

Technical Guide
Version 2015.1

© 2015 Exago Inc. All rights reserved.

Exago is a registered trademark of Exago, Inc. Windows is a registered trademark of Microsoft
Corporation in the United States and other countries. All other company and product names mentioned
may be trademarks of the respective companies with which they are associated.

Exago Inc. makes a sincere effort to ensure the accuracy of the material. The content of this manual is
furnished for informational use only, is subject to change without notice, and should not be construed
as a commitment by Exago Inc. Exago Inc. assumes no responsibility or liability for any errors or
inaccuracies that may appear in this document.

Except as permitted by licensing agreement, no part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, without the prior written permission of
Exago Inc.

Exago Inc. strives to provide our customers with high-quality printed and online documentation. If you
have any comments or suggestions on how we can improve our documentation for your use, please
contact us at: info@exagoinc.com

file:///C:/Users/Ayleesa/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/01Y595WI/info@exagoinc.com

Exago Technical Guide

2 Exago Inc.

Exago, Inc.
Two Enterprise Drive
Shelton, CT 06484 USA

Phone .
203.225.0876

Fax .
203.926.9505

E-mail .
sales@exagoinc.com

Web .
http://www.exagoinc.com

Support & development

Phone .
845.481.5221

Fax .
845.255.0209

E-mail .
support@exagoinc.com

Web .
http://www.exagosupport.com

Blog .
http://exagoinc.com/blog.html

http://www.exagoinc.com/
http://www.exagosupport.com/

Exago Technical Guide

3 Exago Inc.

Table of Contents
Table of Contents .. 3

Technical Overview ... 9
Architecture ... 9

Installation.. 11
System Requirements ... 11
Web Application Installation ... 12

Installing the Web Application... 12
Configuring Exago.. 14

Web Service Installation.. 15
Installing the Web Services API ... 15
Configuring Web Services API ... 17

Scheduler Service Installation... 18
Installing the Scheduler Service .. 18
Configuring Scheduler Services ... 20
Starting and Changing Scheduler Services ... 22

Installing Exago on Linux .. 23
Installation Manifest ... 24

Administration Console ... 25
About ... 25

Important Security Notes: .. 25
Creating Additional Configuration Files .. 25

Accessing the Administration Console... 26
Navigation ... 26

Main Menu.. 27
Tabs .. 27

Supported Browsers ... 28
Data ... 28

Data Sources .. 29
Data Source Drivers .. 30
Web Services and .NET Assemblies... 31
Excel and XML Files .. 32
OLAP and MDX Queries.. 34
ODBC Drivers .. 34

Parameters... 35
Data Objects... 36

Stored Procedures .. 37
Table Value Functions .. 38
Custom SQL Objects ... 39
Column Metadata ... 40
Retrieving Data Object Schemas .. 41
Data Object Ids.. 41
Reading Images from a Database... 44

Joins ... 44
Modifying Joins .. 45
Note About Cross Source Joins .. 45

Automatic Database Discovery .. 45
General ... 46

Main Settings .. 47

Exago Technical Guide

4 Exago Inc.

Culture Settings... 48
Features/UI Settings ... 50

Available Report Types... 50
Express Report Designer Settings ... 51
Standard Report Designer Settings ... 51
Dashboard Report Designer Settings ... 53
Common Settings ... 53

Programmable Object Settings .. 54
Filter Settings ... 55
Database Settings .. 57

Type-Specific Database Settings... 57
Scheduler Settings ... 58
User Settings .. 60
Other .. 61

Roles .. 63
About Roles .. 63
Creating Roles... 64
Main Settings .. 64
General Settings .. 64
Folder Access .. 67
Object Access ... 67
Filters Access .. 68

Extensions ... 68
Functions ... 69

Creating Functions .. 69
Exago Session Info ... 70
Calling Exago Functions ... 72
Example ... 72

Filter Functions ... 73
Creating Filter Functions .. 73
Example ... 74

Server Events ... 74
Event Handlers .. 75
Custom Code... 77
.Net Assemblies ... 77
Setting Event Handlers on Specific Reports... 77
Displaying User Messages from Server Events ... 78
Quick List of Events .. 79
Full Description of Events ... 80

Action Events .. 91
Event Handlers .. 91
Custom Code... 93
.Net Assemblies ... 93
Writing Action Events .. 93
Local Action Events ... 94
Creating Global Events... 96

Custom Options... 98
About Option ... 98
Creating Options .. 98
Setting Options .. 99

Exago Technical Guide

5 Exago Inc.

Accessing Options .. 100

Integration .. 101
About ... 101
Styling .. 102

Styling Exago’ Surroundings .. 102
Changing CSS .. 105
Changing Icon Images... 108
Styling the Administration Console.. 109

Multi-Language Support .. 109
Translating Exago ... 110
Modifying Select Language Elements .. 111
Text of Prompting Filters and Parameters on Dashboards............................... 111

Customizing Getting Started Content.. 112
Creating Additional Custom Tabs ... 112
Available JavaScript Functions ... 113

Themes: Charts, Crosstabs, Express Reports & Maps ... 115
Chart Themes ... 116
Crosstab Themes ... 116
Express Report Themes... 117
Map Themes... 118

Using Exago within a WinForm ... 118
Cloud Environment Integration ... 118

Azure Cloud Support... 119
Configuration File Storage .. 119
Report Storage .. 119
Temp Cloud service... 120

.Net Assembly/Web Service Cloud Support .. 120
Example ... 121

Multi-Tenant Environment Integration... 122
Column Based Tenancy ... 122
Schema Based Tenancy ... 122
Database Based Tenancy ... 123
Custom SQL Based Tenancy ... 123

Manual Application Installation ... 124
Exago and Exago Web Service Api Installer Integration 124

Summary.. 124
Directory Structure ... 125
File Installation .. 125
IIS Configuration .. 125

Exago Scheduler Installer Integration ... 128
Summary.. 128
File Installation .. 129
Directory Security Settings.. 129
Windows Service Creation .. 130

Optional Setup Information .. 131
Creating a Registry ... 131
Values in a Registry .. 132
Example of Registry .. 132

Extensibility .. 134
Load Balancing Execution .. 134

Exago Technical Guide

6 Exago Inc.

Multiple Data Models .. 135
Example .. 136

External Interface .. 138
Report Execution Start Event .. 138
User Preference Management ... 138
Handling Time Zones .. 139
Email List for Report Scheduling .. 139
Custom Scheduler Recipient Window .. 140
Scheduler Repository Notification .. 140

Custom Scheduler Recipient Window ... 141
Custom Filter Execution Window ... 142

Available JavaScript Functions ... 142
Example Custom Filter Execution Control... 144
Example Custom Filter Execution WebPage .. 145

Saving Scheduled Reports to External Repository .. 145
Custom Context Sensitive Help ... 146
Report Templates Setup .. 147

PDF Templates .. 148
Check Boxes in PDF Templates. ... 148

RTF Templates .. 148
Dynamic content with RTF Templates .. 148

Excel Templates... 149
Referencing Data in Excel Templates ... 149

Report and Folder Storage/Management ... 150
User Defined Fields .. 150
List of Methods ... 151
Accessing SessionInfo in Folder Management ... 155

Application Logging.. 156
Logging Defaults ... 156
Custom Logging .. 157

Exago API.. 158
About ... 158
.NET API ... 158

Quick List of Name Spaces and Classes ... 158
WebReports.Api... 160

Api Class .. 160
WebReports.Api.Data .. 162

DataSource Class ... 162
DataSourceCollection Class ... 162

WebReports.Api.Common .. 163
ReportObjectFactory Class .. 163
ReportObject Class ... 164

WebReports.Api.Composite.Dashboards .. 165
DashboardReport Class .. 165
ReportItem Class.. 165

WebReports.Api.Reports .. 166
Filter Class .. 166
Report Class .. 166
ReportFilterCollection Class ... 167
ReportSortCollection Class .. 167

Exago Technical Guide

7 Exago Inc.

Sort Class ... 168
WebReports.Api.Roles ... 169

DataObject Class .. 169
DataObjectCollection Class ... 169
DataObjectRow Class .. 169
DataObjectRowCollection Class .. 170
Folder Class .. 170
FolderCollection Class .. 170
General Class .. 171
Parameter Class ... 171
ParameterCollection Class... 172
Role Class ... 172
RoleCollection Class .. 172
Security Class .. 173

WebReports.Api.Scheduler ... 174
ReportScheduler Class ... 174
SchedulerEmailInfo Class ... 183

