="text/javascript">
OnOk = function()

{
// create array of wrReportFilter objects to send back to parent
var filters = new Array();
var filter = new wrReportFilter();
filter.Name = "Employee.First Name";
filter.Operator = wrFilterOperator.OneOf;
filter.Values.push("Travis");
filter.Values.push("Stew");
filters.push(filter);
wrSetFilterWindowData(filters); // also continues execution
}
OnCancel = function()
{
wrCancelFilterWindow();
}

// initialize custom window with values from the parent
var filters = wrGetFilterWindowData();
var dataObjects = wrGetFilterWindowDataObjects();
wrShowFilterWindow();

</script>

Example Custom Filter Execution WebPage

<%@ Page Language="C#" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtmll-transitional.dtd">
<script runat="server"></script>
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head runat="server">
<title></title>
<script type="text/javascript">
window.onload = function() { Initialize(); };

127 Exago Inc.

Exago Technical Guide EXag0o

function Initialize()

{
// initialize custom window with values from the parent
var filters = parent.wrGetFilterWindowData();
var dataObjects = parent.wrGetFilterWindowDataObjects();
parent.wrShowFilterWindow();

}

function OnOk()

{
// create array of wrReportFilter objects to send back to parent
var filters = new Array();
var filter = new parent.wrReportFilter();
filter.Name = "Employee.First Name";
filter.Operator = parent.wrFilterOperator.OneOf;
filter.Values.push("Travis");
filter.Values.push("Stew");
filters.push(filter);
parent.wrSetFilterWindowData(filters); // also continues execution

}

function OnCancel()

{
parent.wrCancelFilterWindow();

}

</script>
</head>
<body>
<form id="forml" runat="server">
<div>

<input type="button" value="0Ok" onclick="0nOk();" />
<input type="button" value="Cancel" onclick="OnCancel();" />
</div>
</form>
</body>
</html>

Saving Scheduled Reports to External Repository

When using the Exago Scheduling Service you may specify for reports to be saved to a
repository instead of having them emailed as attachments. When a Scheduled report is
run and saved a callout to the External Interface will be made to notify the host
application. This will allow the host application to notify the appropriate users their report
is available.

To utilize the Repository:
1. Set ‘Email Scheduled Reports’ in the Scheduler Settings to False.
In the Exago Scheduling Service installation open the file ExagoScheduler.xml.

Set the parameter “<report_path>" to specify the repository you want to use.

A

Create the function ScheduledReportExecutionComplete(string companyld, string
userld, string reportName, string exportFileName, int statusCode, string statusMsqg)
in the External Interface to notify the host application the report execution is
complete.

128 Exago Inc.

Exago Technical Guide EXag0o

Custom Context Sensitive Help

Exago is installed with context sensitive help. When a user clicks the help button a tab
appears displaying the appropriate section of the Exago User Guide. The content of this
tab can be replaced with custom content managed by the host application

To implement Custom Context Sensitive Help:

1. Create a webpage for the custom help.
2. Set the URL of the webpage in the Custom Help Source parameter in Feature/UI

Settings. Ex url=http://www.Customhelp.com/Exago;

Note: When a user clicks the help button Exago will populate a tab with the content
received from the URL. To notify the host application the user’s language the URL
will be appended with the ‘Language File’ of Main Settings and a context
parameter (listed below). Ex. http://www.customhelp.com/Exago?helpKey=
newreport&language=en-us

Context Parameter

Details

tabexecute The user has report output active.

Express Report Wizard

tabExpressName The user has the Name tab of the Express Report Wizard active.
tabExpressCatepgories The user has the Categories tab of the Express Report Wizard active.
tabExpressSorts The user has the Sorts tab of the Express Report Wizard active.
tabExpressFilters The user has the Filters tab of the Express Report Wizard active.
tabExpressLayout The user has the Layout tab of the Express Report Wizard active.
tabExpressOptions The user has the Options tab of the Express Report Wizard active.
New Crosstab Wizard

tabCrosstabName The user has the Names tab of the New Crosstab Report Wizard active.

tabCrosstabCategories

The user has the Categories tab of the New Crosstab Report Wizard active.

tabCrosstabFilters

The user has the Filters tab of the New Crosstab Report Wizard active.

tabCrosstablLayout The user has the Layout tab of the New Crosstab Report Wizard active.

New Report Wizard

tabStandardName The user has the Names tab of the New Standard Report Wizard active.
tabStandardCategories The user has the Categories tab of the New Standard Report Wizard active.
tabStandardSorts The user has the Sorts tab of the New Standard Report Wizard active.
tabStandardFilters The user has the Filters tab of the New Standard Report Wizard active.
tabStandardLayout The user has the Layout tab of the New Standard Report Wizard active.
Report Designer

tabDesign The user is editing a standard or crosstab report and has the design grid active.
dialogName The user has the Rename Menu active.

dialogDescription

The user has the Description Menu active.

dialogCategories

The user has the Categories Menu active.

dialogSorts

The user has the Sorts Menu active.

dialogFilters

The user has the Filters Menu active.

dialogGeneralOptions

The user has the Options Menu active.

listitemReportHtmIOptionsG
eneral

The user has the General section of the HTML Options active.

listitemReportHtmIOptionsFi
Iters

The user has the Filter section of the HTML Options active.

listitemReportHtmIOptionsS
orts

The user has the Sorts section of the HTML Options active.

dialogTemplate

The user has the Template Menu active.

dialogJoins

The user has the Advanced Menu active.

dialogJoinEdit

The user has the Report Join Menu active.

dialogFormulaEditor

The user has the Formula Editor active.

129

Exago Inc.

Exago Technical Guide EXag0o

dialogLinkedReport The user has the Linked Report Menu active.
tabCellFormatNumber The user has the Number tab of the Cell Format Menu active.
tabCellFormatBoder The user has the Border tab of the Cell Format Menu active.
tabCellFormatConditional The user has the Conditional tab of the Cell Format Menu active.
dialogCrosstabDesign The user has the Crosstab Menu active.

dialogGroup The user has the Group Section Menu active.
dialogSectionShading The user has the Section Shading Menu active.

tabChartType The user has the Type tab of the Chart menu active.
tabChartLabels The user has the Labels tab of the Chart menu active.
tabChartData The user has the Data tab of the Chart menu active.
tabMapType The user has the Type tab of the Map menu active.
tabMapLocations The user has the Locations tab of the Map menu active.
tabMapData The user has the Data tab of the Map menu active.
Dashboards

tabDashboardDesigner The user has the Dashboard designer active.
dialogDashboardUrlOptions The user has the Insert Url menu active.
dialogDashboardName The user has the Dashboard Rename menu active.
dialogDashboardDescription | The user has the Dashboard Description menu active.
dialogDashboardOptions The user has the Dashboard Options menu active.

tabDashboardReportOptions | The user has the Report tab of the Insert Report menu active.

tabDashboardReportOptions | The user has the Filters tab of the Insert Report menu active.
FilterPrompts

tabDashboardReportOptions | The user has the Parameters tab of the Insert Report menu active.

ParameterPrompts

tabDashboardReportOptions | The user has the Options tab of the Insert Report menu active.
Options

tabDashboardFilterOptionsR | The user has the Reports tab of the Insert Filter menu active.
eports

tabDashboardFilterOptionsFi | The user has the Filter tab of the Insert Filter menu active.

Iter

Scheduler

tabScheduleReportManager | The user has the Schedule Report Manager active.
tabScheduleRecurrence The user has the Recurrence tab of the New Schedule Wizard active.
tabScheduleParameters The user has the Parameter tab of the New Schedule Wizard active.
tabScheduleFilters The user has the Filter tab of the New Schedule Wizard active.
tabScheduleRecipients The user has the Recipients tab of the New Schedule Wizard active.

Note: Create a default page to handle any cases where an undocumented or null
context parameter is passed. This guarantees that a valid help page will always be
shown.

Report Templates Setup

Exago can map data onto PDF, RTF and Excel templates. To utilize this feature the
templates must be properly set up in order to accept data from Exago. After being
configured (see below) templates should be saved in the report path and these
templates will be detected automatically by Exago.

Note: Configuring templates varies slightly by format.

PDF Templates

On the PDF Template file create Form Fields where you want to map data. Remember that
the name of the field will be displayed to users in Exago.

130 Exago Inc.

Exago Technical Guide EXago

For items that repeat (those that will be mapped to cells in a ‘detail section’) give each
form field the same name followed by a period and a number starting with 0. (ex. item.0,
item.1, item.2, etc.)

Check the Multiline property on any PDF field where data may need to wrap to fit inside
the field.

Note: Although you can use any program you would like to create and edit PDF templates
we recommend Adobe Acrobat Professional or http://www.pdfescape.com.

Check Boxes in PDF Templates.

Checkboxes are not currently supported in PDF templates. However the steps below detail
how to have Exago populate a text field with a check mark.

1. For the PDF text field you want to contain checks set the font to wingdings. Do not
put a border on the field. Save the template and place it in the report path.

2. In a cell on the report use an IF function whose results are char(254) for a checked
box and char(111) for an unchecked box [ex. =if({Employees.Title} = 'Sales
Representative' , char(254), char(111))]

3. In the Template menu assign the cell to the pdf field.

RTF Templates

For RTF Template files create Bookmarks where you want to map data. Bookmark names
do not display on the document, so we suggest typing the bookmark name in the
document where the field will go, then select the text and make it a bookmark. The typed
text within the bookmark will be replaced by mapped data when the report is executed.

There are two ways to display content that repeats on an RTF Template (those that will be
mapped to cells in a ‘detail section’).

e If there will be a limited number of repetitions. Give each bookmark the same name
followed by an underscore and a number starting with 0. Ex. item_0, item_1,
item_2, etc.

e For content that may need to repeat an indefinite number of times. Create a single
line of content and create a bookmark with the name structure
RepeatForEach_bookmarkname.

Dynamic content with RTF Templates

RTF Templates may also use Bookmarks to dynamically hide/display text or entire
paragraphs.

To do this:

1. Select the text/paragraph you want to display/hide.

2. Make a bookmark using the naming convention KeepIF_name

3. In Exago make a formula that as that returns 1 if the text should be displayed and
0 if it shouldn’t (ex. '=if({Products.ProductName} = ‘Chai’, 1, 0)")

131 Exago Inc.

http://www.pdfescape.com/

Exago Technical Guide EXago

4. In the Document Template menu set the cell with the if condition to the bookmark.
5. Run the report as RTF.

Excel Templates

The first worksheet of the Excel template should be left blank (except for the first row) as
this is where Exago will populate the data. In the top row of this sheet place the name of
the column that will be seen by the end user. All the other worksheets in the template will
remain unchanged by Exago.

Referencing Data in Excel Templates

When using an Excel Template there are two ways for Charts or Pivot Tables to reference
the data populated by Exago: Named Ranges or referencing specific rows.

Named Ranges

Excel has a concept of a Named Range which can be used by Charts or Pivot Tables to
refer to a range of cells.

When creating the Template utilize Named Ranges by:
1. In the formula tab open the Name Manager

Formulas Data Review Acrnbat
@ ﬂ ﬁ i ﬁ ‘ = Define Mame =
F Use in Formula =

Text Date & Lookup & Math Maore Mame N)
* Time= Reference* & Trig = Functions *| Manager §5 Create from Selection

n Library efined Mames

C | D | E | F | G

2. Add a new Named Range whose name matches the name of the first Worksheet. In
the “Refers To” property select the upper left and upper right boundaries of the
desired range. (Ex. If you want all the data from columns A - J, select cells
‘Sheet1!A1:$3$1".)

Note: When the report is executed Exago will modify this range to include all of the
rows in these columns that include data. (In the previous example if the report had
100 rows the range would be updated to ‘Sheet1!A1:$1$100".)

132 Exago Inc.

Exago Technical Guide EXago

Name: |shestl |
Scope: |Workbook El
Comment: | -
Refersto: | _gheeti1sas1:4351 B

W] Sheet1 3 o J[conce L |

3. Set the Chart or Pivot Table to use the Named Range as its Data Source.

Change PivotTable Data Source @
Choose the data that you want to analyze
Select a table or range
Table/Range: |D.ﬁ.TA

IUse an external data source

| Choose Connection. .. |

Connection name:

I » | DATA . Pivot Table ¥

Row Selection

Instead of using Name Ranges each Chart or Pivot Table can be set to reference the first
two rows on the first worksheet. (Ex. For a template with 5 columns the reference would
be ‘=Sheetl1!A1:E2".) When the data is populated by Exago rows are inserted in a

fashion that these references will automatically expand to incorporate each row of data.

Report and Folder Storage/Management

By default, Exago stores the reports in a file system folder. The location of this folder is
specified in the ‘Report Path’ property set in the Administration Console. Alternatively,
report, template and folder storage, and retrieval can be handled by building a Web
Service or .NET Assembly. This would allow for reports, folders and templates to be stored
in a database. To do this, specify the Web Service or .NET Assembly in the Report Path of
Main Settings. The Web Service or .NET Assembly should contain all of the following
functions.

Note: The functions will use the parameters ‘companyld’, and ‘userld’ which should be
set through the Api as users enter Exago from the host application.

133 Exago Inc.

Exago Technical Guide

EXX200
D

Note: If using a .Net Assembly, the folder management code can use alternative method
sighatures to be passed eWebReport’s SessionInfo object for additional flexibility. See
Accessing SessionInfo in Folder Management for more information.

string GetReportListXml

string companyld, string userld):

Description Returns a string listing folders and report names in xml format (see example).
Remark For reports set the flag <leaf flag> to True. For folders set this flag to False.
If an error occurs return null and a generic error will be displayed to the user.
Example Returns:
<entity>

<name>Travis' Reports</name>
<leaf_flag>false</leaf flag>
<readonly_flag>false</readonly_flag>
<entity>
<name>Sales Report</name>
<leaf_flag>true</leaf_flag>
<readonly flag>false</readonly flag>
</entity>
<entity>
<name>Employee Reports</name>
<leaf_flag>false</leaf_flag>
<readonly flag>false</readonly_flag>
<entity>
<name>Employee Benefits Report</name>
<leaf_flag>true</leaf_flag>
<readonly flag>false</readonly_ flag>
</entity>
</entity>
</entity>

string GetReportXml(stri

ng companyld, string userld, string reportName)

Description

Returns a string containing the report in xml format.

Remark

If an error occurs return null and a generic error will be displayed to the user.

string SaveReport(string

companyld, string userld, string reportName, string reportXml)

Description

Saves a report (reportName is fully qualified)

Remark

Returns an error message if one occurs, else return null.

Note: To support multi-language functionality, if the returned string matches the id
of any element in the language files then the string of that language element will be
displayed to the user instead of the returned value. For more information see Multi-

Language Support.

134

Exago Inc.

Exago Technical Guide

EXX200
D

string DuplicateReport(string companyld, string userld, string reportName, string

reportXml)
Description Duplicates a report (reportName is fully qualified). If this method is not provided,
SaveReport will be called.
Remark Returns an error message if one occurs, else return null.

Note: To support multi-language functionality, if the returned string matches an id
of any element in the language files then the string of that language element will be
displayed to the user instead of the returned value. For more information see Multi-
Language Support.

string DeleteReport(string companyld, string userld, string reportName)

Description

Deletes a report (reportName is fully qualified)

Remark

Returns an error message if one occurs, else return null.

Note: To support multi-language functionality, if the returned string matches the id
of any element in the language files then the string of that language element will be
displayed to the user instead of the returned value. For more information see Multi-
Language Support.

string RenameReport(string companyld, string userld, string reportName, string

newReportName)
Description | Renames a report (reportName & newReportName are fully qualified). If this
method is not provided, DeleteReport and SaveReport will be called.
Remark Returns an error message if one occurs, else return null.

Note: To support multi-language functionality, if the returned string matches the id
of any element in the language files then the string of that language element will be
displayed to the user instead of the returned value. For more information see Multi-
Language Support.

string AddFolder(string companyld, string userld, string folderName)

Description Adds a report folder (folderName is fully qualified). Folder should not be named to
one that already exists.
Remark Returns an error message if one occurs, else return null.

Note: To support multi-language functionality, if the returned string matches the id
of any element in the language files then the string of that language element will be
displayed to the user instead of the returned value. For more information see Multi-
Language Support.

string DeleteFolder(strin

companyld, string userld, string folderName)

Description

Deletes a report folder (folderName is fully qualified).

135

Exago Inc.

Exago Technical Guide EXag0o

Remark Exago’ default report template management will not allow a folder to be deleted
that contains any reports.

Returns an error message if one occurs, else return null.

Note: To support multi-language functionality, if the returned string matches the id
of any element in the language files then the string of that language element will be
displayed to the user instead of the returned value. For more information see Multi-
Language Support.

string RenameFolder(string companyld, string userld, string oldName, string newName)

Description | Renames a report folder (folder names are fully qualified). Folder should not be
moved to a location where a Folder with a matching name already exists.

Remark Returns an error message if one occurs, else return null.

Note: To support multi-language functionality, if the returned string matches the id
of any element in the language files then the string of that language element will be
displayed to the user instead of the returned value. For more information see Multi-
Language Support.

string MoveFolder(string companyld, string userld, string oldName, string newName)

Description | Moves a report folder (folder names are fully qualified). Folder should not be
renamed to one that already exists.

Remark Returns an error message if one occurs, else return null.

Note: To support multi-language functionality, if the returned string matches the id
of any element in the language files then the string of that language element will be
displayed to the user instead of the returned value. For more information see Multi-
Language Support.

bool ExistFolder(string companyld, string userld, string folderName)

Description | Determines if a folder exists.

Remark Returns true or false.

List<string> GetTemplatelist(string companyld, string userld):

Description | Returns a list of strings or a string array containing the available templates.

Remark If an error occurs return null and a generic error will be displayed to the user.

byte[] GetTemplate(string companyld, string userld, string templateName):

Description | Returns a byte array containing the template.

136 Exago Inc.

Exago Technical Guide

EXX200
D

Remark

If an error occurs return null and a generic error will be displayed to the user.

string SaveTemplate(string companyld, string userld, string templateName, byte[]
templateData):

List<strin

Description

Saves a template

Remark

Returns an error message if one occurs, else return null.

Note: To support multi-language functionality, if the returned string matches the id
of any element in the language files then the string of that language element will be
displayed to the user instead of the returned value. For more information see Multi-
Language Support.

> GetThemelist(string companyld, string userld, string themeType):

Description

Returns a list of strings or a string array containing the available themes.

Remark

Valid values of themeType: “CrossTab”, “Express”.

If an error occurs return null and a generic error will be displayed to the user.

bool ExistTheme(string companyld, string userld, string themeType, string themeName)

Description

Determines if a theme exists.

Remark

Valid values of themeType: “CrossTab”, "Express”.

Returns true or false.

string GetThemeXml(string companyld, string userld, string themeType, string

themeName):
Description | Returns a string representing the theme in xml format.
Remark Valid values of themeType: “CrossTab”, "Express”.
If an error occurs return null and a generic error will be displayed to the user.

string SaveTheme(string companyld, string userld, string themeType, string themeName,
string themeXml):

Description

Saves a theme.

Remark

Valid values of themeType: “CrossTab”, "Express”.

Returns an error message if one occurs, else return null.

137

Exago Inc.

Exago Technical Guide EXag0o

Note: To support multi-language functionality, if the returned string matches the id
of any element in the language files then the string of that language element will be
displayed to the user instead of the returned value. For more information see Multi-
Language Support.

Accessing SessionInfo in Folder Management

This section only applies to Folder Management using a .Net Assembly.

After adding a reference to WebReportsApi.dll you may gain additional flexibility by
replacing companyld and userld with Exago’ sessionInfo object in the methods listed
above. The sessionInfo object grants access to all of the parameters, configuration, and
report information of the Exago session. See Exago SessionInfo for more information.

To utilize the sessionInfoObject replace the companyld and userld parameters in the
method signatures above with sessionInfo sessionInfo (see example below).

Note: To use the sessionInfoObject all the methods must be static.

Utilizing the sessionInfo object will allow the folder management code to access much
more information about the user and/or Exago. For example the capability to access the
sessionInfo object could be used to pass additional parameters to your folder
management code such as the preferred language of the user or from which part of the
host application they entered Exago.

Note: Passing the sessionInfo object will lock the folder management Assembly. In order
to unlock the assembly, either IIS will need to be restarted, or the application pool
running Exago will need to be recycled.

The following is an example of the method signhature for GetReportXml to utilize the
sessionInfo object.

string GetReportXml(Sessionlnfo sessionInfo, string reportName)

Description | Returns a string containing the report in xml format.

Remark If an error occurs return null and a generic error will be displayed to the user.

companyld and userld can still be retrived using the calls
sessionInfo.SetupData.Parameters.GetValue(‘*comapnyId’) and
sessionInfo.SetupData.Parameters.GetValue(‘userld’) respectively.

The sessionInfo object must be the first parameter in the method.

138 Exago Inc.

Exago Technical Guide EXago

Exago API

The following chapter details the Application Programming Interface (Api) offered by
Exago.

About

The Exago application consists of two basic parts: the user interface (and all of its support
code), and the Api. The user interface is built entirely on top of the .NET Api. This
means .NET Applications can interface directly with Exago. Non-.NET applications can
interface through the Web Service Api which offers a subset of the .NET Api.

Note: Non Windows IIS applications can interface with the Exago Web Service Api as long
as a Windows IIS Server is setup to run Exago and the Web Service Api.

.NET API

To use the .NET Api the host application must include a reference to the assembly
WebReportsApi.dll in its project.

Quick List of Name Spaces and Classes

Below the Name Spaces employed by Exago are listed. The name spaces utilized to
integrate Exago display their classes below.

WebReports.Api - main namespace; contains Api class used in application integration.
Api
WebReports.Api.Charts — Chart creation and processing classes.
WebReports.Api.Common — Common classes used by classes in other namespaces.
ReportObjectFactory
ReportObject
WebReports.Api.Custom - Classes used for custom work.
WebReports.Api.Composite.Dashboard - Classes used for Dashboard Reports.
DashboardReport
WebReports.Api.Data — Data source and access classes.
DataSource
DataSourceCollection
WebReports.Api.Export — Report execution export classes.
WebReports.Api.Reports — All classes used in report creation.
Filter
Report
ReportFilterCollection
ReportSortCollection
Sort
WebReports.Api.ExecuteData - Classes used for report execution processing.
WebReports.Api.Roles - Role creation and processing classes.

139 Exago Inc.

Exago Technical Guide EXag0o

DataObject

DataObjectCollection

DataObjectRow

DataObjectRowCollection

Folder

FolderCollection

General

Parameter

ParameterCollection

Role

RoleCollection

Security
WebReports.Api.ReportMgmtBase — Base class used for report and folder
management.

140 Exago Inc.

Exago Technical Guide

EXX200
D

WebReports.Api

Api Class

The Api class is the main interaction class between Exago and the host application. All
API session parameters are accessed through this class. An Api object should be the
first thing that is created to interact with Exago.

An Api object has the following properties:

Action - Value that may indicate to execute a report or open Exago directly to the
Report Design Grid or New Report Wizard. For the values ‘EditReport’, ‘NewReport’,
‘NewCrossTabReport, and ‘NewExpressReport’ the main menu will be disabled.

o Uses the enumeration wrApiAction(Default, Home, ExecuteReport,
EditReport, NewReport, NewCrossTabReport, NewExpressReport,
NewDashboardReport, ScheduleReport, ScheduleReportManager).

o Note: If you have a Report object loaded then the value of Default will
execute the report directly. Otherwise it will open the home page.

AppVirtualPath - IIS virtual directory of Exago’ location. This should be set to an
absolute path (i.e. /ExagoWebSite/Exago).

DataSources - DataSources collection. See DataSourceCollection Class.
Parameters - Parameters collection. See ParameterCollection Class.

ReportObjectFactory — Used to manage all report objects within the application.
See ReportObjectFactory Class.

ReportScheduler — Scheduler object. See Report Scheduler Class.

Roles - Roles collection. See RoleCollection Class.

ShowTabs - Boolean value. Set to False to hide the tabs and help button of Exago.
DefaultReportName - String value used in conjunction with api.Action.

o When api.Action is set to NewReport, NewCrossTabReport or
NewExpressReport: The DefaultReportName provides the full path name
for the report. The Info tab of the new report wizard will be hidden and the
report designer will not display menus to rename the report or change its
description.

o When api.Action is set to EditReport: If DefaultReportName is any non-
empty value the report designer will not display menus to rename the report
or change its description.

An Api object has the following methods:

Constructor()

141 Exago Inc.

Exago Technical Guide EXag0o

Remark | Do not call this method from the .NET Api.

Constructor(string appVirtualPath)

Description | Initializes an Api object and sets the AppVirtualPath.

Remarks Return value is void.

Constructor(string appVirtualPath, string configFile)

Description | Initializes an Api object, sets the AppVirtualPath and loads the specified
configuration.

Remarks Can be used to load configuration other than WebReport.xml.

Return value is void.

GetUrlParamString()

Description | Calls GetUrlParamString(“ExagoHome")

Remarks Return value is void.

GetUrlParamString(string webPageName)

Description | Returns the URL parameter string used to redirect browser or frame to Exago.
Append this string to your Exago URL.

GetUrlParamString(string webPageName, boolean showErrorDetail)

Description | Returns the URL parameter string used to redirect browser or frame to Exago.
Append this string to your Exago URL. Set showErrorDetail to True to display
detailed error messages.

142 Exago Inc.

Exago Technical Guide EXag0o

WebReports.Api.Data

DataSource Class

The DataSource class is used to set or override the data connection string of a pre-
existing data source at runtime.

A DataSource object has the following properties:
e Name - Name of the data source.
e DataConnStr - Value of data connection string.

A DataSource object has no available methods.

DataSourceCollection Class

This collection should not be instantiated; there is a single DataSourceCollection
object that is accessed through the DataSources property of the Api object.

The DataSources property of an Api object has one available method:

GetDataSource(string dataSourceName)

Description | Returns a DataSourceObject. Returns Null if the object is not found.

143 Exago Inc.

Exago Technical Guide

EXX200
D

WebReports.Api.Common

ReportObjectFactory Class

The ReportObjectFactory class is the entry point to application report object manipulation.
This factory manages access to reports via API, updating that report’s schedules when
required (rename, delete), and creation of new reports. This class logically sits on top of
ReportMgmtBase and ReportScheduler for higher level report management.

The ReportObjectFactory has the following properties:

e Active - The active report object. The active report object is whichever report was
most recently created/loaded/deleted/etc.

The ReportObjectFactory has the following methods:

ReportOb;j

ect Create(wrReportType reportType)

Description

Create a new report object, it has yet to be saved into the report repository

Remarks

The created report object is made the active report object on return.

Both the Report class and the DashboardReport class inherit from ReportObject, a
cast to the appropriate child class is required for more specific access to the
report.

ReportOb]

ect LoadFromRepository(string name)

Description

Load an existing report object from the report repository.

Remarks

The loaded report object is made the active report object on return.

Both the Report class and the DashboardReport class inherit from ReportObject, a
cast to the appropriate child class is required for more specific access to the
report.

void Delete(string name

Description

Delete the provided report from the report repository.

Remarks

The deleted report object is made the active report object on return.

void Delete(ReportObjec

t reportObject)

Description

Delete the provided report object the report repository.

144

Exago Inc.

Exago Technical Guide

EXX200
D

Remarks

The deleted report object is made the active report object on return.

void Delete()

Description

Delete the currently active report object from the report repository.

void Rena

me(string name, string newName)

Description

Rename the provided report in the report repository.

Remarks

The renamed report object is made the active report object on return.

void Rena

me(ReportObject reportObject, string newName)

Description

Rename the provided report object in the report repository.

Remarks

The renamed report object is made the active report object on return.

void Rena

me(string new

Name)

Description

Rename the currently active report object in the report repository.

void Copy(string name, string newName)

Description

Copy the provided report in the report repository to another location in the report
repository.

void Copy

(ReportObject

reportObject, string newName)

Description

Copy the provided report object to another location in the report repository.

void SaveToRepository(ReportObject reportObject)

Description

Save the provided report object to the report repository. If it already exists it will be
overwritten.

void SaveToApi(ReportObject reportObject)

Description

Save the provided report object to an API area which can be accessed by the
application once it’s given control via Api.GetUrlParamString

ReportObject Class

145

Exago Inc.

Exago Technical Guide EXago

The ReportObject class is an abstract class that all report objects derive from. It contains
all properties and methods that are common for any type of report within the application.

The ReportObject has the following properties:
e ExportType - This value indicates which format to export the report.
o Uses the enumeration wrExportType (Html, Excel, Pdf, Rtf, Csv).

o IsEditAllowed - Boolean value. If False the report object cannot be edited
because the active role does not have access to one or more elements defined in
the report object.

o IsExecuteAllowed - Boolean value. If False the report cannot be executed
because the active role does not permit access to one or more Data objects on the
report.

WebReports.Api.Composite.Dashboards

DashboardReport Class

The DashboardReport class allows dashboard reports to be executed and manipulated
from the host application. This class does not need to be instantiated, it should be
retrieved using methods defined in ReportObjectFactory. The DashboardReport class is
derived from the ReportObject abstract class.

A DashboardReport object has the following properties:

e Reportltems - A list of ReportIltem objects, each representing a report contained
within the dashboard. To find the index of a particular report on a dashboard:
o Enter the dashboard designer.
o Press Ctrl+Shift+]I.
o Click on the desired report. The index will appear in the reports title bar.

ReportItem Class

The Reportitem class represents a report that is contained within a dashboard report.
A ReportItem object has the following properties:

e Report - The report that this ReportItem represents (fully qualified name).

The Reportltem object has the following methods:

void SetFilterValue(string filterName, wrFilterOperator filterOperator, List<string>
filterValues)

146 Exago Inc.

Exago Technical Guide EXag0o

Description | Set the dashboard value for a promptable filter that exists on this report

Remarks The number of entries in filterValues depends on the filter operator.

void SetParameterValue(string parameterName, string parameterValue)

Description | Set the dashboard value for a promptable parameter that exists on this report

WebReports.Api.Reports
Filter Class

The Filter class is used to modify filters at runtime. New Filter objects should be created
by the NewFilter method of ReportFilterCollection.

A Filter object has the following properties:
e AndOrWithNext - Value indicates to use an ‘and’ or ‘or’ with the next filter added.

o Uses the enumeration wrFilterAndOrWithNext (And, Or).