Other Notes.. 183
Using MySQL through the .NET Api... 183

Examples ... 184
Web Service API.. 187

Quick List of Web Service Methods... 187
Full Description of Web Service Methods ... 188
Main Methods ... 189
Data Methods ... 191
Folder Methods ... 193
Parameter Methods .. 194
ReportObject Methods .. 194
Dashboard Methods ... 195
Report Methods ... 196
Role Methods .. 198
Scheduler Methods... 200
Examples C# .. 208
Examples PHP ... 210

REST API... 212
Authorization .. 212
List of Resources ... 214
Sessions .. 214
DataSources ... 215
Joins ... 217
Roles .. 218
Settings ... 222
Parameters... 223
Entities .. 224
Functions ... 227
ServerEvents .. 228
Folders .. 230

Data Definitions .. 231
Sessions .. 231

SessionResource .. 231

Exago Technical Guide

8 Exago Inc.

DataSources ... 231
DataSourceListItemResource... 231
DataSourceResource ... 231

Joins ... 232
JoinListItemResource .. 232
JoinResource ... 232

Roles .. 232
RoleListItemResource .. 232
RoleResource .. 233
RoleSettingsResource .. 233
RoleEntityResourceCollection... 234
RoleEntityResource ... 234
RoleFolderResourceCollection .. 234

RoleFolderResource .. 235
RoleDataObjectRowResourceCollection .. 235
RoleDataObjectRowResource .. 235

Settings ... 235
SettingsResource.. 235

Parameters... 236
ParameterListItemResource .. 236
ParameterResource ... 236

Entities .. 237
EntityListItemResource .. 237
EntityResource... 237
EntityFieldListItemResource .. 237
EntityFieldResource... 238

Functions ... 238
FunctionListItemResource .. 238
FunctionResource ... 238

ServerEvents .. 239
ServerEventListItemResource .. 239
ServerEventResource .. 239

Folders .. 239
FolderResource .. 239
FolderRenameResource.. 240

Return Codes .. 240
Error Data .. 240
Error Codes .. 241

Troubleshooting .. 242
See Full Error Details .. 242
Read the Log File .. 242

Scheduler Log ... 243
Web Service Log .. 243

Check the Version, Connections & Permissions ... 243
Verify ing Folder Permissions .. 244
Verify ing Administration Settings .. 244
Verify ing Versions ... 245

Submitting a Debug Package.. 247
Manually Creating a Debug Package ... 248

Exago Technical Guide

9 Exago Inc.

Technical Overview

Exago is an ASP .NET web application that utilizes C#, JavaScript and AJAX. Exago consists of four
main components.

1. .NET API: Controls all server-side processing and the user interface. The .NET API can also be
called by your host application to integrate Exago. For more information see .NET API and
Integration.

2. User Interface: ASP.NET pages that are converted to HTML at runtime. To access the UI see
Accessing the Administration Console.

3. REST and Web Service API: Gives non .NET host applications access for integration

purposes. For more information see REST API, Web Services API, and Integration.

4. Report Scheduler Service: Windows service used that handles processing scheduled reports.

The Scheduler can also be used for load balancing. For more information see Scheduler
Installation and Load Balancing Execution.

Architecture

The diagram below details the architecture of Exago:

Host Application

Exago Technical Guide

10 Exago Inc.

The Host Application uses the REST, Web Service, or .NET API to set user permissions and embed the
User Interface.

Exago

Exago uses the .NET API to process reports and support the User Interface. High performance
ADO.NET drivers are used to for database connectivity.

Report Templates

Report templates are stored as XML in the file system by default. Alternatively the Host Application can
use a Web Service to manage report template storage.

Data Sources

Exago can retrieve data from tables, views, stored procedures, Web Services, .NET Assemblies or
custom SQL. Data can be joined across data sources to provide additional flexibility.

Extensibility

Exago provides several features that allow the Host Application to dynamically extend its capabilities.

Exago Technical Guide

11 Exago Inc.

Installation

The following chapter details the system requirements and walks through the installation of Exago.

NOTE. Please be sure to disable your antivirus software (and check to make sure it’s stopped
for services, and, not running in your task list) before installing. Antiv irus software may lock up
the installation or cause it to fail.

To begin download the installer from our support site. Make sure your antiv irus software is disabled
and run the installer as Administrator. There are three components of Exago that can be installed, but
only the Web Application is required.

Web Application

This component consists of the User Interface and the .NET assembly
WebReportsApi.dll which can be used directly by .NET host applications. See Web
Application Installation.

Web Service API (Optional)

This component provides a platform independent means of communication with
Exago at runtime. As well as being platform independent the Web Service API
provides cross domain accessibility and application isolation. See Web Service
Installation.

Scheduler Service (Optional)

This component uses .NET Remoting to communicate with Exago. This service can
be used to load balance report processing. Additionally, it can be used to schedule
and email reports. The Exago Scheduling Service can be installed on any server
that can communicate with the Exago web application via an HTTP URL/Port. See
Scheduler Service Installation.

System Requirements

The following components are required to install and run Exago:

Windows:

Windows Server 2003 or greater / Windows XP / Windows Vista / Windows 7
Internet Information Services v5.1 or greater
Microsoft .NET Framework version 4.0

http://www.exagosupport.com/

Exago Technical Guide

12 Exago Inc.

NOTE. IIS should be installed prior to the .NET Framework. If IIS is installed after the .NET
Framework, then the .NET Framework must be reinstalled or repaired via Add/Remove
Programs >.NET Framework 4.0 > Change/Remove, then choose the Repair option.

Linux:

Red Hat Enterprise Linux 7+ / SLES 12+ / CentOS 7+ / Fedora 21+ / Debian 8+ / Ubuntu 14+
Apache HTTP Server 2.4+
Mono 3.12+
mod-mono 3.2.8+
mono-basic (optional VB.NET support)

Data Sources (one or more):

Microsoft SQL Server 2000 or greater
Oracle 9i or greater
MySQL 5.0 or greater
PostgreSQL 7.1 or greater
Web Services
.NET Assemblies

Data Adapters (one or more):

Oracle – ODAC11 from oracle.com
MySQL – Connector/Net from mysql.com
PostgreSQL – dotConnect for PostgreSQL Express from devart.com

Web Application Installation

Installing the Web Application

For instructions on installing Exago on Linux, see Installing Exago on Linux.

Use the following steps to install the web application on Windows:

 Download the installation wizard from our support site.

 Make sure your antivirus software is disabled and run the installation Wizard as Administrator.

 Click the Web Application button.

http://www.exagosupport.com/

Exago Technical Guide

13 Exago Inc.

 Click Next to bring up the ‘Select Installation Location’ menu.

 In this menu specify the web site, virtual directory and physical directory where you want Exago
installed. Click Next.

Exago Technical Guide

14 Exago Inc.

 Confirm your location selections by clicking Next.

 Monitor the installation and click Finish when it is complete.

Configuring Exago

After the installation is complete, configure Exago using the following steps:

 Create a folder for storing reports. This folder needs to be accessible from the web server, but is
not required to be on the web server. It can reside on any server accessible by Exago via direct
UNC or virtual path created in IIS.

Exago Technical Guide

15 Exago Inc.

NOTE. Do not create the reports folder within the Exago application structure. Doing so will cause
ASP.NET sessions to die when report folders are created or deleted within the Exago application.

 Give the Report Folder read and write priv ileges for the ASP.NET user.

 Specify the location of the Report Folder in the ‘Report Path’ setting of the Administration
Console. See Accessing the Administration Console and Main Settings of the General
Section.

Below are three examples of report paths to the folder \ReportsRepository:

1. C:\Program Files\Exago\ ReportsRepository – Folder is on a file system.

2. \\Server Name\ReportsRepository – Physical folder is on a separate server.

3. /ReportsRepository – Assumes an IIS virtual directory called ‘ReportsRepository’ has
been created to point to the folder.

 Verify that the user running under the Exago instance within IIS has read/write priv ileges on
the folders below:

o The folder specified in the Report Path of the Main settings of Administration Console.

o The Config sub-folder of the Exago installation.

o The folder specified in the Temp Path. By default this is a sub-folder of Exago called
‘Temp’. However this can be changed in the Main Settings of the Administration
Console.

Web Service Installation

Installing the Web Services API

For instructions on installing the Web Services API on Linux, see Installing Exago on Linux.

Use the following steps to install the Web Service API on Windows:

 Download the installation wizard from our support site.

 Make sure your antivirus software is disabled and run the installation wizard as an
Administrator.

 Click the Web Service button.

http://www.exagosupport.com/

Exago Technical Guide

16 Exago Inc.

 Click Next to bring up the ‘Select Installation Location’ menu.

 In this menu specify the web site, virtual directory and physical directory where you want Exago
installed. Click Next.

NOTE. The Web Service API must be installed on the same server and web site as
the Exago Application.

Exago Technical Guide

17 Exago Inc.

 Confirm your location selections by clicking Next.

 Monitor the installation and click Finish when it is complete.

Configuring Web Services API

To configure the Web Service API edit the file ‘WebReportsApi.xml’ which is located in the Config sub-
folder where the Web Service API is installed. The location of the Config sub-folder is determined when
the Web Service API is installed. Set the following items:

Exago Technical Guide

18 Exago Inc.

 apppath – IIS virtual directory of the Exago web application. For example, entering ‘/Exago’
will cause the Web Service API to look for the Exago virtual directory.

 throwexceptiononerror – set to true if you want to catch exceptions in your application
thrown by Exago.

 writelog – set to true to write a log file (WebReportsApiLog.txt in the Config sub-folder) of any
exceptions thrown. Write permissions for the Config sub-folder must be given to the ASP.NET
user.

Scheduler Service Installation

The version and build number of the Scheduler Service must match that of the Web Application.

You may have different installations of Exago with different versions/builds on separate servers. The
Scheduler Service installation wizard allows you to install multiple Schedulers to maintain corresponding
version/builds with the Web Application.

Installing the Scheduler Service

For instructions on installing the Web Services API on Linux, see Installing Exago on Linux.

Use the following steps to install the Scheduler Service on Windows:

 Download the installation wizard from our support site.

 Make sure your antivirus is software disabled and run the installation wizard as an
Administrator.

 Click the Scheduler button.

http://www.exagosupport.com/

Exago Technical Guide

19 Exago Inc.

 Click Next to bring up the ‘Select Installation Location’ menu.

 Specify if you want to create a new service or if you want to update an existing one.

 To create a new service set a name and location.

 Select to who the Exago Scheduler Windows Service will be installed. By default, “Everyone” is
selected. Click Next.

Exago Technical Guide

20 Exago Inc.

 Confirm your location selections by clicking Next

 Monitor the installation and click Finish when it is complete.

Configuring Scheduler Services

To configure the Scheduler Service API, edit the file ‘WebReportsScheduler.xml’ in the folder where the
scheduler service was installed.

Set the following items:

NOTE. Settings that can be true or false are case sensitive and should use lower case. Ex.
encrypt_schedule_files will cause an error for True.

 smtp_server – The smtp server used to email reports.

 smtp_enable_ssl – Set to ‘true’ to enable SSL.

 smtp_user_id – The user id that is used to login into the smtp server.

Exago Technical Guide

21 Exago Inc.

 smtp_password – The password id that is used to login into the smtp server.

 smtp_from – The ‘From’ email address used in the report emails.

 smtp_from_name – The ‘From’ name used in the report emails.

 error_report_to – The email address to send error reports to.

 channel_type – tcp or http – must match the setting of the Remote Host in the Scheduler
Settings of the Administration Console.

 port – The port number of the .NET remoting object used to communicate with Exago; this
should also be entered in the Scheduler Settings of the Administration Console.

 working_directory – The directory where scheduled documents and temporary files are
written. The default setting ‘[INSTALLDIR] working’ will create a ‘working’ folder in the location
the scheduler was installed.

 default_job_timeout – The maximum number of seconds any report execution is allowed. If
an execution reaches a maximum number of seconds an email will be sent to the address
specified under ‘error_report_to.’

 report_path – A path to specify where to save reports when ‘Email Scheduled Reports’ is set
to False in the Scheduler Settings. For more details see Saving Scheduled Reports to
External Repository.

 sleep_time - The time interval used for polling for scheduled reports to execute.

 simultaneous_job_max – The maximum number of report executions that can occur
simultaneously. This setting is based on the resources available of the server where the
scheduler is installed.

 logging – Set to ‘on’ in order to log events to ExagoScheduler.log in the working directory.

 flush_time – The number of hours that a completed, deleted, or aborted job will be saved for
viewing in the schedule reports manager. Set to 0 to flush jobs immediately upon completion.
Set to -1 to disable automatic flushing.

 sync_flush_time – The flush time for synchronous (non-scheduled remote) jobs.

 email_addendum – Text that will be added at the end of email body. Use ‘\n’ to insert lines.

 external_interface – This is optional and overrides the value set in the Administration
Console. The advantage of setting the value here is that the existing scheduled reports that
have a previous external interface value will take the new value. For more details see External
Interface.

 abend_upon_report_error – This controls how the scheduling service should proceed if an
error occurs while loading or executing a report. The default ‘true’ will stop the running the
schedule and set the status to Abended. Set to False to continue running the schedule and
maintain the status as Ready.

 ip_address – Binding IP address for the Scheduling Service. Most commongly used when the
server has multiple Network Interface Cards (NICs)

Exago Technical Guide

22 Exago Inc.

 encrypt_schedule_files – Set to ‘true’ to encrypt the files created by the scheduling service.
All existing schedules will be encrypted the next time the service is started.

 max_temp_file_age – The number of minutes between each “flush” of the temp files created
by the scheduling service. The default is 1440 minutes (24 hours).

NOTE. Making this value too low may result in errors as temp files are used during report
execution and for interactive HTML capabilities when using remote execution. It is not
recommended setting this value any lower than 60 minutes.

 email_retry_time – In the case an email fails to send, the number of minutes to wait before
retrying to send the email. After five failed attempts the schedule will set itself to Aborted. The
default is 10 minutes.

Starting and Changing Scheduler Services

The Windows Service will have to be manually started for new
installations of the Scheduler. Starting the service will create the working
directory as set in ‘working_directory’ described above.

To start the scheduler open Windows Services. Double click on
‘ExagoScheduler’ and the Properties menu will appear. Click Start.

If any changes are made to the configuration (detailed above) the
service must be stopped and restarted for the changes to take effect.

Exago Technical Guide

23 Exago Inc.

Installing Exago on Linux

The Exago Linux Setup Application can be used to install the Web Application, Web Service API, and
Scheduler Service. The application can also install a compatible version of Mono. Use the following
steps to install Exago on Linux.

 Download the Linux Setup Application from our support site.

 Decompress the download into a temporary location.

 Run installExago.sh as root.

NOTE. SELinux is not supported by default. The installer will exit if SELinux is running.

o The installer will attempt to detect certain system information such as OS and Apache
versions. If it cannot detect something it will prompt for the information.

o Specify an install path when prompted. If you do not specify a path the installer will
default to ‘/opt/Exago’.

o You may elect to install Mono when prompted. If you already have Mono installed this
option will have no effect. You can also run installMono.sh at a later time.

o You will be prompted to select which components to install. Select up to three
components by typing their respective numbers delineated by a space. If you are not
sure whether you will need a certain component, you can install it at a later time by
running installExago.sh again.

1. Web Application

2. Web Service API

3. Scheduler
NOTE. The Scheduler will not run as a Linux service by default. It must be added
to your init script.

o If you elect to install the Web Service API and/or the Scheduler, the installer will create
the subdirectories ‘WebServiceApi’ and/or ‘Scheduler’ in your previously specified

install path.

o The installer will detect your Apache installation and generate a default configuration file
called exago.conf in your Apache site path. You can also run configApache.sh at a
later time.

o The installer will automatically set read/write permissions for the current Apache user on
the install paths, Config directories and Temp directories.

 You must manually create and set the permissions for a report directory. For instructions on
how to configure a report directory see Configuring Exago.

 For instructions on configuring the Web Service API, see Configuring Web Services API.

 For instructions on configuring the Scheduler, see Configuring Scheduler Services.

http://www.exagosupport.com/

Exago Technical Guide

24 Exago Inc.

Installation Manifest

When installing the Exago Host Application, the installer will create a new manifest file on your system
called ‘ExagoMainfest.txt’. It is very important that you do not delete this file.

Some features in the Exago application enable you to create your own files located in the Exago’
installation folder outside of the Config folder. The manifest file ensures that future installs of Exago do
not wipe out the local files that you have created.

During subsequent upgrades to the Host Application, the installer will read the manifest file to
determine which files to over-write. If the manifest file exists but the installer cannot access it, the
installation will fail and give notification.

If, however, the manifest file does not exist, any files in the Exago tree outside of the Config
folder will be deleted. Additionally, any custom .aspx pages or image files that live outside the
Config folder (such as per-user styling) will be erased.

Exago Technical Guide

25 Exago Inc.

Administration Console

The following chapter details how to configure data, set permissions and enable/disable features
through the Administration Console.

About

The Exago Administration Console serves as a user interface to set up and save administrative
preferences. Using the Administration Console you can:

 Establish how to connect to data. Determine what data should be exposed to users. See Data.

 Modify global settings of Exago to enable/disable features. See General.

 Create and modify security Roles for indiv iduals or groups of users. See Roles.