DbName - The fully qualified database (not mnemonic) name of the filter (i.e.
‘vw_optionee.Last Name’).

e GroupWithNext - Boolean indicating if the filter should be grouped with the next
filter.

e Operator - The comparison operator.

o Uses the enumeration wrFilterOperator (EqualTo, NotEqualTo, LessThan,
GreaterThan, LessThanOrEqualTo, GreaterThanOrEqualTo, StartsWith,
EndsWith, Contains, Between, NotBetween, OneOf, NotOneOf).

e Prompt - Boolean indicating whether to prompt user for the value of this filter at
time of execution.

e Value - value of the filter if it uses an Operator that only takes a single value.
Dates must be in the following format YYYY-MM-DD.

e DataValues - values of the filter using an Operator that takes multiple values,
such as One Of or Between.

A Filter object has no available methods.
Report Class

The Report class allows standard and express reports to be executed directly from the
host application. This class does not need to be instantiated, it should be retrieved using

147 Exago Inc.

Exago Technical Guide EXag0o

methods defined in ReportObjectFactory. The Report class is derived from the
ReportObject abstract class.

A Report object has the following properties:
e Filters - Filters collection. See ReportFilterCollection class below.
e Sorts - Sorts collection. See ReportSortCollection class below.

e ShowsStatus — Boolean value. This value indicates whether to show status window
during execution. Default is True.

A Report Object has the following methods:

GetExecuteHtml()

Description | Executes the report and returns HTML.

Remarks The raw HTML can be used to populate a container in the host application. Does not
include Exago paging HTML viewer.

GetExecuteData()

Description | Executes the report and returns data as a byte array.

Remarks Any export type can be executed in this way; use the ExportType property prior to
calling this method to set the export type.

ReportFilterCollection Class

This collection should not be instantiated; there is a single ReportFilterCollection
object that is accessed through the Filters property of the Report object.

The Filters property of a Report object has one available method:

NewFilter()

Description | Returns a new Filter object and adds it to the collection.

Remarks The returned Filter object needs to have all of its properties filled or an error will
occur.

ReportSortCollection Class

This collection should not be instantiated; there is a single ReportSortCollection
object that is accessed through the Sorts property of the Report object.

The Sorts property of a Report object has one available method:

148 Exago Inc.

Exago Technical Guide EXag0o

NewSort()

Description | Returns a new Sort object and adds it to the collection.

Remarks The returned Sort object needs to have all of its properties filled or an error will
occur.

Sort Class

The Sort class is used to modify sorts at runtime. New Sort objects should be created by
the NewSort method of ReportSortCollection.

A Sort object has the following properties:

e DbName - The fully qualified database (not mnemonic) name of the sort (i.e.
‘vw_optionee.Last Name’).

e Direction - Direction of the sort.
o Uses the enumeration wrSortDirection (Ascending, Descending)

A Sort object has no available methods.

149 Exago Inc.

Exago Technical Guide EXag0o

WebReports.Api.Roles

DataObject Class

The DataObject class can allow or deny access to specific Data Objects for a particular
user session.

A DataObject object has the following property:
e Name - The name (non-mnemonic) of the Data Object to include or exclude.

o A DataObject in the DataObjectCollection will be excluded if the property
IncludeAll is True and included if it is False.

A DataObject object has no available methods.
DataObjectCollection Class

This collection should not be instantiated; there is a single DataObjectCollection
object that is accessed through the DataObjects property of the Security object.

The DataObjectCollection has the following property:

e IncludeAll - Boolean indicating whether to include all of the Data Objects (default)
or none of the Data Objects.

The DataObjects property of a Security object has the following method:

GetDataObject (string dataObjectName)

Description | Returns the DataObject object or null if not found.

NewDataObject ()

Description | Returns a new DataObject object and adds it to the collection.

Remarks The returned DataObject object needs to have all of its properties filled or an error
will occur.

DataObjectRow Class

The DataObjectRow class can set Row Level filters to Data Objects for a particular user
session.

A DataObjectRow object has the following properties:
e ObjectName - The name (non-mnemonic) of the Data Object.

e FilterString - The filter string for the Data Object. The filter string will be placed
into the SQL WHERE clause.

150 Exago Inc.

Exago Technical Guide EXago

A DataObjectRow object has no available methods.

DataObjectRowCollection Class

This collection should not be instantiated; there is a single DataObjectRowCollection
object that is accessed through the DataObjectRoles property of the Security object.

The DataObjectRoles property of a Security object has the following method:

GetDataObject (string dataObjectRowName)

Description | Returns the DataObjectRow object or null if not found.

NewDataObjectRow ()

Description | Returns a new DataObjectRow object and adds it to the collection.

Remarks The returned DataObjectRow object needs to have all of its properties filled or an
error will occur.

Folder Class

The Folder class is used to allow or deny access to folders or sets folders as execute-only
for a particular user session.

A Folder object has the following properties:
e Name - The name (non-mnemonic) of the folder to include/exclude.

o The folder in the FolderCollection will be excluded if the property IncludeAll is
True and included if it is False.

¢ ReadOnly - Boolean indicating whether a folder is read only. Default is False.

e Propagate - Not used: Parameters set for a folder are always propagated down to
all of its subfolders unless parameters for specific child folder are set.

A Folder object has no available methods.

FolderCollection Class

This collection should not be instantiated; there is a single FolderCollection object
that is accessed through the Folders property of the Security object.

A FolderCollection object has the following property:

e IncludeAll - Boolean indicating whether to include all of the folders (default) or
none.

e ReadOnly - Global read-only for all of the folders in the collection. Individual
Folder objects can be set with a different ReadOnly property.

151 Exago Inc.

Exago Technical Guide

EXX200
D

AllowManagement - Boolean indicating whether or not to allow users to manage
folders. Set to False to hide the Manage Folder Icon.

The Folders property of a Security object has the following method:

GetFolder (string folderName)

NewFolder ()

Description | Returns the Folder object or null if not found.

Description | Returns a new Folder object and adds it to the collection.

Remarks The returned Folder object needs to have all of its properties filled or an error will
occur.

General Class

The General class is utilized to overwrite the General Settings of the Administration
Console. This collection should not be instantiated; there is a single General object
that is accessed through the General property of the Role object.

The General property of the Role object has the following properties:

DbTimeout - The amount of time (in seconds) to allow the database to execute a
query before returning to Exago.

DateFormat - Used to format dates on a report output.

CurrencySymbol - The symbol prepended to currency numbers on a report
output.

SeparatorSymbol - The symbol used to separate 3 digits of number on a report
output.

ReadFilterValues - Boolean value that indicates whether to show a list of data
values associated with a specific filter in the Report Filters window. In certain
cases, allowing this can result in a lengthy delay of showing filter values, however,
this depends on the amount of data, the complexity of data object, etc. If the delay
is unacceptable, setting this value to ‘false’ will disable the feature.

ShowGrid - Boolean value that indicates whether to show the grid in the Report
Designer. Also sets the ‘Show Grid Lines’ default HTML in Report Options.

ReportVirtualPath — IIS virtual path for the location of the report path.

The General property of the Role object does not have any available methods.

Parameter Class

The Parameter class is used to create and modify Parameters.

152 Exago Inc.

Exago Technical Guide EXag0o

A Parameter object has the following properties:
e Id - Name of the parameter. Note: Parameter names ARE case sensitive.
e Value - The value being stored in the parameter.

A Parameter object has the following available methods:

Constructor (string paramld, string paramValue)

Description | Instantiates a Parameter object with the specified 1d and Value.

ParametercCollection Class

This collection should not be instantiated; there is a single ParameterCollection object
that is accessed through the Parameters property of the Api object.

The Parameter property of an Api object has the following method:

GetParameter(string parameterld)

Description | Returns the Parameter object or null if not found.

Role Class

The Role class contains all of the information concerning General and Security parameters.
A Role can be created at runtime and used for a single session or loaded from the roles
that have been created through the Administration Console. For more information see
Roles.

This collection should not be instantiated; there is a single RoleCollection object that
is accessed through the Role property of the Api object.

A Role object may have the following properties:
e General - Access to all of the General Parameters. See General Class.
e Security — Access to all of the Security Parameters. See Security Class.

A Role object has one available method:

Activate(

Description | Makes this role active.

RoleCollection Class

This collection should not be instantiated; there is a single RoleCollection object that
is accessed through the Roles property of the Api object.

153 Exago Inc.

Exago Technical Guide EXag0o

GetRole(string roleld)

Description | Returns the Role object or null if not found.

NewRole()

Description | Returns a new Role object and adds it to the collection.

Remarks The returned Role object needs to have all of its properties filled or an error will
occur.

Security Class

The Security class contains all of the security parameters for a user session.

This collection should not be instantiated; there is a single Security object that is
accessed through the Security property of the Role object.

The Security object has the following properties:

e Folders - Controls access to all of the FolderCollection parameters. See
FolderCollection class.

e DataObjects - Controls access to all of the DataObjectCollection parameters. See
DataObjectCollection class.

e DataObjectRows - Controls access to all of the DataObjectRowCollection
parameters. See DataObjectRowCollection class.

There are no available methods for a Security object.

154 Exago Inc.

Exago Technical Guide EXago

WebReports.Api.Scheduler

ReportScheduler Class

The ReportScheduler class can be used to schedule reports to run on a regular ba-

sis. Output can be emailed or stored in a repository. The output destination (email or
storage) is normally set on a global basis. This API allows you to override the global set-
ting for individual report schedules if desired.

A ReportScheduler object uses the following enumerations:
¢ ReportScheduleInfo.WeekOfMonthType - weeks of the month.
o Uses the enumeration WeekOfMonthType (First, Second, Third, Fourth, Last)
¢ ReportScheduleInfo.DayOfWeekType - days of the week.

Uses the enumeration DayOfWeekType (Day, Weekday, Weekendday, Sunday, Monday,
Tuesday, The API is designed to mirror the capabilities of the SchedulerWizard in the
Exago main interface. There are a few concepts that will be helpful to understand in using
the API. In general each API call requires the following information:

e Schedule name: A “handle” to refer to this schedule.

e Recurrence Information: usually a Start Date and Time, recurrence pattern and
end condition. The end condition may be “No end condition” which indicates that
the schedule should execute indefinitely according to the specified recurrence
pattern. In certain instances, the recurrence information uses static Enumerations
from the ReportSchedulelnfo class.

e Email information: Includes To List, CC List, BCC List, Subject and Body. A new
class ScheduleEmaillnfo has been created to easily pass this information.

Note: a small number of Scheduler API calls don’t follow the above pattern. For
example, there are CreateOnceSchedule and CreatelmmediateSchedule calls that don’t
use any recurrence information.

For each schedule type that uses a recurrence pattern the following rules apply:
- The start time can be passed in one of two ways:
o As the Time Component of the startDate DateTime
o As a separate TimeSpan schedTime

The TimeSpan will always take precedence if not null. If the TimeSpan is null,
the scheduler will use the Time element of startDate

- The end condition can be set in one of three ways
o No End Condition: Report executions will continue indefinitely

o End by number of occurrences: Executions will cease after N occurrences,
where N is a passed parameter

155 Exago Inc.

Exago Technical Guide EXag0o

o End by Date: Executions will cease after a certain date where the date is a
passed parameter.

Each type of call is overloaded to reflect the desired end condition. For example, there
are three possible ways to create an “Every Weekday” schedule:

void CreateEveryWeekdaySchedule(string name, DateTime rangeStartDate, TimeSpan
schedTime, SchedulerEmaillnfo emaillnfo) //No end condition

void CreateEveryWeekdaySchedule(string name, DateTime rangeStartDate, int
rangeEndAfterNOccurrences, TimeSpan schedTime, SchedulerEmaillnfo emaillnfo) //End
by number of occurrences

void CreateEveryWeekdaySchedule(string name, DateTime rangeStartDate, DateTime
rangeEndDate, TimeSpan schedTime, SchedulerEmaillnfo emaillnfo) //End by date

As noted above, report output can be sent through email or stored to a repository, and the
choice can be made with the schedule. Passing a ScheduleEmaillnfo object to the
appropriate argument will tell the Exago Scheduler to send output through email based on
the passed information. Passing null for the argument will tell the scheduler to archive
the output for that schedule. Note that archiving requires a Report Path to be set in the
Scheduler Configuration XML. The Report Path tells the scheduler where to store the
output.

A ReportScheduler object has the following methods:

void CreatelmmediateSchedule(string name, SchedulerEmaillnfo emaillnfo)

Description | Schedules a report to be run immediately.

Remarks See SchedulerEmaillnfo class for information on emaillnfo.

void CreateOnceScheduleByDateTime(DateTime schedDateTime, string name, TimeSpan
schedTime, SchedulerEmaillnfo emaillnfo)

Description | Schedule a report to be run every weekday.

Report will be executed indefinitely.

Remarks If schedTime is null the time component of schedDateTime will be used to determine
the time the report is run.

See SchedulerEmaillnfo class for information on emaillnfo.

void CreateEveryWeekdaySchedule(string name, DateTime rangeStartDate, int
rangeEndAfterNOccurrences, TimeSpan schedTime, SchedulerEmaillnfo emaillnfo)

Description | Schedules a report to be run every weekday.

Report will be executed the number of times specified in

156 Exago Inc.

Exago Technical Guide

EXX200
D

rangeEndAfterNOccurrences.

Remarks

If schedTime is null the time component of schedDateTime will be used to determine
the time the report is run.

See SchedulerEmaillnfo class for information on emaillnfo.

void CreateEveryWeekdaySchedule(string name, DateTime rangeStartDate, DateTime
rangeEndDate, TimeSpan schedTime, SchedulerEmaillnfo emaillnfo)

Description

Schedules a report to be run every weekday.

Report will be executed until the specified rangeEndDate.

Remarks

If schedTime is null the time component of schedDateTime will be used to determine
the time the report is run.

See SchedulerEmaillnfo class for information on emaillnfo.

void CreateEveryNDaySchedule(string name, int everyNDays, DateTime rangeStartDate,
TimeSpan schedTime, SchedulerEmaillnfo emaillnfo)

Description | Schedules a report to be run on a daily interval.
Report will be executed indefinitely.
Remarks everyNDays indicates the interval at which the schedule is run (e.g. every 10 days).

If schedTime is null the time component of schedDateTime will be used to determine
the time the report is run.

See SchedulerEmaillnfo class for information on emaillnfo.

void CreateEveryNDaySchedule (string name, int everyNDays, DateTime rangeStartDate,
int rangeEndAfterNOccurrences, TimeSpan schedTime, SchedulerEmaillnfo emaillnfo)

Description | Schedules a report to be run on a daily interval.
Report will be executed the number of times specified in
rangeEndAfterNOccurrences.
Remarks everyNDays indicates the interval at which the schedule is run (e.g. every 10 days).

If schedTime is null the time component of schedDateTime will be used to determine
the time the report is run.

See SchedulerEmaillnfo class for information on emaillnfo.

void CreateEveryNDaySchedule(string name, int everyNDays, DateTime rangeStartDate,
DateTime rangeEndDate, TimeSpan schedTime, SchedulerEmaillnfo emaillnfo)

Description

Schedules a report to be run on a daily interval.

157

Exago Inc.

Exago Technical Guide EXag0o

Report will be executed until the specified rangeEndDate.