 Create and modify custom functions to make calculations on reports. See Functions.

 Create and modify custom code that is run when reports execute. See Server Events.

 Create and modify custom options that can be set on reports. See Custom Options.

The Administration Console creates three configuration files: an XML file called WebReports.xml, a
backup of the XML file called webreport.xml.backup, and an encrypted XML file called
WebReports.xml.enc. These files are created and saved in the Config folder where Exago was installed.

Important Security Notes:

 Each time you save the Administration Console settings a backup copy of WebReports.xml is
created. Store this xml copy in a secure place and delete the WebReports.xml and the
WebReports.xml.backup from the Config directory.

 Before deploying Exago into a production evnrionment be sure to set a value for the Temp Path
in Main Settings to a location that resides behind your server’s firewall/security system.

Creating Additional Configuration Files

As part of the integration of Exago you may want to create alternative configuration files in addition to
WebReports.xml. Additional configuration files can be utilized in two ways:

 If entering Exago directly, the configuration file to be used is specified in the custom styling
page.

 When entering through the Api the configuration file to be used is specified in the Api
constructor methods.

To create additional configuration files:
1. Navigate to the Administration Console in a browser.

Exago Technical Guide

26 Exago Inc.

2. Append ‘?configFn=NewConfigFile.xml’ to the URL replacing NewConfigFile with the name
you want to give the configuration file.

3. Click in the URL bar and press enter.

Accessing the Administration Console

Once Exago is installed navigate your browser to http://‘Your Server’/Exago/Admin.aspx. In
the Other Settings menu under the General Section you can set a login and password to restrict
future access to the Admin Console.

Navigation

The Administration Console consists of two sections. On the left is the Main Menu and on the right are
tabs that can contain menus to create and modify Data Sources, Data Objects, Parameters, Roles, and
other settings.

Exago Technical Guide

27 Exago Inc.

Main Menu

Through the main menu you can:

 Create Data Sources, Data Objects, Joins, Parameters, Roles and Custom Functions.

 Edit settings for - Data, Roles, Functions and General features.

 Delete Data Sources, Data Objects, Joins, Parameters, Roles and Functions.

Click the arrows () to hide the main menu.

Tabs

The right section of Exago is made up of tabs containing the menus to create and modify
administrative settings.

To save the changes made in a tab click ‘Ok’ () or press ‘Apply’ ().

Tabs can be closed without saving by clicking the ‘x’ to the right of the tab name.

Exago Technical Guide

28 Exago Inc.

Tabs can also be rearranged by clicking and dragging them as desired.

Supported Browsers

The Administration console can be accessed by the following browsers:

 Firefox 3+
 Internet Explorer 8+
 Google Chrome
 Safari

NOTE. In Internet Explorer’s Compatibility Mode some items may not display correctly.

Data

This chapter discusses how to determine which data should be made available to users to create
reports. Using Data Sources, Data Objects, Parameters and Joins you can create user friendly names
and control what data users may access.

Exago Technical Guide

29 Exago Inc.

All existing Data elements are listed in the Main Menu under Data. Whenever a data element is added
or modified it will be displayed in a Tab based on its type. For example, all Data Objects you select to
edit will appear in an Objects tab.

 To add a new element select the type (Sources, Object, Parameter or Join) in the Main Menu

under Data, then click the add button ().

 To edit an element either double click it or select the desired element and click the edit button (

).

 To delete an element select it and click the delete button ().

 To save changes click the Ok button () or press the ‘Apply’ button ().

Data Sources

Data sources establish the connection between Exago and a database or a web service. Although
typically only one database is used, Exago can join data from different sources into a single report.

NOTE. To utilize some types of Data Sources you may need to download and install the appropriate
driver. Please see Data Source Drivers for more information.

All existing Data Sources are listed in the Main Menu under Data. All the Sources you are adding or
editing will be displayed in a Tab entitled Data Sources.

 To add a new Data Source click ‘Sources’ in the Main Menu then click the add button ().

 To edit a Data Source either double click it or select the Data Source and click the edit button (

).

 To delete a Data Source select it and click the delete button ().

 To save changes click the Ok button () or press the ‘Apply’ button ().

Each Data Source must have the following:

 Name – a name for the data source.

 Type – the type of source being used. Valid types include:

o mssql – Microsoft SQL Server.

o mysql – MySQL.

o oracle – Oracle.

o postgres – PostgreSQL.

Exago Technical Guide

30 Exago Inc.

o db2 – IBM db2.

o informix – IBM Informix.

o websvc – Web Service. For more information see Web Services.

o assembly - .NET Assembly dll. For more information see .NET Assemblies.

o file – XML or Excel file. For more information see Excel and XML Files.

o msolap – OLAP. For more information OLAP and MDX Queries.

o odbc – ODBC Driver. For more information see ODBC drivers.

 Schema/Owner Name (blank for default) – Provide a default database schema for the
data source.

NOTE. Only use this if you are using schema to provide Multi-Tenant security. For more
details see Multi-Tenant Environment Integration.

 Connection String – the method that is used to connect to the data source. Connection
strings vary by type:

o mssql, oracle, postgres, mysql and olap – Please refer to ConnectionStrings.com for
database connection strings.

o websvc – Can take up to four parameters but only requires url.

 url – The url of the web service.

 Authentication (optional) – Set to ‘basic’ to utilize basic authentication through
IIS. This will send the userid and password as clear text (unless https is used).

 uid (optional) – User id is passed to the web service.

 pwd (optional) – Password is passed to the web service

o assembly – Requires two parameters.

 assembly – The full path of the assembly name.

 class – The class name in the assembly where the static methods will be
obtained.

o file – Requires the physical path to the excel or xml file and the file type. Ex.
File=C:\example.xls;Type=excel;

Click the green check mark to verify the connection succeeds ().

Data Source Drivers

Below is a lists of recommended ADO.NET drivers for each type of Data Source.

 SQL Server - No external ADO.NET driver needed

 Oracle - ODAC1120320_x64 or newer – Oracle ODAC Connector -
http://www.oracle.com/technetwork/database/windows/downloads/index-
090165.html

 MySQL/MariaDB – dcmysqlfree.exe – Devart Connector -
http://www.devart.com/dotconnect/mysql/download.html

 PostgreSQL – dcpostgresqlfree.exe – Devart Connector -
http://www.devart.com/dotconnect/postgresql/download.html

http://www.oracle.com/technetwork/database/windows/downloads/index-090165.html
http://www.oracle.com/technetwork/database/windows/downloads/index-090165.html
http://www.devart.com/dotconnect/mysql/download.html
http://www.devart.com/dotconnect/postgresql/download.html

Exago Technical Guide

31 Exago Inc.

 DB2/Informix – ibm_data_server_driver_package_win64_v10.5.exe or newer – IBM Data
Server Driver Package –
https://www14.software.ibm.com/webapp/iwm/web/reg/download.do?source=s
wg-idsdpds&lang=en_US&S_PKG=win_64&cp=UTF-8&dlmethod=http

Web Services and .NET Assemblies

Web Services and .NET Assemblies can be used as Data Sources. This is possible when the Web
Service and .NET Assemblies underlying methods are setup as Data Objects. An advantage of doing
this is being able to use a high-level language to manipulate the data being reported on at run-time.
The main disadvantage is not being able to take advantage of the database to perform joins with other
data objects; data from methods can still be joined, but the work to do this is done within Exago. For
more information see Note about Cross Source Joins.

Parameters are passed from Exago to Web Services and .NET Assemblies. Three types of parameters
can be passed but only Call Type is required.

 Call Type (required) – Integer that specifies what Exago needs at the time of the call. There
are three possible values. You may specify the name of this parameter in the Programmable
Object Settings of the General Section.

o 0 : Schema - returns a DataSet with no rows.

o 1 : Data - returns a full DataSet.

o 2 : Filter Dropdown Values – returns data for the filter dropdown list. The Data Field
being requested is passed in the column parameter. The filter type is passed in the filter
parameter (see below).

 Column, Filter and Sort Strings (optional) – To optimize performance Exago can pass user-
specified sorts and filters to the Web Service or .NET Assembly. This process reduces the
amount of data sent to Exago. If these parameters are not used, all of the data will be sent to
Exago to sort and filter. Column, filter and sort strings are sent as standard SQL. You may
specify the name of these parameters in the Programmable Object Settings of the General
Section.

 Custom Parameter Values (optional) – Additional parameters can be specified to be sent to
indiv idual methods in the Data Object Menu.

IMPORTANT. When a Web Service or .NET Assembly is first accessed it is compiled and kept in an
internal cache within Exago. This is done in order to increase performance. Due to this internal cache,
Exago will not be aware of any changes within the Web Service or .NET Assembly. If the service or
assembly is subsequently changed; Exago will execute the prior compiled version. Thus, when you
modify the Web Service or .NET Assembly reset the internal cache of Exago by clicking the green

check mark of the Data Source () or by restarting IIS.

.NET Assemblies

It is important to note that when a connection string for .NET Assembly is set the class name must
match the name of the class where the static methods will be searched. UNC or absolute paths may be

https://www14.software.ibm.com/webapp/iwm/web/reg/download.do?source=swg-idsdpds&lang=en_US&S_PKG=win_64&cp=UTF-8&dlmethod=http
https://www14.software.ibm.com/webapp/iwm/web/reg/download.do?source=swg-idsdpds&lang=en_US&S_PKG=win_64&cp=UTF-8&dlmethod=http

Exago Technical Guide

32 Exago Inc.

used. Make sure that the assembly has read priv ileges for the IIS user running Exago. Below is an
example of a .NET Assembly connection string:

assembly=\\MyServerName\MyShareName\MyAssembly.dll;class=Main

.NET Assembly methods must be static. Below is an example of a .NET Assembly method.

 public class Main

 {
 public static DataSet dotnet_optionees(int callType, string columnStr, string filterStr, int myCustomParameter)
 {

 switch (callType)
 {
 case 0:

 // return schema
 case 1:
 // return data

 case 2:
 // return filter values for dropdown
 }

 }
 }

Web Services

Web Services are accessed via SOAP. Below is an example of a Web Service connection string:
url=http://MyServer/MyWebService.asmx

Web services methods are similar to .NET Assembly methods with the following exceptions:

 Methods do not need to be static
 Methods must return a serialized XML string. The returned XML must follow the structure used

by the C# method DataSet.GetXML. An example of XML format can be found in the following
section.

Excel and XML Files

Exago can use Microsoft Excel and XML files as Data Sources. Remember though that Excel and XML
files are not databases. Simply put, these Data Sources do not offer the speed, performance, security
or heavy lifting of a real database. Using Excel and XML files is recommended only if your dataset is
small or if the information is only available in this format.

Excel

Each worksheet in the Excel file will be read as a separate table. Each worksheet ’s name will be read as
the table’s title. The top row will be read as the column header, and the remaining cells will be read as
the data. Do not leave any blank rows or columns.

file://Server1/ShareName/MyAssembly.dll;class=Main
http://myserver/MyWebService.asmx

Exago Technical Guide

33 Exago Inc.

XML

The XML document must begin with the schema. After defining the schema the data must be placed
into the appropriate tags. For reference see the working example below:

<ExagoData>
 <xs:schema id="ExagoData" xmlns="" xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">

 <xs:element name="ExagoData" msdata:IsDataSet="true"

msdata:UseCurrentLocale="true">

 <xs:complexType>

 <xs:choice minOccurs="0" maxOccurs="unbounded">

 <xs:element name="Call">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="CallID" type="xs:unsignedInt" minOccurs="0" />

 <xs:element name="StaffID" type="xs:string" minOccurs="0" />

 <xs:element name="VehicleUsed" type="xs:unsignedInt" minOccurs="0"

/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Staff">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="StaffID" type="xs:unsignedInt" minOccurs="0" />

 <xs:element name="Rank" type="xs:string" minOccurs="0" />

 <xs:element name="LastName" type="xs:string" minOccurs="0" />

 <xs:element name="FirstName" type="xs:string" minOccurs="0" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:choice>

 </xs:complexType>

 </xs:element>

 </xs:schema>

 <Call>

 <CallID>890</CallID>

 <StaffID>134</StaffID>

 <VehicleUsed>12</VehicleUsed>

Exago Technical Guide

34 Exago Inc.

</ Call >

< Call >

 <CallID>965</CallID>

 <StaffID>228</StaffID>

 <VehicleUsed>4</VehicleUsed>

</ Call >

< Call>

 <CallID>740</CallID>

 <StaffID>1849</StaffID>

 <VehicleUsed>2</VehicleUsed>

</ Call >

<Staff>

 <StaffID>134</StaffID>

 <Rank>Captain</Rank>

 <LastName>Renolyds</LastName>

 <FirstName>Malcom</FirstName>

 </Staff>

 <Staff>

 <StaffID>228</StaffID>

 <Rank>Lieutenant</Rank>

 <LastName>Brown</LastName>

 <FirstName>Bill</FirstName>

 </Staff>

 <Staff>

 <StaffID>1849</StaffID>

 <Rank>Sergeant</Rank>

 <LastName>John</LastName>

 <FirstName>Pepper</FirstName>

 </Staff>

</ExagoData>

OLAP and MDX Queries

Exago can query OLAP Data Sources using MDX Queries. OLAP Data Sources and Objects are identical
to regular data base type object with the following exceptions.

 OLAP Data Objects will always be MDX Queries written in the Custom SQL Object menu.

 Data Objects must have Schema Access Type set to Metadata and must have Column
Metadata set for all fields.

ODBC Drivers

Exago can use ODBC drivers to connect to Data Sources. When connecting to an ODBC data source an
extra option will appear to set the Column Delimiter(s). Leaving this setting blank will not surround
tables, views or other objects with any delimiter. Setting a delimiter will prevent issues if you have
spaces in your object names.

Exago Technical Guide

35 Exago Inc.

Parameters

Parameters are used throughout the Exago application to store values. Although parameters can be
created and given a default value in the Administration Console, parameters are designed to be set at
runtime through the API.

In Exago parameters can be used to:

 Pass values to Web Services, .NET Assemblies, or custom SQL Data Objects.
 Set tenant values to assure security in a multi-tenant environment. For more information see

Data Objects
 Pass values into cells and formulas of a report. To display a non-hidden parameter in a cell type

‘=@ParameterName@’.
NOTE. Parameters ARE case sensitive.

 Pass values into custom functions. For more information see Custom Functions.

All existing Parameters are listed in the Main Menu under Data. All the parameters you are adding or
editing will be displayed in a Tab entitled Parameters.

 To add a new parameter click ‘Parameters’ in the Main Menu then click the add button ().

 To edit a parameter either double click it or select it and click the edit button ().

 To delete a parameter select it and click the delete button ().

 To save changes click the ‘Ok’ button () or press the ‘Apply’ button ().

Each Parameter has the following properties:

 Name – a name for the parameter.

 Type –the type of parameter being used.

 Value – the default value of a parameter. This is intended to be overwritten at runtime through
the API. Date values should be entered in yyyy-MM-dd format.

 Hidden – check hidden to disable this parameter from being used by users in cells and
formulas.

 Prompt Text – give non-hidden parameters a prompt text to query the user for a value at the
time of report execution. Leave blank to use the default value.

Exago Technical Guide

36 Exago Inc.

Data Objects

Data Objects are the tables, views, methods, stored procedures, functions and custom SQL that you
want to make accessible for reports.

All existing Data Objects are listed in the Main Menu under Data. All the Data Objects are adding or
editing will be displayed in a Tab entitled Objects.

 To add a new Data Object click ‘Objects’ in the Main Menu then click the add button ().

NOTE. Data Objects can be added quickly using Automatic Database Discovery.

 To edit a Data Object either double click it or select it and click the edit button ().

 To delete a Data Object select it and click the delete button ().

 To save changes click the Ok button () or press the ‘Apply’ button ().

Each Data Object has the following properties:

 Name – Select the Data Object’s Source from the first dropdown. In the second dropdown
select a Data Object.

NOTE. This will display all the of the Source’s tables, views, methods, stored procedures and
functions.

o To add custom SQL click the ‘Add Custom SQL’ button () next to the Data Object
dropdown. For more details see Custom SQL Objects.

NOTE. The name of tables or views should not contain commas.

 Alias – the user friendly name for the Data Object. The alias will be displayed to end-users.

o NOTE. Alias should not contain the characters ‘@’, ‘{‘, ‘[‘, or ‘,’.

 Unique Key Fields – the columns which uniquely identify a row.

 Category – the ‘folder’ used to group related Data Objects. Sub-categories can be created by
entering the category name followed by a backslash then the sub-category name. Ex.
‘Sales\Clients’.

 Id – a unique value for the Data Object. Ids are required when creating multiple Data Objects
with that have the same name but come from distinct Data Sources. Ids can also be used to
optimize Web Service and .Net Assembly calls. For more information see Using Data Object
Ids.

 Parameters – parameters that are passed to stored procedures, table functions, Web Services
or .NET assembly methods. Clicking in the dropdown will bring up a menu. Click the add button

() and select the parameter from the dropdown list. For more information see Parameters,
Stored Procedures and Web Services & .NET Assemblies.