Remarks everyNDays indicates the interval at which the schedule is run (e.g. every 10 days).

If schedTime is null the time component of schedDateTime will be used to determine
the time the report is run.

See SchedulerEmailinfo class for information on emaillnfo.

void CreateWeeklySchedule(string name, int everyNWeeks, List<DayOfWeek> days,
DateTime rangeStartDate, TimeSpan schedTime, SchedulerEmaillnfo emaillnfo)

Description | Schedules a report to be run on a weekly interval.

Report will be executed indefinitely.

Remarks everyNWeeks indicates the interval at which the schedule is run (e.g. every 2
weeks).

days indicates a list of the days each week to run the schedule.

If schedTime is null the time component of schedDateTime will be used to determine
the time the report is run.

See SchedulerEmaillnfo class for information on emaillnfo.

void CreateWeeklySchedule(string name, int everyNWeeks, List<DayOfWeek> days,
DateTime rangeStartDate, int rangeEndAfterNOccurrences, TimeSpan schedTime,
SchedulerEmaillnfo emaillnfo)

Description | Schedules a report to be run on a weekly interval.

Report will be executed until the specified rangeEndDate.

Remarks everyNWeeks indicates the interval at which the schedule is run (e.g. every 2
weeks).

days indicates a list of the days each week to run the schedule.

If schedTime is null the time component of schedDateTime will be used to determine
the time the report is run.

See SchedulerEmaillnfo class for information on emaillnfo.

void CreateWeeklySchedule(string name, int everyNWeeks, List<DayOfWeek> days,
DateTime rangeStartDate, int rangeEndDate, TimeSpan schedTime, SchedulerEmaillnfo
emaillnfo

Description | Schedules a report to be run on a weekly interval.

Report will be executed the number of times specified in
rangeEndAfterNOccurrences.

158 Exago Inc.

Exago Technical Guide EXag0o

Remarks everyNWeeks indicates the interval at which the schedule is run (e.g. every 2
weeks).

days indicates a list of the days each week to run the schedule.

If schedTime is null the time component of schedDateTime will be used to determine
the time the report is run.

See SchedulerEmaillnfo class for information on emaillnfo.

void CreateMonthlyScheduleByNumericDay(string name, int everyNMonths, int
numericDay, DateTime rangeStartDate, TimeSpan schedTime, SchedulerEmaillnfo
emaillnfo

Description | Schedules a report to be run on a specific day each month.

Report will be executed indefinitely.

Remarks everyNMonths indicates the interval at which the schedule is run (e.g. every 2
months).

numericDay indicates the day of each month to run the schedule (e.g. 17).

If schedTime is null the time component of schedDateTime will be used to determine
the time the report is run.

See SchedulerEmaillnfo class for information on emaillnfo.

void CreateMonthlyScheduleByNumericDay(string name, int everyNMonths, int
numericDay, DateTime rangeStartDate, int rangeEndAfterNOccurrences, TimeSpan
schedTime, SchedulerEmaillnfo emaillnfo)

Description | Schedules a report to be run on a specific day each month.

Report will be executed the number of times specified in
rangeEndAfterNOccurrences.

Remarks everyNMonths indicates the interval at which the schedule is run (e.g. every 2
months).

numericDay indicates the day of each month to run the schedule (e.g. 17).

If schedTime is null the time component of schedDateTime will be used to determine
the time the report is run.

See SchedulerEmaillnfo class for information on emaillnfo.

void CreateMonthlyScheduleByNumericDay(string name, int everyNMonths, int
numericDay, DateTime rangeStartDate, DateTime rangeEndDate, TimeSpan schedTime,
SchedulerEmaillnfo emaillnfo)

Description | Schedules a report to be run on a specific day each month.

159 Exago Inc.

Exago Technical Guide

EXX200
D

Report will be executed the specified rangeEndDate.

Remarks

everyNMonths indicates the interval at which the schedule is run (e.g. every 2
months).

numericDay indicates the day of each month to run the schedule (e.g. 17).

If schedTime is null the time component of schedDateTime will be used to determine
the time the report is run.

See SchedulerEmailinfo class for information on emaillnfo.

void CreateMonthlyScheduleByDescriptionDay(string name, int everyNMonths,
WeekOfMonthType ordinal, DayOfWeekType dayOfWeek, DateTime rangeStartDate,
TimeSpan schedTime, SchedulerEmaillnfo emaillnfo)

Description

Schedules a report to be run on a described day each month.

Report will be executed indefinitely.

Remarks

everyNMonths indicates the interval at which the schedule is run (e.g. every 2
months).

ordinal used in context with dayOfWeek describe when during each month to run
the scheduled report.

If schedTime is null the time component of schedDateTime will be used to determine
the time the report is run.

ordinal and dayOfWeek are enumerations detailed at the beginning of this section

See SchedulerEmaillnfo class for information on emaillnfo.

void CreateMonthlyScheduleByDescriptionDay(string name, int everyNMonths,
WeekOfMonthType ordinal, DayOfWeekType dayOfWeek, DateTime rangeStartDate, int
rangeEndAfterNOccurrences, TimeSpan schedTime, SchedulerEmaillnfo emaillnfo)

Description

Schedules a report to be run on a described day each month.

Report will be executed the number of times specified in
rangeEndAfterNOccurrences.

Remarks

everyNMonths indicates the interval at which the schedule is run (e.g. every 2
months).

ordinal used in context with dayOfWeek describe when during each month to run
the scheduled report.

If schedTime is null the time component of schedDateTime will be used to determine
the time the report is run.

ordinal and dayOfWeek are enumerations detailed at the beginning of this section

See SchedulerEmaillnfo class for information on emaillnfo.

160

Exago Inc.

Exago Technical Guide

EXX200
D

void CreateMonthlyScheduleByDescriptionDay(string name, int everyNMonths,
WeekOfMonthType ordinal, DayOfWeekType dayOfWeek, DateTime rangeStartDate,
DateTime rangeEndDate, TimeSpan schedTime, SchedulerEmaillnfo emaillnfo)

Description | Schedules a report to be run on a described day each month.
Report will be executed the specified rangeEndDate.
Remarks everyNMonths indicates the interval at which the schedule is run (e.g. every 2

months).

ordinal used in context with dayOfWeek describe when during each month to run
the scheduled report.

If schedTime is null the time component of schedDateTime will be used to determine
the time the report is run.

ordinal and dayOfWeek are enumerations detailed at the beginning of this section

See SchedulerEmaillnfo class for information on emaillnfo.

void CreateYearlyScheduleByNumericDay(string name, int nhumericMonth, int numericDay,
DateTime rangeStartDate, TimeSpan schedTime, SchedulerEmaillnfo emaillnfo)

Description Schedules a report to be run on a specific month and day each year.
Report will be executed indefinitely.
Remarks numericMonth indicates the month of each year to run the schedule (e.g. 3).

numericDay indicates the day of each month to run the schedule (e.g. 17).

If schedTime is null the time component of schedDateTime will be used to determine
the time the report is run.

See SchedulerEmaillnfo class for information on emaillnfo.

void CreateYearlyScheduleByNumericDay(string name, int humericMonth, int numericDas,
DateTime rangeStartDate, int rangeEndAfterNOccurrences, TimeSpan schedTime,
SchedulerEmaillnfo emaillnfo)

Description Schedules a report to be run on a specific day each month.
Report will be executed the number of times specified in
rangeEndAfterNOccurrences.
Remarks numericMonth indicates the month of each year to run the schedule (e.g. 3).

numericDay indicates the day of each month to run the schedule (e.g. 17).

If schedTime is null the time component of schedDateTime will be used to determine
the time the report is run.

See SchedulerEmaillnfo class for information on emaillnfo.

161

Exago Inc.

Exago Technical Guide

EXX200
D

void CreateYearlyScheduleByNumericDay(string name, int humericMonth, int numericDay,
DateTime rangeStartDate, DateTime rangeEndDate, TimeSpan schedTime,
SchedulerEmaillnfo emaillnfo)

Description | Schedules a report to be run on a specific day each month.
Report will be executed the specified rangeEndDate.
Remarks numericMonth indicates the month of each year to run the schedule (e.g. 3).

numericDay indicates the day of each month to run the schedule (e.g. 17).

If schedTime is null the time component of schedDateTime will be used to determine
the time the report is run.

See SchedulerEmaillnfo class for information on emaillnfo.

void CreateYearlyScheduleByDescriptionDay(string name, int numericMonth,
WeekOfMonthType ordinal, DayOfWeekType dayOfWeek, DateTime rangeStartDate,
TimeSpan schedTime, SchedulerEmaillnfo emaillnfo)

Description Schedules a report to be run on a described day each month.
Report will be executed indefinitely.
Remarks numericMonth indicates the month of each year to run the schedule (e.g. 3).

ordinal used in context with dayOfWeek describe when during each month to run
the scheduled report.

If schedTime is null the time component of schedDateTime will be used to determine
the time the report is run.

ordinal and dayOfWeek are enumerations detailed at the beginning of this section.

See SchedulerEmaillnfo class for information on emaillnfo.

void CreateYearlyScheduleByDescriptionDay(string name, int numericMonth,
WeekOfMonthType ordinal, DayOfWeekType dayOfWeek, DateTime rangeStartDate, int
rangeEndAfterNOccurrences, TimeSpan schedTime, SchedulerEmaillnfo emaillnfo)

Description | Schedules a report to be run on a described day each month.
Report will be executed the number of times specified in
rangeEndAfterNOccurrences.
Remarks numericMonth indicates the month of each year to run the schedule (e.g. 3).

ordinal used in context with dayOfWeek describe when during each month to run
the scheduled report.

If schedTime is null the time component of schedDateTime will be used to determine
the time the report is run.

ordinal and dayOfWeek are enumerations detailed at the beginning of this section

162

Exago Inc.

Exago Technical Guide

EXX200
D

See SchedulerEmaillnfo class for information on emaillnfo.

void CreateYearlyScheduleByDescriptionDay(string name, int numericMonth,
WeekOfMonthType ordinal, DayOfWeekType dayOfWeek, DateTime rangeStartDate,
DateTime rangeEndDate, TimeSpan schedTime, SchedulerEmaillnfo emaillnfo)

Description | Schedules a report to be run on a described day each month.

Report will be executed the specified rangeEndDate.

Remarks numericMonth indicates the month of each year to run the schedule (e.g. 3).

ordinal used in context with dayOfWeek describe when during each month to run
the scheduled report.

If schedTime is null the time component of schedDateTime will be used to determine
the time the report is run.

ordinal and dayOfWeek are enumerations detailed at the beginning of this section

See SchedulerEmaillnfo class for information on emaillnfo.

SchedulerEmailInfo Class

The SchedulerEmaillnfo class is utilized used by methods of ReportScheduler objects.

A SchedulerEmaillnfo object has the following property:

toAddrs - list of email addresses and/or distribution lists for the 'To' field of the
email.

ccAddrs - list of email addresses and/or distribution lists for the ‘cc’ field of the
email.

bcAddrs - list of email addresses and/or distribution lists for the 'bc' field of the
email.

Note: If toAddrs, ccAddrs and bcAddrs are all null, Exago will attempt to archive
the report to the Scheduler Repository.

Subject - The subject of the email.
body - The body text of the email.

Other Notes

Using MySQL through the .NET Api

For Exago .NET Api to connect to a MySQL database add the following to the host
application’s web.config file.

<system.data>
<DbProviderFactories>

163 Exago Inc.

Exago Technical Guide EXag0o

<remove invariant="MySql.Data.MySqlClient" />
<add name="MySQL Data Provider" invariant="MySql.Data.MySqlClient" description=".NET

Framework Data Provider for MySQL"
type="MySql.Data.MySqlClient.MySqlClientFactory, MySql.Data, Version=6.3.6.0,
Culture=neutral, PublicKeyToken=c5687fc88969c44d" />

</DbProviderFactories>
</system.data>

Additionally if the host application does not already have a MySQL ADO.NET Data Adapter
copy the file ‘Exago/bin/MySql.Data.dll’ to the host application’s bin folder.

Examples

To access the Exago Api, add a reference to the assembly WebReportsApi.dll to your
project.

In all of the examples below the return value should be checked for validity. The
examples below have omitted validations for clarity.

Create Api object

// create WebReports API object passing Exago virtual path;
Api api = new Api("ExagoServer/Exago");

Adding/modifying a Role

// create a new runtime Role (is automatically made active)
Role role = api.Roles.NewRole();

// -- OR --

// accessing a pre-created Role and making it active

Role role = api.Roles.GetRole("Admin");

role.Activate();

Adding Folder security to role

// start with privileges to all folders for this user session (this is the default)
role.Security.Folders.IncludeAll = true;

// disallow access to folder 'Stew's Reports' (and any subfolders)
Folder folder = role.Security.Folders.NewFolder();
folder.Name = "Stew's Reports";

// make folder 'Summary Reports' (and any subfolders) read only
Folder folder = role.Security.Folders.NewFolder();

folder.Name = "Summary Reports";

folder.ReadOnly = true;

Adding Data Object security to role

// start with privileges to all data objects (this is the default)
role.Security.DataObjects.IncludeAll = true;

// disallow access to data object ‘vw_cancellation’
DataObject dataObject = role.Security.DataObjects.NewDataObject();
dataObject.Name = "vw_cancellation";

164 Exago Inc.

Exago Technical Guide EXag0o

Adding Data Object Row security to role

// don’t allow this user to view rows from the ‘vw_grant’ object with a

// ‘Grant Date’ value of €2000-01-01’

DataObjectRow dataObjectRow = role.Security.DataObjectRows.NewDataObjectRow();
dataObjectRow.0ObjectName = "vw_grant";

dataObjectRow.FilterString = @"""Grant Date"" <> '2000-01-01'";

Setting up several general user session parameters for role (overrides individual
global general parameters)

// set global date format for this user
role.General.DateFormat = "dd/MM/yyyy";

// set currency symbol for this user
role.General.CurrencySymbol = "kr";

Modifying the data connection string of a specific data source

// set data connection string for a specific datasource
DataSource dataSource = api.DataSources.GetDataSource("MyDb");
dataSource.DataConnStr = "Server=SVR;Database=dbl;uid=sa;pwd=dba;";

Modifying a parameter value

// modify a parameter value
Parameter parameter = api.Parameters.GetParameter("asOfDate");
parameter.Value = "2007-06-01";

Setting a data column alias

// set column alias
api.Entities.GetEntity("vw_webrpt_optionee").ColumnMetadatas.SetColumnAlias("HIre Date", "Date
of Hire");

Starting Exago - At this point if you want to run the Exago applications, do the
following:

// setup URL
string url = "http://MyDomainServer/Exago/" + api.GetUrlParamString();
Response.Redirect(url);

// or you can redirect any control that can be set to a URL
this.ReportIFrame.Attributes["src"] = url;

Executing a report directly from the host application - You can combine setting
user session information as above with report execution. To do that, just omit
the redirect above and do the following:

// load a specific report and return Report object (make sure to check return value)
Report report = (Report) api.ReportObjectFactory.LoadFromRepository(@"Stew Meyers' Reports\My

165 Exago Inc.

Exago Technical Guide EXago

Report™);

// add a sort

Sort sort = report.Sorts.NewSort();
sort.DbName = "vw_optionee.First Name";
sort.Direction = wrSortDirection.Ascending;
report.Sorts.Add(sort);