Exago Technical Guide

37 Exago Inc.

o NOTE. Parameter values are passed in the order in which they are listed in the Data
Object. It is critical to ensure that the order is correct.

 Tenants Columns – specify which columns contain tenant information and link the parameters
accordingly.

o This setting is used to filter data when multiple users’ information is held within the
same table or view and a column(s) holds information identifying each user. Exago will
only retrieve the rows where the column value(s) matches the corresponding
parameter(s).

 Column Metadata – Specify any columns that should not be filterable, visible or that should
be read as a specific data type. See Column Metadata for more information.

 Schema Access Type – Specify how Exago should retrieve the schema for the Data Object.
There are three possibilities:

o Default – Follow the global Schema Access Type setting in Other Settings.

o Datasource – Queries the Data Source for the schema.

o Metadata – Reads the schema from the stored metadata.

NOTE. For more information see Note on Retrieving Data Object Schemas.

 Filter Dropdown Object – Specify an alternative Data Object to be queried when a user
clicks the value dropdown in the Filters Menu. This setting is most likely to be used when the
Data Object is a Stored Procedure, Web Service or .Net Assembly that takes more than a few
seconds to return data. In this scenario a table or view can be designated to increase
performance.

NOTE. The Filter Dropdown Object must have a column with the same name as each column in
the main Data Objects.

Stored Procedures

Stored Procedures offer the ability to use high level code to modify the data set before it is sent to
Exago. It is important to note that stored procedures must know what sorts and filters the user has set
and whether to return the schema, a single column, or the entire data set. To accomplish this use the
Call Type, Filter, Column and Sort Parameters in the Programmable Object Settings. These
parameters will be passed from Exago to identically named parameters in the Stored Procedure.
Additional parameters may be passed by setting them in the Data Object Tab.

Important Note for SQL Server:

SQL Server has an attribute called ‘FMTONLY’ that must be handled by all stored procedures.

FMTONLY has two possible values:

 ON: The stored procedure will only return the column schema. However all IF conditional
statements are ignored and all of the code will be executed. This setting will fail if the stored procedure
contains any temp tables.

Exago Technical Guide

38 Exago Inc.

 OFF: The stored procedure returns all of the data and the column schema. The stored
procedure will correctly execute IF conditions.

The ON setting will cause problems if there are IF conditions in the procedure; However, only using the
OFF setting will hurt performance if the Call Type Parameter in the Programmable Object Settings
is not used.

The following example demonstrates how to use the Call Type, Column, Filter and Sort Parameters to
maintain efficiency.

 NOTE. For SQL Servers, FMTONLY is set to OFF.

ALTER PROCEDURE [dbo].[sp_webrpt_person]
@callType INT, --optional but should be implemented for efficiency and dropdown

support
@columnStr varchar(1000), --optional; used for limiting data for efficiency
@filterStr varchar (1000), --optional; used for limiting data for efficiency

@fullFilterStr varchar (1000), --optional; used for limiting data for efficiency
@sortStr varchar(1000) –optional; may improve performance a bit if used
AS

SET NOCOUNT ON --for performance reasons
SET FMTONLY OFF --force procedure to return data and process IF conditions

declare @sql varchar(2000)
declare @columnInfo varchar(1000)

if @callType = 0 --return schema; don't need to return any rows
begin

 set @sql = 'select * from vw_webrpt_person' where 0 = 1
end

else

if @callType = 1 --return all data for execution
begin

 set @sql = 'select ' + @columnStr + ' from vw_webrpt_person where ' +

@filterStr + ' order by ' + @sortStr
end

else

if @callType = 2 --return filter dropdown values; limit # rows to some value
begin

 set @columnInfo = '[' + @columnStr + ']'
 set @sql = 'select top 100 ' + @columnInfo + ' from vw_webrpt_person where ' +

@columnInfo + ' >= ' + @filterStr + ' and ' + @fullFilterStr + ' order by ' +

@columnInfo
end

exec(@sql)

Table Value Functions

Table Value Functions can be used as Data Objects. Any available table value functions of a Data
Source will be displayed in the Data Object menu under Functions. Exago handles table value functions
similar to views and tables except it will pass any parameters set in the Data Object Tab or in the
Programmable Object Settings.

Exago Technical Guide

39 Exago Inc.

Custom SQL Objects

Exago can use custom SQL as Data Objects. Parameters can be embedded in these SQL statements to
enable you to change the statement at runtime.

To add or edit a Custom SQL Data Object click the ‘Custom SQL’ button () and a dialog will appear.

 Data Object Name – the name of the Data Object to be displayed in the Administration
Console.

 Data Source – the Data Source that will be sent the SQL.

 Parameter/Insert – select the parameter you want to embed in the statements. Use the ‘add’
button to move the selected parameter into the SQL statement where your cursor is located.
Parameters may also be added manually between @ symbols (ex. @userId@).

Use the ‘TEST’ button () to verify that the SQL statement is correct.

Press Ok to save the SQL statement or Cancel to close the dialog without saving.

Data Object Macros

‘Macros’ can be embedded in Custom SQL Data Objects to make them even more dynamic. Each
‘macro’ allows for different SQL to be used according to the circumstances in which the Data Object is
being called. Below are the details and examples of available macros.

IfExecuteMode (string trueCondition, string falseCondition)

Description Will include the trueCondition if a user is executing a report. Will include the
falseCondition otherwise.

Exago Technical Guide

40 Exago Inc.

Example select * from vw_webrpt_optionee IfExecuteMode("where [State] = 'CT'","")

IfExistReportDataObject’ (string dataObjectName, string trueCondition, string falseCondition)

Description Will include the trueCondition if dataObjectName exists inside the full Exago SQL

statement to the data source. Will include the falseCondition otherwise.

Example select * from vw_webrpt_optionee IfExistReportDataObject("fn_webrpt_grant", join
on fn_webrpt_grant...", "")

Column Metadata

Column Metadata refers to the properties of each column in the Data Objects. Normally Exago gets the
metadata for each column directly from the Data Source. However, in some cases it may be helpful to
override or add additional information to the metadata.

The following properties of each column can be modified:

 Column Alias – The name of the Data Field that the end-users see.

 Data Type – The type of data Exago should treat the Data Field as (ex. DateTime).

o Valid values for Data Type include: String, Date, Datetime, Time, Int, Decimal, Image,
Float, Boolean, and Guid.

 Filterable – If set to False the Data Filed will not be listed in the Filters menu.

 Visible – If set to False the Data Field will not be listed for users.

To modify the metadata of a column select it and click the ‘add’ button or double click it. Enter a
Column Alias or use the Data Type, Filterable and Visible dropdowns to set the desired properties.

Click the ‘Read Schema’ button () to quickly create column metadata for each column
in the Data Object.

To remove Column Metadata for a column select it in the right panel and click the delete button ()

To save changes to Colum Metadata, click the ‘Ok’ button (). Click the ‘Cancel’ button to discard
changes.

Exago Technical Guide

41 Exago Inc.

Retrieving Data Object Schemas

Many of the dialogs throughout Exago require schema information (ex. column name, data type, etc.).
By default these dialogs query the Data Sources for the schema. This process, however, may cause
performance issues if the Data Sources take a considerable amount of time to return the schema.

To enhance performance, schema information can be stored as Column Metadata. Then Exago can
read the Column Metadata instead of querying the Data Source.

NOTE. While storing the schema as Column Metadata improves performance, updates to the
Column Metadata will be required whenever columns are added, removed or retitled.

For Exago to retrieve schema information from Metadata:

1. In Other Settings, set ‘Schema Access Type’ to ‘Metadata’. This will force Exago to get all
schema information from Metadata for all Data Objects.

NOTE. Alternatively this setting can be overwritten for indiv idual Data Objects by setting the
‘Schema Access Type’ property.

2. For each Data Object open the Column Metadata Menu.

a. Click the ‘Read Schema’ button (). A message will appear asking
you to confirm you want to continue. Click Ok.

b. Click Ok to close the Column Metadata Menu.

c. Press Apply or Ok to save the Data Objects.

NOTE. Other metadata options such as aliasing can still be utilized.

Data Object Ids

Exago Technical Guide

42 Exago Inc.

There are three ways in which you can utilize Data Object Ids.

Adding Mult iple Data Objects with the Same Name

Ids are used distinguish Data Objects that have the same name but come from different Data Sources.
When adding multiple Data Objects with the same name make sure each Data Object has a unique Id.

Avoiding Issues from Changes to Object Names

Providing Ids for all the Data Objects will avoid issues if the name of the underlying tables, views,
stored procedures, is changed.