// add a filter

Filter filter = report.Filters.NewFilter();

filter.DbName = "vw_grant.Grant Date";

filter.Operator = wrFilterOperator.LessThan; // default is EqualTo
filter.Value = "20070501"; // filter dates are entered in YYYYMMDD sequence
filter.AndOrWithNext = wrFilterAndOrWithNext.And; // default is And
filter.GroupWithNext = false; // default is false

filter.Prompt = true; // default is false

// set export type
report.ExportType = wrExportType.Html; // default is Html

// should HTML viewer be opened in new browser window
report.OpenNewhWindow = false; // default is false
report.ShowStatus = false; // default is true

// saves a temporary version of the report to be used for execution
api.ReportObjectFactory.SaveToApi(report);

Start report execution

// setup URL
string url = "http://MyDomainServer/Exago/" + api.GetUrlParamString();
Response.Redirect(url);

// or you can redirect any control that can be set to a URL
this.ReportIFrame.Attributes["src"] = url;

Executing a dashboard report directly from the host application:

api.Action = wrApiAction.ExecuteReport;
DashboardReport report = Api.ReportObjectFactory.LoadFromRepository(@"Reports\My Dash-
board") as DashboardReport;
report.ReportItems[0].SetParameterValue("productname”, "Parml");
report.ReportItems[0].SetFilterValue("Employees.EmployeeID", wrFilterOpera-
tor.EqualTo, new List<string>() { "3" });
report.ReportItems[0].SetFilterValue("Orders.OrderDate", wrFilterOpera-
tor.GreaterThanOrEqualTo, new List<string>() { "1996-07-04 01:00:00" });

report.ReportItems[1].SetParameterValue("productname”, "Parm2");

report.ReportItems[1].SetFilterValue("Employees.EmployeeID", wrFilterOpera-
tor.EqualTo, new List<string>() { "5" });

report.ReportItems[1].SetFilterValue("Orders.OrderDate", wrFilterOpera-
tor.GreaterThanOrEqualTo, new List<string>() { "1996-07-04 01:00:00" });

api.ReportObjectFactory.SaveToApi(report);

string url = @"[Exago Install Path] /" + api.GetUrlParamString("Home");

166 Exago Inc.

Exago Technical Guide

EXX200
D

this.ReportIFrame.Attributes["src"] = url;

Web Service API

The Exago Web Service Api provides a way for non-.NET applications to interface with
Exago. The functionality provided by the Web Service is a subset of the .NET Api, and
includes basic methods to launch Exago and execute reports directly from the host

application.

The Web Service must be installed on a Microsoft Windows Server running IIS and be able
to access the Exago application directory directly or through an IIS virtual directory. For
more information see Web Service Installation.

Quick List of Web Service

Methods

Main:
GetUrlParamString
GetUrlParamString2
InitializeApi
InitializeApi2
SetAction

SetAction2
SetDefaultReportName
SetGeneralProperty
SetGeneralProperties

Data:

DataObject_Add
DataObject_Add2
DataObject_SetColumnAli
as
DataSource_AddXmlIType
DataSource_Modify
Join_Add

Folders:
Folder_Add
Folder_Delete
Folder_Exist
Folder_Rename

Parameters:
Parameter_Add
Parameter_Modify

ReportObjects:
ReportObject_Activate
ReportObject_Delete
ReportObject_Duplicate

Dashboards:

Dashboard_SetReportParameterValue
Dashboard_SetReportFilterValue

Reports:
Report_AddFilter
Report_AddFilterValue
Report_AddSort
Report_GetExecuteData
Report_GetExecuteHtml
Report_GetReportListXml
Report_GetReportXml
Report_SetFilterValue
Report_SetParams
Report_TestExecute

Roles:

Role_GetRoles
Role_Activate

Role_Add
Role_AddDataObject
Role_AddDataObjectRow
Role_AddFolder
Role_SetCurrencySymbol
Role_SetDateFormat

167

Exago Inc.

Exago Technical Guide

EXX200
D

Role_SetDbTimeout
Role_SetDecimalSymbol
Role_SetLanguageFile
Role_SetReadFilterValues
Role_SetReportVirtualPat
h
Role_SetScheduleManage
rViewLevel
Role_SetSeparatorSymbo
I

Role_SetShowGrid
Role_SetShowScheduleRe
ports
Role_SetShowScheduleRe
portsEmail
Role_SetShowScheduleRe
portsManager

Schelduer:

Report_CreateImmediateSchedule
Report_CreateImmediateScheduleForArchiving
Report_CreateOnceScheduleByDateTime
Report_CreateOnceScheduleByDateTimeForArchiving
Report_CreateEveryWeekdaySchedule
Report_CreateEveryWeekdayScheduleForArchiving
Report_CreateEveryNDaySchedule
Report_CreateEveryNDayScheduleForArchiving
Report_CreateWeeklySchedule
Report_CreateWeeklyScheduleForArchiving
Report_CreateMonthlyScheduleByNumericDay
Report_CreateMonthlyScheduleByNumericDayForArchiving
Report_CreateMonthlyScheduleByWeekAndDay
Report_CreateMonthlyScheduleByWeekAndDayForArchivin
g

Report_CreateYearlyScheduleByNumericDay
Report_CreateYearlyScheduleByNumericDayForArchiving
Report_CreateYearlyScheduleByWeekAndDay
Report_CreateYearlyScheduleByWeekAndDayForArchiving

Full Description of Web Service Methods

This section provides detailed information on the available web service api methods.

Types of Web Service methods:

Main Methods
Data Methods
Folder Methods

Report Methods
Role Methods

Main Methods

Parameter Methods
ReportObject Methods
Dashboard Methods

Scheduler Methods

This section lists the main web service methods used to access Exago.

void GetUrIParamsString(string apild)

Description | Returns the URL parameter string. Points to ExagoHome.aspx.

Remarks

This is always the last method called.

Appended the returned URL to your Exago application URL and redirect the user.

168

Exago Inc.

Exago User Guide

EXXa200
9

void GetUrlParamString2(string apild, string webPageName, boolean showErrorDetail)

Description | Returns the URL parameter string. Points to the specified home page. Set
showErrorDetail to True to display detailed error messages.
Remarks This is always the last method called.

Appends the returned URL to your Exago application URL and redirects the user.

string InitalizeApi()

Description

Returns an apild as a string that is used in all subsequent calls.

Remarks

This is always the first method called.

string InitializeApi2(string configFn)

Description

Returns an apild as a string that is used in all subsequent calls.

Remarks

Can be used instead of InitializeApi to specify a configuration file other than
WebReports.xml

bool SetAction(string a

pild, int action, string defaultFolderName)

Description Set the Action property of the Api object. The action dictates the behavior of Exago
when you call GetUrlParamString.
Returns Boolean indicating success/failure.
Remarks Valid values for action are:

0: Default - Executes a report on ReportObject_Activate, otherwise opens the
home page.

: Home - opens the home page.

: ExecuteReport - Executes the active report.

: EditReport - opens the

: NewReport - opens the new report wizard directly.

: NewCrossTabReport — opens the new crosstab report wizard directly.

: NewExpressReport — opens the new express report wizard directly.

: NewDashboardReport - opens a new dashboard designer directly.

: Schedule Report - opens the new schedule report wizard directly.

: ScheduleReportManager - opens the new schedule report wizard directly.

VoONOTUD WNH

bool SetAction2(string

apild, int action, string defaultFolderName, Boolean showTabs)

Description Set the Action property of the Api object. The action dictates the behavior of Exago
when you call GetUrIParamString.
Returns Boolean indicating success/failure.
Remarks Valid values for action are:

0: Default - Executes a report on ReportObject_Activate, otherwise opens the
home page.
1: Home - opens the home page.

169

Exago Inc.

Exago User Guide

EXXa200
9

: ExecuteReport — Executes the active report.

: EditReport - opens the

: NewReport - opens the new standard report wizard directly.

: NewCrossTabReport — opens the new crosstab report wizard directly.

: NewExpressReport — opens the new express report wizard directly.

: NewDashboardReport — opens a new dashboard designer directly.

: Schedule Report - opens the new schedule report wizard directly.

: ScheduleReportManager - opens the new schedule report wizard directly.

oOoNOTUPh,WN

bool SetDefaultReportName(string apild, string defaultReportName)

Description Set the DefaultReportName property of the Api object. The DefaultReportName is
used in conjunction with the Action property of the Api to modify the behavior of
Exago when you call GetUrlParamString.
Returns Boolean indicating success/failure.
Remarks The Default report name is a string providing the fully qualified path of the report.

This function’s effect will change based on the set value of the Action.

When the Action is set to NewReport, NewCrossTabReport or NewExpressReport:
The DefaultReportName provides the full path name for the report. The Info tab of
the new report wizard will be hidden and the report designer will not display menus
to rename the report or change its description.

When the Action is set to EditReport: If DefaultReportName is any non-empty value
the report designer will not display menus to rename the report or change its
description.

bool SetGeneralProperty(string apild, string propertyName, string propertyValue)

Description

Modify any of the General Settings in the Administration Console for the session.

Remarks

The propertyName must match the name used in the configuration file
WebReports.xml for the setting you want to modify. Ex. ‘showexpressreports’
controls the Feature/Ul Setting ‘Show Express Reports’.

The propertyValue type will depend on the setting using the following rules based on
how the property is shown in the Administration Console:

1. If the setting is True/False then use a boolean.

2. If the setting is enterable text (ex. chart colors) use a string.

3. If the setting is a number use an int.

4. If the setting is a dropdown of predefined values use the enumeration specified
below.

DefaultOutputType:

2

3.

4. Csv
6. Default
DateTimeTreatedAs:

0. Date
1. Time — Note: Time filters are not supported.

170

Exago Inc.

Exago User Guide

EXXa200
9

2. DateTime

ScheduleManagerViewlLevel:

0. Current User at Current Company
1. All Users at Current Company

2. All Users at All Companies

UserPreferenceStorage:
0. Cookie

1. Externallnterface:
2. None

ExcelExportTarget:
0. v2003
1. v2007
2.v2010

DefaultFilterExecutionWindow

SchemaAccessType:
Default

Datasource
Metadata

bool SetGeneralProperties(string apild, string[] propertyName, string[] propertyValue)

Description Allows multiple SetGeneralProperty calls to be grouped together to avoid making
many web service calls.
Remarks The length the propertyName array and the propertyValue array must be equal.

See remarks above in the SetGeneralProperty method.

Data Methods

This section lists the web service methods used to create, modify or delete Data Objects,

Data Sources and Joins.

bool DataObject_Add(string apild, string dataSourceName, int objectType, string,
objectName, string mnemonicName, string keyName, string categoryName, string
sqlStmt, string parmaterlds, string tenants)

Description

Adds a Data Object. Returns Boolean indicating success/failure.

Remarks

Valid objectType values are:

: database table

: database view

: database function

: database stored procedure
: database SQL statement

: web service method

uPhWNREO

parameterlds is a comma delimited list whose values will be passed to the data
object.

171

Exago Inc.

Exago User Guide

EXXa200
9

tenants is a comma delimited list of columns and parameters. Ex.
‘db_coll,paramlIdl,db_col,paramId2’

bool DataObject_Add2(string apild, string dataSourceName, int objectType, string,
objectName, string, objectld, string mnemonicName, string keyName, string
categoryName, string sqlStmt, string parmaterlds, string tenants)

Description

Adds a Data Object. Returns Boolean indicating success/failure.

Remarks

Unlike DataObject_Add this function includes an objectld. This allows for multiple
Data Objects with the same name. The objectID should be a unique value.

bool DataObject_SetColumnAlias(string apild, string objectName, string columnName,

string alias)

Description

Sets the alias of a specific data column. Returns Boolean indicating success/failure.

bool DataSource_AddXmlIType(string apild, string xml, string categoryNames)

Description

Loads Xml into Exago as a data source. Returns Boolean indicating success/failure.

Remarks

Xml can be Excel worksheet type or compatible with .NET DataSet.

The Data Object can appear in multiple categories using a comma delimiter.

bool DataSource_Modify(string apild, string dataSourceName, string dataConnStr)

Description

Modifies the connection string of a Data Source. Returns Boolean indicating
success/failure.

bool Join_Add(string apild, string dataObjectFromName, string columnFromName, string
dataObjectToName, string columnToName, int joinType int relationType, int weight)

Description

Adds a Data Object Join. Returns Boolean indicating success/failure.

Remarks

Valid relationType values are:
0:one-to-one
1:one-to-many

Valid joinType values are:

O:inner

1: left outer
2: right outer
3: full outer

Folder Methods

172

Exago Inc.

Exago User Guide

EXXa200
9

This section lists the web service methods used to create, modify or delete Folders.

bool Folder_Add(string apild, string parentName, string name)

Description

Adds a report folder. Returns Boolean indicating success/failure.

Remarks

parentName is relative to the Report Path and should not contain slashes.

Method will fail if a parent folder named parentName does not exist.

bool Folder_Delete(string apild, string folderName)

Description

Deletes a report folder. Returns Boolean indicating success/failure.

Remarks

folderName is relative to the Report Path.

Method will fail if the report is not empty.

bool Folder_Exist(strin

apild, string folderName)

Description

Checks if a report folder exists. Returns Boolean indicating success/failure.

Remarks

folderName is relative to the Report Path.

bool Folder_Rename(string apild, string oldName, string newName)

Description

Renames a report folder exists. Returns Boolean indicating success/failure.

Remarks

Both folder names are relative to the Report Path.

Parameter Methods

This section lists the web service methods used to create, modify or delete Parameters.

bool Parameter_Add(string apild, string parameterld, string parameterValue, int

dataType, bool isHidden,

string promptText)

Description

Adds a parameter. Returns Boolean indicating success/failure.

Remarks

Valid dataType values are:
0: string

1: date

2: integer

5: decimal

173

Exago Inc.

Exago User Guide EXag0o

bool Parameter_Modify(string apild, string parameterld, string parameterValue)

Description | Modifies a parameter value. Returns Boolean indicating success/failure.

bool Parameter_ModifyMultiple(string apild, string[] parameterlds, string[]
parameterValues)

Description | Modifies multiple parameter values. Returns Boolean indicating success/failure.

Remarks The length of the parameterlds and parameterValues arrays must be the same.

ReportObject Methods

This section lists the web service methods used to create, modify or delete Report objects.
A Report object is any type of report supported by the application (currently Report_ or
Dashboard_).

bool ReportObject _ Activate(string apild, string reportName)

Description | Activates an existing report. Returns Boolean indicating success/failure.

Remarks Use backslashes to delineate subfolders.

Note: Before calling any report or dashboard method call ReportObject_Activate to specify
which Report object to modify.

bool ReportObject _Delete(string apild, string reportName)

Description | Deletes an existing report. Returns Boolean indicating success/failure.

Remarks Use backslashes to delineate subfolders.

bool ReportObject _Duplicate(string apild, string srcReportName, string
destReportName)

Description | Creates a duplicate copy of an existing report (srcReportName) and provides a new
name (destReportName). Returns Boolean indicating success/failure.

Remarks Use backslashes to delineate subfolders.

Dashboard Methods

174 Exago Inc.

Exago User Guide EXag0o

bool Dashboard_SetReportFilterValue(string apild, int reportIndex, string filterName,
wrFilterOperator filterOperator, List<string> filterValues)

Description | Sets the dashboard value for a promptable filter that exists on the specified report
contained within the dashboard

Remarks To find the reportIndex of a particular report on a dashboard:

Enter the dashboard designer.

Press Ctrl+Shift+1I.

Click on the desired report. The index will appear in the reports title bar.

The number of items in filterValues depends on the filter operator.

bool Dashboard_SetReportParameterValue(string apild, int reportIindex, string
parameterName, string parameterValue)

Description | Sets the dashboard value for a promptable parameter that exists on the specified
report contained within the dashboard

Remarks To find the reportIndex of a particular report on a dashboard:

Enter the dashboard designer.
Press Ctrl+Shift+I.
Click on the desired report. The index will appear in the reports title bar.

Report Methods

bool Report_AddFilter(string apild, string filterName, int filterOperator, string filterValue,
int andOrWithNext, bool groupWithNext, bool promptForValue)

Description | Adds a filter to a report. Returns Boolean indicating success/failure.

Remarks Valid filterOperator values are:
: equal to

: less than

: less than or equal to

: greater than

: greater than or equal to
: not equal to

: starts with

: not starts with

: ends with

: not ends with

10: contains

11: not contains

12: between

13: not between

14: one of

15: not one of

OoOoONOOCUPWNHFHO

filterValue can contain multiple values. Delineate values with *|~|’ (pipe tilde pipe).

Valid andOrWithNext values are:
0: and
1:or

175 Exago Inc.

Exago User Guide

EXXa200
9

Dates must be in the following format YYYY-MM-DD.

bool Report_AddFilterValue(string apild, int index, string value)

Description | Adds a value to a filter that accepts multiple values (ex ‘one of’ filters).
Returns Boolean indicating success/failure.
Remarks Index indicates which filter to add the value to.

This method can only be used on filters with the following operators: ‘one of’, ‘not
one of".

bool Report_AddSort(string apild, string sortName, int sortDirection)

Description

Adds a sort to a report. Returns Boolean indicating success/failure.

Remarks

Valid sortDirection values are:
0: ascending
1: descending

bool Report_RemoveSort(string apild, string sortName)

Description

Removes a sort from a report. Returns Boolean indicating success/failure.

bool Report_SetSorts(string apild, string[] sortName, int[] sortDirection)

byte[] Re

string Re

Description Replaces any existing sorts of a report with the new sorts specified. Returns
Boolean indicating success/failure.
Remarks Valid sortDirection values are:

0: ascending
1: descending

If the lengths of the sortName and sortDirection arrays are not equal the following
behavior will occur:

sortNames without a corresponding sortDirection will default to ascending.
sortDirections without a corresponding sortName will be ignored.

port_GetExecuteData(string apild)
Description | Executes a report directly and returns data as a byte array.
Remarks Any export type can be used with this method. Use Report_setParams method to set

the export type prior to this call.

port__GetExec

uteHtml(string apild)

Description

Executes a report directly and returns HTML as a string.

176

Exago Inc.

Exago User Guide

EXXa200
9

Remarks

This can be used to populate a container in the host application.

HTML will not contain Exago’ paging HTML viewer.

string Report_GetReportListXml(string apild)

Description

Returns the hierarchical structure of reports and folders as an Xml string.

Remarks

Returned list adheres to the active Role if set.

See Report and Folder Storage/Management for an example of the Xml output.

string Report_GetReportXml(string apild)

Description

Returns the hierarchical structure of the active report an Xml string.

bool Report_SetFilterValue(string apild, int index, int subIndex, string value)

Description

Sets the value of a filter. Returns Boolean indicating success/failure.

Remarks

subIndex is used for filters with multiple values such as ‘one of’ or ‘between’ filters.
Set subIndex to -1 for single value operators.

Dates must be in the following format YYYY-MM-DD.

bool Report_SetParams(string apild, int exportType, bool openNewWindow, bool

showStatus)

Description

Sets report execution parameters. Returns Boolean indicating success/failure.

Remarks

Valid exportType values are:
: html

: excel

: pdf

o rtf

e\

AWNRFHO

Role Methods

This section lists the web service methods used to create, modify or delete Roles.

string Role__GetRoles(string apild)

177

Exago Inc.

Exago User Guide EXag0o

Description | Returns the list of existing Roles as an Xml string.

bool Role_Activate(string apild, string roleld)

Activates a pre-created role. Returns Boolean indicating success/failure.

Description

Note: Before calling any of the following methods call Role_Activate to specify which role
to modify.

bool Role_Add(string apild, bool includeAllFolders, bool foldersReadOnly, bool
allowFolderManagement, bool includeAllDataObjects)

Description Creates a new temporary run-time role. Returns Boolean indicating
success/failure.
bool Role_AddDataObject(string apild, string objectName)
Description Adds a Data Object to the role. Returns Boolean indicating success/failure.
Remarks If includeAllDataObjects is True this method will exclude the Data Object and vice
versa.
objectName is the database value not the mnemonic.
bool Role_AddDataObjectRow(string apild, string objectName, string filterString)
Description | Adds a Data Object row to the role. Returns Boolean indicating success/failure.
Remarks objectName is the database value not the mnemonic.
filterString should be standard SQL to go into the WHERE clause.
bool Role_AddFolder(string apild, string folderName, bool readOnly)
Description Adds a Report Folder to the role. Returns Boolean indicating success/failure.
Remarks If includeAllFolders is True this method will exclude the Folder and vice versa.
bool Role_ SetCurrencySymbol (string apild, string currencySymbol)
Description | Overrides global currency symbol. Returns Boolean indicating success/failure.

bool Role_ SetDateFormat (string apild, string dateFormat)

178

Exago Inc.

Exago User Guide

EXXa200
9

Description

Overrides global date format. Returns Boolean indicating success/failure.

bool Role

_ SetDbTimeout (string apild, int dbTimeout)

Description

Overrides maximum seconds the database is allowed to execute a query before
timing out. Returns Boolean indicating success/failure.

bool Role

_ SetDecimal

Symbol(string apild, string decimalSymbol)

Description

Overrides global decimal symbol. Returns Boolean indicating success/failure.

bool Role

_ SetLanguageFile(string apild, string languageFile)

Description

Overrides global Language File. Returns Boolean indicating success/failure.

bool Role

_ SetReadFilterValues(string apild, bool readFilterValues)

Description

Overrides whether to allow users to see database values in filter dropdowns.
Returns Boolean indicating success/failure.

bool Role

_ SetReportVirutalPath (string apild, string reportPath)

Description

Overrides report virtual path. Returns Boolean indicating success/failure.

bool Role_ SetScheduleManagerViewLevel (string apild, int
scheduleManagerViewlLevel)

Description

Sets the level of view privilege for the user session Returns Boolean indicating
success/failure.

Remarks

Valid values for scheduleManagerViewlLevel are:

0: Current users (requires parameter userld be set)

1: Current Company (requires parameter companyld be set)
2: All

bool Role

__ SetSeparatorSymbol (string apild, string separatorSymbol)

Description

Overrides global numeric separator symbol. Returns Boolean indicating
success/failure.

bool Role

_SetServerTi

meZoneOffset(string apild, decimal serverTimeZoneOffset)

Description

Overrides global Server Time Zone Offset. Returns Boolean indicating
success/failure.

bool Role_ SetShowGrid (string apild, bool showGrid)

179

Exago Inc.

Exago User Guide EXag0o

Description Overrides global numeric separator symbol. Returns Boolean indicating
success/failure.

bool Role_ SetShowScheduleReports (string apild, bool showScheduleReports)

Description Overrides whether to show the schedule report option. Returns Boolean indicating
success/failure.

bool Role_ SetShowScheduleReportsEmail (string apild, bool
showScheduleReportsEmail)

Description Overrides whether to show the schedule reports instant email option. Returns
Boolean indicating success/failure.

bool Role_ SetShowScheduleReportsManager(string apild, bool
showScheduleReportsManager)

Description Overrides whether to show the schedule reports management option. Returns Boolean
indicating success/failure.

Scheduler Methods

This section lists the web service methods used to create Schedules for Reports to be
emailed or Archived.

Before calling any of the following methods call Report_Activate to specify which report to
schedule and Report_SetParams to set a non-html export format.

Note: There are two methods for type of schedule: a regular method and a ‘ForArchiving’
method. The regular method will email the report while the ForArchiving method will save
the report to the Scheduler Repository. For more information on archiving schedules see
Saving Scheduled Reports to External Repository.

Note: Dates must be in the following format YYYY-MM-DD. Times must be in the following
format HH:MM[:SS] (24-hour format).

bool Report_CreateImmediateSchedule(string apild, string name, string[]
toAddrArray, string[] ccAddrArray, string[] bccAddrArray, string subject, string body)

Description | Schedules a report to run and emailed immediately.

Returns Boolean indicating success/failure.

Remarks name: The name of the schedule as it appears in the Schedule Manager

toAddrArray: The array of email addresses and/or distribution lists for the 'To' field
of the email. If none of To, CC or BCC are set, Exago will attempt to archive
scheduled reports.

ccAddrArray: The array of email addresses and/or distribution lists for the 'CC' field
of the email. If none of To, CC or BCC are set, Exago will attempt to archive

180 Exago Inc.

Exago User Guide EXag0o

scheduled reports.

bccAddrArray: The array of email addresses and/or distribution lists for the 'BCC'
field of the email. If none of To, CC or BCC are set, Exago will attempt to archive
scheduled reports.</param>

subject: The subject line of the email

body: The body text of the email

bool Report_CreateImmediateScheduleForArchiving(string apild, string name)

Description | Schedules a report to run and archived immediately.

Returns Boolean indicating success/failure.

Remarks name: The name of the schedule as it appears in the Schedule Manager

bool Report_CreateOnceScheduleByDateTime(string apild, string dateStr, string
timeStr, string name, string[] toAddrArray, string[] ccAddrArray, string[] bccAddrArray,
string subject, string body)

Description | Schedules a report to be run and emailed at a specific date and time..

Returns Boolean indicating success/failure.

Remarks dateStr: The date to run the schedule. If the timeStr parameter is null, the
scheduler will use the time value of this parameter

timeStr: The time to run the schedule. If null, the scheduler will use the time value
of the dateStr parameter

Note: See remarks in Report_CreateImmediateSchedule toAddrArray,
ccAddrArray & bccAddrArray

bool Report_CreateOnceScheduleByDateTimeForArchiving(string apild, string
dateStr, string timeStr, string name)

Description | Schedules a report to be run and archived at a specific date and time..

Returns Boolean indicating success/failure.

Remarks dateStr: The date to run the schedule. If the timeStr parameter is null, the
scheduler will use the time value of this parameter

timeStr: The time to run the schedule. If null, the scheduler will use the time value
of the dateStr parameter

bool Report_CreateEveryWeekdaySchedule(string apild, string startDateStr, string
timeStr, bool noEndDate, int endOccurrences, string endDateStr, string name, string[]
toAddrArray, string[] ccAddrArray, string[] bccAddrArray, string subject, string body)

181 Exago Inc.

Exago User Guide

EXXa200
9

Description | Schedules a report to be run and emailed every weekday.
Returns Boolean indicating success/failure.
Remarks startDateStr: The date to begin running the schedule.

timeStr: The time to run the schedule. If null, the scheduler will use the time value
of the startDateStr parameter.

Three parameters are used to determine when to end a recurring schedule: bool
NoEndDate, int endOccurrences, string endDateStr. These parameters adhere to the
following logic.

If noEndDate is true, the report will run indefinitely.
Else if endOccurrences is greater than zero, the report will execute that many times.
Else the schedule will execute until the date represented in endDateStr.

Note: See remarks in Report_CreateImmediateSchedule for a description of
toAddrArray, ccAddrArray & bccAddrArray.

bool Report_CreateEveryWeekdayScheduleForArchiving(string apild, string
startDateStr, string timeStr, bool noEndDate, int endOccurrences, string endDateStr, string

name)
Description Schedules a report to be run and archived every weekday.
Returns Boolean indicating success/failure.
Remarks startDateStr: The date to begin running the schedule.

timeStr: The time to run the schedule. If null, the scheduler will use the time value
of the startDateStr parameter.

Note: See remarks in Report_CreateEveryWeekdaySchedule for a description
of noEndDate, endOccurrences & endDateStr.

bool Report_CreateEveryNDaySchedule(string apild, int everyNDays, string
startDateStr, string timeStr, bool noEndDate, int endOccurrences, string endDateStr, string
name, string[] toAddrArray, string[] ccAddrArray, string[] bccAddrArray, string subject,

string body)

Description

Schedules a report to be run and emailed every N days.

Returns Boolean indicating success/failure.

Remarks

everyNDays: Indicates the interval at which to run the schedule (e.g. every 10
days).

Note: See remarks in Report_CreateEveryWeekdaySchedule for a description
of startDateStr, timeStr, noEndDate, endOccurrences & endDateStr.

Note: See remarks in Report_CreateImmediateSchedule for a description of
toAddrArray, ccAddrArray & bccAddrArray.

182

Exago Inc.

Exago User Guide

EXXa200
9

bool Report_CreateEveryNDayScheduleForArchiving(string apild, int everyNDays,

string startDateStr, string
string name)

timeStr, bool noEndDate, int endOccurrences, string endDateStr,

Description

Schedules a report to be run and archived every N days.

Returns Boolean indicating success/failure.

Remarks

everyNDays: Indicates the interval at which to run the schedule (e.g. every 10
days).

Note: See remarks in Report_CreateEveryWeekdaySchedule for a description
of startDateStr, timeStr, noEndDate, endOccurrences & endDateStr.

bool Report_CreateWeeklySchedule(string apild, int everyNWeeks, int[] dayNums,
string startDateStr, string timeStr, bool noEndDate, int endOccurrences, string endDateStr,
string name, string[] toAddrArray, string[] ccAddrArray, string[] bccAddrArray, string

subject, string body)

Description | Schedules a report to be run and emailed on a weekly interval.
Returns Boolean indicating success/failure.
Remarks everyNWeeks: Indicates the interval at which to run the schedule (e.g. every 2

weeks).

dayNums: Days on which the schedule is to be run. Valid values are:
1: Sunday
2: Monday

: Tuesday

: Wednesday

: Thursday

: Friday

: Saturday

NoOulh W

Note: See remarks in Report_CreateEveryWeekdaySchedule for a description
of startDateStr, timeStr, noEndDate, endOccurrences & endDateStr.

Note: See remarks in Report_CreateImmediateSchedule for a description of
toAddrArray, ccAddrArray & bccAddrArray.

bool Report_CreateWeeklyScheduleForArchiving(string apild, int everyNWeeks, int[]
dayNums, string startDateStr, string timeStr, bool noEndDate, int endOccurrences, string

endDateStr, string name)

Description | Schedules a report to be run and archived on a weekly interval.
Returns Boolean indicating success/failure.
Remarks everyNWeeks: Indicates the interval at which to run the schedule (e.g. every 2
weeks).

183

Exago Inc.