Calling a Single Web Service/.Net Assembly/Stored Procedure

Web Services, .Net Assemblies, and Stored Procedures comprise a group called Programmable Data
Objects. These Objects can retrieve parameters from Exago and the host application in order to control
what data is exposed to the user.

Generally for Web Services and .Net Assemblies each Data Object calls a distinct method. Similarly
each Stored Procedure is its own Data Object. By using Data Object Ids a single method/stored
procedure can be called. This method can then return data or schema based on the Data Object Id.

To call a single Web Service/.Net Assembly/Stored Procedure:

 Provide a name for ‘Data Object ID Parameter Name’ in Programmable Object Settings

 Create a method/ procedure in your Service/Assembly/Procedure that utilizes the Object Id
Parameter to return the appropriate data/schema. (see example below)

 For each Data Object:

o Select ‘Object’ in the Main Menu and click the ‘add’ button

o Select the single Service/Assembly/Procedure

o Provide an Alias and an Id for the Object

o Select the key columns

o Click Apply or Ok to save the Object.

Ex. This stored procedure uses the Object Id Parameter (@objectID) to return different data/schema
information for different Object Ids.

ALTER PROCEDURE "dbo"." Exago_Example"
@callType INT,
@objectID nvarchar(max)
AS
SET NOCOUNT ON
SET FMTONLY OFF

if @objectID = 'Produce'
begin
 if @callType = 0
 begin

Exago Technical Guide

43 Exago Inc.

 SELECT ProductID,
 ProductName,
 SupplierID,
 UnitPrice,
 UnitsInStock
 FROM Products
 WHERE CategoryID = 1001
 end
 else if @callType = 1
 begin
 SELECT ProductID,
 ProductName,
 SupplierID,
 UnitPrice,
 UnitsInStock
 FROM Products
 ORDER BY ProductID
 end
 else if @callType = 2
 begin
 SELECT ProductID,
 ProductName,
 SupplierID,
 UnitPrice,
 UnitsInStock
 FROM Products
 ORDER BY ProductID
 end
end
if @objectID = 'Orders0'
begin
 if @callType = 0
 begin
 SELECT OrderID,
 OrderDate,
 RequiredDate,
 ShippedDate,
 CustomerID
 FROM Orders
 WHERE CustomerID = 0
 end
 else if @callType = 1
 begin
 SELECT OrderID,
 OrderDate,
 RequiredDate,
 ShippedDate,
 CustomerID
 FROM Orders
 ORDER BY OrderID
 end
 else if @callType = 2
 begin
 SELECT OrderID,
 OrderDate,
 RequiredDate,
 ShippedDate,
 CustomerID
 FROM Orders
 ORDER BY OrderID

Exago Technical Guide

44 Exago Inc.

 end
end

Reading Images from a Database

Exago can read images from a database and load them directly into a cell of a report. When images
are stored in a database as a binary string there are two ways that Exago can load them into a report.

1. In the Administration Console edit the Data Object that contains the images. Open the Column
Metadata Menu and for the image column set Data Type to ‘Image’. Next, simply place the
Data Field containing the images into the desired cell of a report. Upon execution the images
will be loaded into the cell.

2. Place the Data Field that contains the images into the LoadImage function. Upon execution
Exago will interpret the binary and load the images into the cell.

Joins

Joins specify to Exago the relationship between Data Objects.

All existing Joins are listed in the Main Menu under Data. All the joins you are adding or editing will be
displayed in a Tab entitled Joins.

 To add a new join click ‘Joins’ in the Main Menu then click the add button ().

NOTE. Joins can be added quickly using Automatic Database Discovery.

 To edit a join either double click it or select it and click the edit button ().

 To delete a join select it and click the delete button ().

 To save changes and new join click the Ok button ().

Each join has the following properties:

 From Object –the first Data Objects you would like to join.

 To Object – the other Data Object you would like to join.

o NOTE. The order of the Data Objects is important if you have a one-to-many relation
type or a Left/Right Outer Join type. See below for details.

 Join Column(s) – specify the field(s) of each Data Object that must match to join an entity in
the From Object to an entity(s) in the To Object.

 Join Type – specify whether rows from either Data Object that do not have a match should or
should not be included.

o Inner: only includes rows of the From Object that have a match in the To Object and
vice versa.

Exago Technical Guide

45 Exago Inc.

o Left Outer: includes rows of the From Object that do not have a match in the To Object
but not vice versa.

o Right Outer: includes rows of the To Object that do not have a match in the From Object
but not vice versa.

o Full Outer: includes rows in either Data Object that do not have a match.

 Relationship Type – specify if the join type is one-to-one or one-to-many.

o One-to-One: Each row in the From Object can join to at most one row from the To
Object.

o One-to-Many: Each row in the To Object can join to any number of rows from the To
Object.

 Weight – give a join weight in order to set its precedence when multiple join paths exist
between Data Objects. The path with the higher weight will be utilized.

o Ex. A report contains three Data Objects
‘Students’, ‘Professors’ and ‘Comp Sci 101.’
Students is joined to ‘Professors’ and ‘Comp
Sci 101.’ Additionally ‘Professors’ is joined to
‘Comp Sci 101.’ There are two available join
paths between ‘Students’ and ‘Comp Sci
101.’ Adding weight to a join will clarify which of the two paths Exago should use.

Modifying Joins

Although joins are created in the Administration Console they are saved within each indiv idual report.
For Join changes in the Administration Console to take effect edit the report and use the ‘Recreate’
button in the Advanced Options menu. For instructions on how to access the Advanced Options please
see the User Guide.

IMPORTANT. It is important to make sure that all of the joins are set to your desired specifications in
the Administration Console before you begin building numerous reports.

Note About Cross Source Joins

Data Objects from different Data Sources can be joined in Exago. Because the Data Objects come from
distinct databases they must be joined through code by Exago. Though Exago strives for efficiency this
process may be memory intensive for large data sets.

Automatic Database Discovery

Automatic Database Discovery enables you to quickly and easily add many Data Objects and Joins from
a single Data Source. Discovery can only be performed on database type sources: mssql, oracle, mysql,
postgresql, db2, and Informix.

To start using Database Discovery, select a Data Source and click the Discovery button (). This will
open a discovery tab for the Data Source.

Exago Technical Guide

46 Exago Inc.

In the discovery tab you can do the following:

 Select the Tables, Views, Functions and Stored Procedures you would like to add by either
checking indiv idual boxes or pressing ‘Select All Objects’ or ‘Select All Complete Objects’.

NOTE. Objects with identified unique key values will have a key icon next to them () and
objects with associated joins will have a join icon next to them ().

 Set any missing Unique Key fields by right clicking on an object.

 Check ‘Preview Only’ and then ‘Add Objects’ to preview the selected objects and joins.

 Add the selected Data Objects by pressing ‘Add Objects’.

NOTE. If any selected Objects are missing unique key values they can be comepleted
indiv idually in a new tab entitled ‘Incomplete Objects’.

 Add the selected Objects and any associated Joins by pressing ‘Add Objects and Joins’.

General

This chapter details the available settings to enable, disable and modify various features of Exago.
Settings made in General will be set for all users unless specifically overwritten in Roles.

Exago Technical Guide

47 Exago Inc.

To edit any of the settings double click the category or select it and click the edit button. ()

Main Settings

The main settings are the basic options for Exago.

The following settings are available:

 Report Path – The parent folder for all reports. The Report Path may be:

o Virtual Path

o Absolute Path – used to provide increased security (ex. C:\Reports)

o Web Service URL or .NET Assembly – using a Web Service or .Net Assembly allows
reports and folders to be managed in a database. For more information see Report
Folder Storage & Management.

 Temp Path – The location where temp files are stored. The Temp Path may be:

Exago Technical Guide

48 Exago Inc.

o Blank – All temp files and images will be saved to ./Temp.

o Virtual Path

o Absolute Path – Temp files will be saved to the absolute path and image files will be
saved to ./Temp

IMPORTANT. Before deploying into a production environment be sure to set a Temp Path
that resides behind your server’s firewall/security system.

 Temp Cloud Service – Web Service, .Net Assembly or Azure Authentication string used to
integrate into a Cloud Environment. For more information see Cloud Environment
Integration.

 Language File – List of the xml files that specify language strings. See Modifying Select
Language Elements for more details.

 Temp URL – Overrides the portion of the temporary URL used to store images from HTML
exports. Temp URL can override just the scheme (i.e. https) or the full URL.

 Allow direct access to Exago – A boolean setting:

o True – allows users direct access to Exago with no security.

o False – users must be authenticated by the host application to enter Exago. Users that
try to directly access Exago will receive a message saying ‘Access Denied.’

NOTE. We highly recommend setting this to False before deploying Exago in a
production environment.

 Allowed Output Types – The available formats for exporting all reports. Check the box of the
formats that should be available.

 Default Output Type – The export format that appears when a new report is selected unless
a specific export format is set in the Options Menu of the Report Designer.

NOTE. The Default Output Type must be one of the available Allowed Output Types.

Culture Settings

The culture settings give administrators control over formats and symbols that vary amongst
geographic location (e.g. $ is the currency symbol in the U.S.A but € is the symbol used in Europe).
These settings can be overwritten for a specific user or group of users by modifying the Role. For more
information see Roles.

Exago Technical Guide

49 Exago Inc.

The following settings are available:

 Date Format – The format of date values. May be any .NET standard (ex. MM/dd/yyyy).

 Time Format – The format of time values. May be any .NET standard (ex. h:mm:ss tt).

 DateTime Format – The format of date-time values. May be any .NET standard (ex. M/d/yy
h:mm tt).

NOTE. For more details on .NET Date, Time and DateTime Format Strings please visit
http://msdn.microsoft.com/en-us/library/8kb3ddd4%28v=vs.71%29.aspx.

 Date Time Values Treated As – Choose to format DateTime as Date or DateTime values. To
change this setting for specific columns see Column Metadata.

 Numeric Separator Symbol – Symbol used to separate 3 digit groups (ex. thousandths) in
numeric values. The default is ‘,’.

 Numeric Currency Symbol – Symbol prepended to numeric values to represent currency.
The default is ‘$’.

 Numeric Decimal Symbol – Symbol used for numeric decimal values. The default is ‘.’.

 Numeric Decimal Places – Default number of decimal places for numeric fields to show.
Leave blank to keep variable by field.

 Numeric Decimal Places – Default number of decimal places for numeric fields to show.
Leave blank to keep variable by field.

 Apply Numeric Decimal Places to General Cell Formatting – Set to true to apply the
Numeric Decimal Places to any cell that has Cell Formatting set to General but contains a
number. Default value is false.

 Server Time Zone Offset –Value that is used to convert server to client time (the negation is
used to convert client to server time). Leave blank to use server time, or to use External
Interface to calculate value.

NOTE. This offset is NOT applied to data coming from Data Sources. It is utilized by the Exago
UI such as the Scheduling Service.

http://msdn.microsoft.com/en-us/library/8kb3ddd4%28v=vs.71%29.aspx

Exago Technical Guide

50 Exago Inc.

Features/UI Settings

The Features/UI settings allow administrators to hide various features in the user interface. As each
heading indicates settings may apply to specific report types or the entire application.

Available Report Types

These settings enable/disable report types.

 Show Express Reports – Displays/Hides the Express Report Wizard.

 Show Standard Reports – Displays/Hides the Standard Report Wizard and Report Designer.

Exago Technical Guide

51 Exago Inc.

NOTE. If ‘Show Standard Reports’ is False then attempts to edit Standard or Crosstab reports
will cause an ‘access denied’ message. Additionally if False, users will not be able to create
Crosstab reports.

 Show Crosstab Reports – Displays/Hides the Crosstab Report Wizard and Insert Crosstab
button in the Report Designer.

 Show Dashboard Reports – Displays/Hides the Create New Dashboard button.

Express Report Designer Settings

These settings only apply to the Express Report Wizard.

 Show Styling Toolbar – Displays/Hides the styling tools in the Layout tab of the Express
Report Wizard.

 Show Themes – Displays/Hides the Theme dropdown in the Layout tab of the Express Report
Wizard.

 Show Grouping – Displays/Hides the grouping tools in the Layout tab of the Express Report
Wizard.

 Show Formula Button – Displays/Hides the formula editor button in the Layout tab of the
Express Report Wizard.

Standard Report Designer Settings

These settings only apply to the Report Designer.

 Show Chart Wizard – Displays/Hides the Insert Chart button in the Report Designer. Set to
False to disable users from creating or editing charts.

 Default Chart Font – Specifies a default font for charts created in the Report Designer. This
setting can be overridden on a per-Report basis. Does not apply to Data Visualizations.

 Show Map Wizard – Displays/Hides the Insert Map button in the Report Designer. Set to False
to disable users from creating or editing maps.

NOTE. The first time Show Map Wizard is set to true a dialog appears prompting you to accept
the terms of using the Google Charts Api. Type “I accept” in the first box and your full name in
the second to accept the terms and enable mapping.

Exago Technical Guide

52 Exago Inc.

 Show Gauge Wizard – Displays/Hides the Insert Gauge button in the Report Designer. Set to
False to disable users from creating or editing gauges.

 Chart Colors – Lists the values used for default chart colors. Hexadecimal values should be
separated by commas (or semicolons).

 Map Colors – List the values used for default map colors. Hexadecimal values or css color
names should be separated by commas (or semicolons).

 Gauge Colors – List the values used for default gauge colors. Hexadecimal values or css color
names should be separated by commas (or semicolons).

 Show Document Template – Displays/Hides the Document Template Menu. Set to False to
disable users from using the Document Template Menu.

 Show Document Template Upload Button – Set to True to allow users to upload Document
Templates to the Report Path. Set to False to prevent users from uploading Document
Templates.

 Show Linked Reports Button – Displays/Hides the Linked Report button in the Report
Designer. Set to False to disable users from creating Linked Reports.

 Show Insert Image Button – Displays/Hides the Insert Image button in the Report Designer.
Set to False to disable users from inserting images.

 Show Advanced Window – Displays/Hides the Joins Menu under Advanced. Set to False to
disable users from modifying joins.

 Show Advanced Joins – Displays/Hides additional options in the Joins Menu. Set to True to
enable advanced users to apply Event Handlers for the report. See Server Events for more
information.

 Show Events Window – Displays/Hides the Events Menu under Advanced. Set to True to
enable advanced users to create, delete, and modify joins.

 Show Linked Reports in New Tab – Specify how to display Linked Reports. Set to True to
open Linked Reports in a new tab. Set to False to display Linked Reports in a floating window
above the parent report.

Exago Technical Guide

53 Exago Inc.

 Show Group Headers Formula Button – Displays/Hides the Formula Editor Button in the
Group Header/Footer Menu. Set to False to disable users from grouping on formulas.

Dashboard Report Designer Settings

These settings only apply to the Dashboard Designer. If ‘Show Dashboard Reports’ is false these
settings will be ignored.

 Prompt user for Parameters/Filters on Execution – Default setting indicating whether to
prompt the user for filter and/or parameter values when executing a dashboard. The option can
be overridden on an indiv idual dashboard in the Options menu.

 Show URL Item Button – Display/Hide the New URL item in the Toolbox of the Dashboard
Designer.

 Allow Creation/Editing of Dashboard Visualizations – Display/Hide the New Data
Visualization item in the Toolbox and the Data Fields of the Dashboard Designer.

 Show Data Fields Search Box – Display/Hide the search bar above the Data Fields of the
Dashboard Designer.

NOTE. The search will require the schema of all available Data Objects. For best performance,
only set this to True if using Column Metadata for Schema Access type. See Retrieving Data
Object Schemas for more details.

 Visualization Database Row Limit – Maximum number of rows returned on a queries made
by Data Visualizations. This only applies to Tables, Views and Functions. Set to ‘0’ to return all
rows.

 Use Sample Data for Dashboard Visualization Design – Set to True to use sample data
while creating and editing Dashboard Visualizations. This will reduce the number of calls to the
database. Set to False to queiry the Data Source for each change made while editing Dashboard
Visualizations.

Common Settings

 Default Designer Font - Specifies a default font for reports created in the Standard Report
Wizard, Express Report Wizard, Standard Report Designer, and Dashboard Designer. This setting
can be overridden on a per-Report basis. Does not apply to CrossTabs.

 Default Designer Font Size – Specifies a default font size for reports created in the Standard
Report Wizard, Express Report Wizard, Standard Report Designer, and Dashboard Designer. This
setting can be overridden on a per-Report basis. Does not apply to CrossTabs.

 Show Help Button – Displays/Hides the Help button in the top right corner of Exago. Set to
False to disable users from accessing Context Sensitive help.

 Custom Help Source – Specifies the URL that contains custom Context Sensitive Help
content. See Custom Context Sensitive Help for more details.

 Show Exports in Tab – Set to True to open PDF reports in a tab in Exago. Set to False to
prompt the user to download the PDF.

Exago Technical Guide

54 Exago Inc.

 Show IE Download Button – Set to True if Internet Explorer is not automatically prompting
users to download PDF, XLS, RTF or CSV reports.

 Show Join Fields – Displays/Hides any Data Fields that are used as Unique Keys or Joins.
Set to False to hide all unique key and join Data Fields from users. To hide specific