Exago User Guide

EXXa200
9

dayNums: Days on which the schedule is to be run. Valid values are:
: Sunday

: Monday

: Tuesday

: Wednesday

: Thursday

: Friday

: Saturday

[y

NOUhWN

Note: See remarks in Report_CreateEveryWeekdaySchedule for a description
of startDateStr, timeStr, noEndDate, endOccurrences & endDateStr.

bool Report_CreateMonthlyScheduleByNumericDay(string apild, int everyNMonths,
int numericDay, string startDateStr, string timeStr, bool noEndDate, int endOccurrences,
string endDateStr, string name, string[] toAddrArray, string[] ccAddrArray, string|[]
bccAddrArray, string subject, string body)

Description | Schedules a report to be run and emailed on a specific day each month.
Returns Boolean indicating success/failure.
Remarks everyNMonths: Indicates the interval at which to run the schedule (e.g. every 2

months).
numericDay: The numeric day of each month (e.g. 17) on which to run the schedule

Note: See remarks in Report_CreateEveryWeekdaySchedule for a description
of startDateStr, timeStr, noEndDate, endOccurrences & endDateStr.

Note: See remarks in Report_CreateImmediateSchedule for a description of
toAddrArray, ccAddrArray & bccAddrArray.

bool Report_CreateMonthlyScheduleByNumericDayForArchiving(string apild, int
everyNMonths, int numericDay, string startDateStr, string timeStr, bool noEndDate, int
endOccurrences, string endDateStr, string name)

Description | Schedules a report to be run and archived on a specific day each month.
Returns Boolean indicating success/failure.
Remarks everyNMonths: Indicates the interval at which to run the schedule (e.g. every 2

months).
numericDay: The numeric day of each month (e.g. 17) on which to run the schedule

Note: See remarks in Report_CreateEveryWeekdaySchedule for a description
of startDateStr, timeStr, noEndDate, endOccurrences & endDateStr.

bool Report_CreateMonthlyScheduleByWeekAndDay(string apild, int everyNMonths,
int weekOfMonthNum, int dayOfWeekNum, string startDateStr, string timeStr, bool
noEndDate, int endOccurrences, string endDateStr, string name, string[] toAddrArray,
string[] ccAddrArray, string[] bccAddrArray, string subject, string body)

184

Exago Inc.

Exago User Guide

EXXa200
9

Description | Schedules a report to be run and emailed on a "described” day each month,
consisting of the week and the day.
Returns Boolean indicating success/failure.
Remarks everyNMonths: Indicates the interval at which to run the schedule (e.g. every 2

months).

weekOfMonthNum: The 'described' week of each month (e.g. 'Third") on which to
run the schedule. Used in conjunction with dayOfWeek. Valid values are:

: First

: Second

: Third

: Fourth

: Last

uabhwWN =

dayOfWeekNum: The 'described' day of each week (e.g. 'Weekday') on which to run
the schedule. Valid values are:
1: Sunday
2: Monday
3: Tuesday
4: Wednesday
5: Thursday
6: Friday
7: Saturday
8: Day
9: Weekday
10: Weekend Day

Note: See remarks in Report_CreateEveryWeekdaySchedule for a description
of startDateStr, timeStr, noEndDate, endOccurrences & endDateStr.

Note: See remarks in Report_CreateImmediateSchedule for a description of
toAddrArray, ccAddrArray & bccAddrArray.

bool Report_CreateMonthlyScheduleByWeekAndDayForArchiving(string apild, int
everyNMonths, int weekOfMonthNum, int dayOfWeekNum, string startDateStr, string
timeStr, bool noEndDate, int endOccurrences, string endDateStr, string name)

Description | Schedules a report to be run and archived on a “described” day each month,
consisting of the week and the day.
Returns Boolean indicating success/failure.
Remarks everyNMonths: Indicates the interval at which to run the schedule (e.g. every 2

months).

weekOfMonthNum: The 'described' week of each month (e.g. 'Third") on which to
run the schedule. Used in conjunction with dayOfWeek. Valid values are:

: First

: Second

: Third

: Fourth

: Last

a b wWNH

dayOfWeekNum: The 'described' day of each week (e.g. 'Weekday') on which to run
the schedule. Valid values are:

185

Exago Inc.

Exago User Guide EXag0o

1: Sunday
2: Monday
3: Tuesday
4: Wednesday
5: Thursday
6: Friday
7: Saturday

8: Day

9: Weekday

10: Weekend Day

Note: See remarks in Report_CreateEveryWeekdaySchedule for a description
of startDateStr, timeStr, noEndDate, endOccurrences & endDateStr.

bool Report_CreateYearlyScheduleByNumericDay(string apild, int numericMonth, int
numericDay, string startDateStr, string timeStr, bool noEndDate, int endOccurrences,
string endDateStr, string name, string[] toAddrArray, string[] ccAddrArray, string|]
bccAddrArray, string subject, string body)

Description | Schedules a report to be run and emailed on a specific day each year.

Returns Boolean indicating success/failure.

Remarks everyNMonths: Indicates the interval at which to run the schedule (e.g. every 2
months).

numericMonth: The numeric Month of each year (e.g. 3) on which to run the
schedule

numericDay: The numeric day of each month (e.g. 17) on which to run the schedule

Note: See remarks in Report_CreateEveryWeekdaySchedule for a description
of startDateStr, timeStr, noEndDate, endOccurrences & endDateStr.

Note: See remarks in Report_CreateImmediateSchedule for a description of
toAddrArray, ccAddrArray & bccAddrArray.

bool Report_CreateYearlyScheduleByNumericDayForArchiving(string apild, int
numericMonth, int numericDay, string startDateStr, string timeStr, bool noEndDate, int
endOccurrences, string endDateStr, string name)

Description | Schedules a report to be run and archived on a specific day each year.

Returns Boolean indicating success/failure.

Remarks everyNMonths: Indicates the interval at which to run the schedule (e.g. every 2
months).

numericMonth: The numeric Month of each year (e.g. 3) on which to run the
schedule

numericDay: The numeric day of each month (e.g. 17) on which to run the schedule

Note: See remarks in Report_CreateEveryWeekdaySchedule for a description
of startDateStr, timeStr, noEndDate, endOccurrences & endDateStr.

186 Exago Inc.

Exago User Guide

EXXa200
9

bool Report_CreateYearlyScheduleByWeekAndDay(string apild, int numericMonth,
int weekOfMonthNum, int dayOfWeekNum, string startDateStr, string timeStr, bool
noEndDate, int endOccurrences, string endDateStr, string name, string[] toAddrArray,
string[] ccAddrArray, string[] bccAddrArray, string subject, string body)

Description | Schedules a report to be run and emailed on a specific day each year.
Returns Boolean indicating success/failure.
Remarks numericMonth: The numeric Month of each year (e.g. 3 = March) on which to run

the schedule

weekOfMonthNum: The 'described' week of each month (e.g. 'Third") on which to
run the schedule. Used in conjunction with dayOfWeek. Valid values are:

: First

: Second

: Third

: Fourth

: Last

auabhwWwN -

dayOfWeekNum: The 'described' day of each week (e.g. 'Weekday') on which to run
the schedule. Valid values are:

: Sunday

: Monday

: Tuesday

: Wednesday

: Thursday

ua b wWN

Note: See remarks in Report_CreateEveryWeekdaySchedule for a description
of startDateStr, timeStr, noEndDate, endOccurrences & endDateStr.

Note: See remarks in Report_CreateImmediateSchedule for a description of
toAddrArray, ccAddrArray & bccAddrArray.

bool Report_CreateYearlyScheduleByWeekAndDayForArchiving(string apild, int
numericMonth, int weekOfMonthNum, int dayOfWeekNum, string startDateStr, string
timeStr, bool noEndDate, int endOccurrences, string endDateStr, string name)

Description | Schedules a report to be run and archived on a specific day each year.
Returns Boolean indicating success/failure.
Remarks numericMonth: The numeric Month of each year (e.g. 3 = March) on which to run

the schedule

weekOfMonthNum: The 'described' week of each month (e.g. 'Third") on which to
run the schedule. Used in conjunction with dayOfWeek. Valid values are:

: First

: Second

: Third

: Fourth

: Last

uabhwWN

dayOfWeekNum: The 'described' day of each week (e.g. 'Weekday') on which to run

187

Exago Inc.

Exago User Guide EXag0o

the schedule. Valid values are:
: Sunday

: Monday

: Tuesday

: Wednesday

: Thursday

uabhwWN

Note: See remarks in Report_CreateEveryWeekdaySchedule for a description
of startDateStr, timeStr, noEndDate, endOccurrences & endDateStr.

Examples C#

The following examples demonstrate the capabilities of the Web Service Api using C#.

It is important that the first call instantiate an Api object. After making all the desired
changes the final call should be GetUrlParamString. Then redirect the user to Exago’ Url
concatenated with the string GetUrlParamString returns.

In all of the examples below the return value should be checked for validity. The
examples below have omitted these checks for clarity.

Create Api object and initialize

// create an instance of the web service
//(web service needs to have been discovered in your application)
ExagoWebService.Api api = new ExagoWebService.Api();

// initialize API; returns an ID which is used in subsequent calls
string apild = api.InitializeApi();

Adding/modifying a Role

// create a new runtime Role (is automatically made active)
api.Role_Add(apild, true, false, true, true);

// -- OR --

// accessing a pre-created Role and making it active
api.Role_Activate(apiId, "Admin");

Adding Folder security to role

// disallow access to folder 'Stew's Reports' (and any subfolders)
api.Role_AddFolder(apiId, "Stew's Reports", false);

// make folder 'Summary Reports' (and any subfolders) read only
api.Role_AddFolder(apiId, "Summary Reports", true);

Adding Data Object security to role

// disallow access to data object ‘vw_cancellation’
api.Role_AddDataObject(apild, "vw_cancellation");

Adding Data Object Row security to role

// don’t allow this user to view rows from the ‘vw_grant’ object with a
// ‘Grant Date’ value of 2000-01-01’°
api.Role_AddDataObjectRow(apild, "vw_grant", @"""Grant Date"" <> '2000-01-01'");

188 Exago Inc.

Exago User Guide EXag0o

Setting up several general user session parameters for role (overrides individual
global general parameters)

// set global date format for this user
api.Role_SetDateFormat(apild, "dd/MM/yyyy");

// set currency symbol for this user
api.Role_SetCurrencySymbol(apild, "kr");

Modifying the data connection string of a specific data source

// set data connection string for a specific datasource
api.DataSource_Modify(apild, "MyDb", "Server=SVR;Database=dbl;uid=sa;pwd=dba;");

Modifying a parameter value

// modify a parameter value
api.Parameter_Modify(apild, "asOfDate", "2007-06-01");

Adding a data object

api.DataObject_Add(apiId, "eowin", @, "optionee", "Optionee Dynamic", "OPT_NUM", "Dynamic",
null, null, null));

Setting data column alias

api.DataObject_SetColumnAlias(apild, "vw_webrpt_optionee"”, "Hire Date", "Date of Hire"));

Adding a data object join

api.Join_Add(apild, "optionee", "OPT_NUM", "fn_webrpt_grant", "Optionee Number", 1, 10));

Starting Exago - At this point if you want to run the Exago applications, do the
following:

// setup URL
string url = "http://MyDomainServer/Exago/" + api.GetUrlParamString(apiId);
Response.Redirect(url);

// or you can redirect any control that can be set to a URL
this.ReportIFrame.Attributes["src"] = url;

Executing a report directly from the host application - You can combine setting
user session information as above with report execution. To do that, just omit
the redirect above and do the following:

// activate specific report
api.ReportObject_Activate(apild, @"Stew Meyers' Reports\My Report")

// add a sort
api.Report_AddSort(apiId, "vw_optionee.First Name", 0);

// add a filter
api.Report_AddFilter(apild, "vw_grant.Grant Date", 1, "20070501", @, false, true);

// set other execution params

189 Exago Inc.

Exago User Guide exago

api.Report_SetParams(apild, @, false, false);

Start report execution

// setup URL
string url = "http://MyServer/Exago/" + api.GetUrlParamString(apiId);
Response.Redirect(url);

// or you can redirect any control that can be set to a URL
this.ReportIFrame.Attributes["src"] = url;

Scheduler Examples

Api api = new Api(apiPath, "AdventureWorks.XML");
api.Report.Load(@"DevReports\Adventure Works\Product Locations and Inventory");
api.Report.ExportType = wrExportType.Pdf;

ReportScheduler scheduler = api.ReportScheduler;

List<string> toAddrs = new List<string>();
toAddrs.Add("foo@bar.com");
List<string> ccAddrs = new List<string>();
ccAddrs.Add("foo@bar.com™);
List<string> bccAddrs = new List<string>();
bccAddrs.Add (" foo@bar.com");

DateTime dt = new DateTime(2013, 5, 16, 11, 00, 0);
DateTime dt2 = new DateTime(2013, 6, 15, 10, 20, 0);
TimeSpan ts = new TimeSpan(17, 20, 25);

scheduler.CreateOnceScheduleByDateTime(dt, "Once by datetime"”, toAddrs);

scheduler.CreateDailySchedule(true, 3, dt, true, 0, dt, "Daily No End Date");
scheduler.CreateDailySchedule(false, 2, dt, false, 5, dt2, "Daily two occurrences");
scheduler.CreateDailySchedule(false, 2, dt, false, @, dt2, string.Format("Daily end by {0} _{1}",
dt2.Month, dt2.Day), toAddrs, ccAddrs);

List<DayOflWeek> days = new List<DayOfWeek>();

days.Add(DayOflWeek.Wednesday);

days.Add(DayOflWeek.Wednesday);

days.Add(DayOflWeek.Sunday);

scheduler.CreateWeeklySchedule(2, days, dt, true, 0, null, "Weekly no end date");
scheduler.CreateWeeklySchedule(2, days, dt, false, 2, null, "Weekly 2 occurrences");
scheduler.CreateWeeklySchedule(2, days, dt, false, @, dt2, "Weekly end by date", toAddrs,
ccAddrs, bccAddrs, ts);

Examples PHP

The following examples demonstrate the capabilities of the Web Service Api using PHP.

It is important that the first call instantiate an Api object. After making all the desired
changes the final call should be GetUrlParamString. Then redirect the user to Exago’ Url
concatenated with the string GetUrlParamString returns.

190 Exago Inc.

mailto:foo@bar.com
mailto:foo@bar.com
mailto:foo@bar.com

Exago User Guide EXag0o

In all of the examples below the return value should be checked for validity. The
examples below have omitted these checks for clarity.

Create Api object and initialize
$client = new SoapClient('http://MyServer/ExagoApi/Api.asmx?wsdl");

$r = $client->InitializeApi();

$apild = $r->InitializeApiResult;

Activate a role

$r = $client->Role_Activate(array('apiId' => $apiIld, 'roleId'=>'Admin'));
$result = $r->Role_ActivateResult;

Activate a report

$r = $client->ReportObject_Activate(array('apild' => $apild, 'reportName'=>'Stew Meyers
Reports\\My Report'));

Get URL

$url = "http://MyServer/Exago/" . $client->GetUrlParamString(array('apild' => $apild);

191 Exago Inc.

Exago User Guide EXS30

Trouble Shooting

The following chapter details techniques for trouble shooting issues that may arise when
using Exago.

See Full Error Details

When an error occurs in Exago, a generic error message is displayed.

An error has occurred that is preventing completion of this request. Please contact your adminstrator.

Status code: 200.

This generic message is meant to prevent end users from seeing the full stack trace of the
error.

There are two ways to see detailed error messages.
1. If you are accessing Exago directly in a browser:

a. Append ‘?showerrordetail=true’ to the url. Ex.
.../Exagohome.aspx?showerrordetail=true

b. Refresh the page and recreate the error.
2. If you are accessing Exago through the Api:

a. Using the .Net Api call the method GetUrlParamString and set
showErrorDetail to True.
OR
Using the Web Service Api call the method GetUrIParamString2 and set
showErrorDetail to True.

b. Enter Exago through the Api and recreate the error.

Note: The status code on the generic error message corresponds to standard html
error codes. For example if the status code is 408 it means there was a request
timeout. For status code 200 the html completed successfully and the error lies
elsewhere.

If you would like more details after seeing the full error message please see the section
Read the Log File.

Read the Log File

Exago keeps a text log of when certain tasks are performed. For example each time a
page or report is loaded, each time an error occurs or when various phases of execution
happen.

192 Exago Inc.

Exago User Guide EXS30

To access the Log file:
1. Set “Write Log File” to True in Other Settings of the Administration Console.
2. Recreate the error you are investigating.

3. Navigate to the folder specified in the Temp Path of Main Settings. If this is blank
go to <webapp_dir>/Temp.

4. Open the file WebReportsLog.txt. Scroll to the bottom of the log for the most
recent activity.

Note: Occasionally IIS may lock this file and prevent the log from being written. To
correct this reset, IIS, delete the file WebReportsLog.txt and repeat steps 2-4.

Note: If ‘Enable Remote Report Execution’ is set to True in the Scheduler Settings the
report execution will be recorded in the Scheduler Log.

EEr=]
@O-\j, v Computer » System (C) » TempgFiles %2 | [Search TempFi. P |
Organize » Includeinlibrary = Sharewith = Bum Newfolder =~ 0 @
] ~ Name Date modified Type Size
- Desktop u WebReportsLog.bd 172472013 8:56 AM Text Document it 53 KB
4 Downloads
“E] Recent Places

Scheduler Log

Similar to the main application the Exago Scheduler Service maintains a log file.
Considering the Scheduler can reside on a different machine than the main application the
log file is written where the Scheduler is installed.

To access the Scheduler Log file:
e Set <logging> to True in the file <scheduler_dir>\Config\ ExagoScheduler.xml
e Rerun the scheduled report you are investigating.

e Open the file <scheduler_dir>\ExagoScheduler.log. Scroll to the bottom of the log
for the most recent activity.

Web Service Log

Similar to the main application Exago Web Service maintains a log file. Considering the
Web Service can reside on a different machine than the main application the log file is
written where the Web Service is installed.

To access the Api Log file:
e Set <writelog> to True in the file <websvc_dir>\Config\ WebReportsApi.xml
e Rerun the project that makes the Api calls you are investigating.

e Open the file <websvc_dir>\Config\ WebReportsApiLog.txt. Scroll to the bottom of
the log for the most recent activity.

193 Exago Inc.

Exago User Guide EXS30

Check the Version, Connections & Permissions

This section will detail a few useful things to check when troubleshooting an issue within
Exago.

Verifying Folder Permissions

A common issue when installing or updating Exago is to not set read/write permissions on
various folders the application uses. For these folders the user accessing them via the IIS
app pool must have read write permissions. For the default app pool this is the IIS user
(tiis_iusrs’ for Windows 7, Vista & 2008, ‘aspnet’ for Windows XP or Server 2003). The
folders that require read/write permissions are listed below.

¢ <webapp_dir>/Config - this folder contains the configuration settings loaded
and modified by the Admin Console.

e <webapp_dir>/Temp - this folder is used to store some temporary files.
e The folder specified in the Report Path of the Main Settings.

e The folder specified in the Temp Path of the Main Settings.
ﬁﬁEEzigggiiiiiiiiiiiiiiiggp

|Eenerd|5hamg| Security |Frem.ls\|"ersions|Custorrize|

Object name: C:\Repors

|GI'!)LID OF User names:
82, Administrators (TRAVISPC\Administrators) -
82 Users (TRAVISPC\Users)

*1|15_IUSRS (TRAVISPCMIS_IUSRS)

To change permissions, click Edi.

Permissions for [15_IUSRS Allow Dery
Full control v it
Modify v
Read & execute vy =
List folder conterts 4
Read v
Write ol i

For special permissions or advanced settings, 1'an:5d
click Advanced. i

Leam about access control and pemissions

[ok J[Ganed J[oot |

Verifying Administration Settings

Some settings in the Administration Console are used to connect to other programs
such as databases, Web Services, .Net Assemblies or the External Interface module. Each

of these items will have a green check button () to verify they are connecting correctly.

The following settings can be checked:

194 Exago Inc.

Exago User Guide EXS30

e The Data Source(s) being utilized by the report you are investigating.

e The '‘Schedule Remoting Host’ and ‘Remote Execution Remoting Host’ in Scheduler
Settings.

e The ‘External Interface’ in Other Settings.

¥ Sources x][}' General][ID Getting Staned]
Northwind x
Name Northwind
Type mesgl El
Connection String Server=Server,Databaze=Northwind;uid=user;pwd=password; %
Caonnection successful for Northwind.

Verifying Versions

When updating Exago occasionally issues arise because the Scheduler Service or Web
Service Api have not also been updated. For the Scheduler and Web Service Api to
function properly they must be running the same version and build as the Exago
application.

Note: When using the .Net Api you will need to copy the dlls from the updated
Exago application to the bin directory of your host application.

To check the version of Exago:
¢ Navigate to the home page (default exaghome.aspx).

e Press Ctrl + Shift + V

M
eVWebReports

Version: 2012.1

Build: 8

Session: 3

Config File: WebReports.xml

To check the version of Scheduling Service:
e Locate the file <scheduler_dir>/ExagoScheduler.exe.
e Right click on this file and select ‘Properties’

e Navigate to the ‘Details’ tab.

195 Exago Inc.

Exago User Guide EXag0o

|Genera||r‘ ibili ISecmty| Details |F‘reviou5\iarsions|
Property Value
Drescription
File description eWebReportsScheduler
Type Application

File version 2012180
Product name eWebReports
Product version 2012.1.8.0

Copyright © 2012 Exago Inc.

Size 5.00 KB
Date modfied 1/24/2013 10:11 AM
Language Language Meutral

Criginal flename eWebReportsScheduler.exe

Bemove Properties and Personal Information

[ok J[cancsl J[moey |

To check the version of Web Service Api:
e Locate the file <websvc_dir>/bin/ WebReportsApi.dll.
e Right click on this file and select ‘Properties’

e Navigate to the ‘Details’ tab.

cé’ WebReportsApi.dil Properties E

|Generd ISecmty| Details |F‘revk>us\fersions|

Property Value

Description
File description WebReportsApi
Type Application extension

File version 2012.1.80

Product name eWebReports
Product version 2012.1.8.0

Copyright Copyright © 2012 Exago Inc.
Size 755 KB

Date modified 1/24/2013 10:11 AM
Language Language Meutral

Criginal filename WebReportsApi dil

Bemove Properties and Personal Information

[ok J[Cancal J[ooy |

Submitting a Debug Package

If the “"Debug Extraction Password” is set in Other Settings of the Administration
Console, a client will have the ability to submit Debug Packages automatically to Exago,

196 Exago Inc.

Exago User Guide EXS30

Inc. via the internet. The client will need to select the report that they are having a
problem with and press Ctrl+Shift+X. This keystroke will bring up the Debug Package
submission window. The user will then be required to enter the “"Debug Extraction
Password”, Company Name, and a description of the problem they are experiencing.

Note:

The Debug Package consists of the same files that are created via “"Enable
Debugging,” which is also located in Other Settings of the Administration Console.
These files are encrypted, and then sent to a Web Service that resides at the Exago
Support site.

Submit Report Debug Package to Exago, Inc.
| Debug Password

“four Company Name

Exago Inc

Description of Problem

This area is used to describe the issue being seen.

(« ok) (% cancel) J

To send a Debug Package to Exago Support:
1. From the Main Menu, select the problematic report.
2. Press Ctrl+Shift+X.
3. In the Submit Debug Package window, enter the debug extraction password (this is

set in Other Settings), company name, and a description of the problem.
4, Click the 'Ok’ button.
5. Fill in any information for Parameters or Filters if they are set for the report.
6. A success/failure message will display when the process finishes.

If submitting a debug package fails see Manually Creating a Debug Package.

Manually Creating a Debug Package

197 Exago Inc.

Exago User Guide EXS30

If submitting a debug package fails then you can set ‘Enable Debugging’ to True in the
Other Settings of Administration Console to manually create the files needed for
debugging. These files can be zipped and emailed to support@Exagoinc.com.

Note: Before creating a Debug Package verify that ‘Enable Remote Report
Execution’ in Scheduler Settings is set to False.

To manually create a Debug Package:

1. Create the folder Debug where Exago is installed. Make sure this folder has the same
read/write permissions as the Report and Temp Folders.

2. Set ‘Enable Debugging’ in Other Settings to True.

3. Execute the problematic report. A copy of the report, the configuration settings and a
data set will be created in *.\Debug".

4. Zip these three files together and email them to support@Exagoinc.com.

198 Exago Inc.

mailto:support@exagoinc.com

Exago User Guide EXS30

(00
o

Exago, Inc.

Two Enterprise Drive

Shelton, CT 06484 USA
203.225.0876
http://www.Exagoinc.com

199 Exago Inc.

http://www.exagoinc.com/

	Table of Contents
	Technical Overview
	Architecture

	Installation
	System Requirements
	Web Application Installation
	Installing the Web Application
	Configuring Exago

	Web Service Installation
	Installing the Web Services API
	Configuring Web Services API

	Scheduler Service Installation
	Installing the Scheduler Service
	Configuring Scheduler Services

	Installation Manifest

	Administration Console
	About
	Important Security Note:
	Creating Additional Configuration Files

	Accessing the Administration Console
	Navigation
	Main Menu
	Tabs
	Supported Browsers

	Data
	Data Sources
	Data Source Drivers
	Web Services and .NET Assemblies
	Excel and XML Files

	Parameters
	Data Objects
	Stored Procedures
	Table Value Functions
	Custom SQL Objects
	Data Object Macros

	Column Metadata
	Retrieving Data Object Schemas
	Data Object Ids
	Adding Multiple Data Objects with the Same Name
	Avoiding Issues from Changes to Object Names
	Calling a Single Web Service/.Net Assembly/Stored Procedure

	Reading Images from a Database

	Joins
	Modifying Joins
	Note About Cross Source Joins

	General
	Main Settings
	Culture Settings
	Features/UI Settings
	Available Report Types
	Express Report Designer Settings
	Standard Report Designer Settings
	Dashboard Report Designer Settings
	Common Settings

	Programmable Object Settings
	Filter Settings
	Database Settings
	Type-Specific Database Settings

	Scheduler Settings
	User Settings
	Other

	Roles
	About Roles
	Creating Roles
	Main Settings
	General Settings
	Folder Access
	Object Access
	Row Level Access

	Functions
	About Functions
	Functions
	Exago Session Info
	Example

	Server Events
	Event Handlers
	Custom Code
	.Net Assemblies
	Setting Event Handlers on Specific Reports

	Displaying User Messages from Server Events
	Quick List of Events
	Full Description of Events
	OnDataCombined
	OnReportExecuteStart
	OnReportExecuteEnd
	OnWebServiceExecuteEnd
	OnExecuteSqlStatementConstructed
	OnFilterSqlStatmentConstructed
	OnOkFiltersDialog
	OnOkParametersDialog
	OnScheduledReportExecuteSuccess
	OnConfigLoadStart
	OnConfigLoadEnd
	OnRenameFolderStart
	OnRenameFolderEnd

	Custom Options
	About Option
	Creating Options
	Setting Options
	Accessing Options

	Integration
	About
	Styling
	Styling Exago’ Surroundings
	Exago Control Properties

	Changing CSS
	Changing Icon Images
	Hovering Images
	Finding Image Ids

	Styling the Administration Console

	Multi-Language Support
	Translating Exago
	Modifying Select Language Elements

	Customizing Getting Started Content
	Creating Additional Custom Tabs
	Available JavaScript Functions

	Themes: Charts, Crosstabs, Express Reports & Maps
	Chart Themes
	Crosstab Themes
	Express Report Themes
	Map Themes

	Using Exago within a WinForm
	Cloud Environment Integration
	Azure Cloud Support
	.Net Assembly/Web Service Cloud Support
	Example

	Multi-Tenant Environment Integration
	Column Based Tenancy
	Schema Based Tenancy
	Database Based Tenancy
	Custom SQL Based Tenancy

	Manual Application Installation
	Exago and Exago Web Service Api Installer Integration
	Summary
	Directory Structure
	File Installation
	IIS Configuration
	IIS Version 5.0-6.0
	IIS Version 7+

	Exago Scheduler Installer Integration
	Summary
	File Installation
	Directory Security Settings
	Windows Service Creation

	Optional Setup Information
	Creating a Registry
	Values in a Registry
	Example of Registry

	Extensibility
	Load Balancing Execution
	Multiple Data Models
	Example

	External Interface
	Report Execution Start Event
	User Preference Management
	Handling Time Zones
	Email List for Report Scheduling
	Custom Scheduler Recipient Window
	Scheduler Repository Notification

	Custom Scheduler Recipient Window
	Custom Filter Execution Window
	Available JavaScript Functions
	Example Custom Filter Execution Control
	Example Custom Filter Execution WebPage

	Saving Scheduled Reports to External Repository
	Custom Context Sensitive Help
	Report Templates Setup
	PDF Templates
	Check Boxes in PDF Templates.

	RTF Templates
	Dynamic content with RTF Templates

	Excel Templates
	Referencing Data in Excel Templates

	Report and Folder Storage/Management
	Accessing SessionInfo in Folder Management

	Exago API
	About
	.NET API
	Quick List of Name Spaces and Classes
	WebReports.Api
	Api Class

	WebReports.Api.Data
	DataSource Class
	DataSourceCollection Class

	WebReports.Api.Common
	ReportObjectFactory Class
	ReportObject Class

	WebReports.Api.Composite.Dashboards
	DashboardReport Class
	ReportItem Class

	WebReports.Api.Reports
	Filter Class
	Report Class
	ReportFilterCollection Class
	ReportSortCollection Class
	Sort Class

	WebReports.Api.Roles
	DataObject Class
	DataObjectCollection Class
	DataObjectRow Class
	DataObjectRowCollection Class
	Folder Class
	FolderCollection Class
	General Class
	Parameter Class
	ParameterCollection Class
	Role Class
	RoleCollection Class
	Security Class

	WebReports.Api.Scheduler
	ReportScheduler Class
	SchedulerEmailInfo Class

	Other Notes
	Using MySQL through the .NET Api

	Examples

	Web Service API
	Quick List of Web Service Methods
	Full Description of Web Service Methods
	Main Methods
	Data Methods
	Folder Methods
	Parameter Methods
	ReportObject Methods
	Dashboard Methods
	Report Methods
	Role Methods
	Scheduler Methods
	Examples C#
	Examples PHP

	Trouble Shooting
	See Full Error Details
	Read the Log File
	Scheduler Log
	Web Service Log

	Check the Version, Connections & Permissions
	Verifying Folder Permissions
	Verifying Administration Settings
	Verifying Versions

	Submitting a Debug Package
	Manually Creating a Debug Package

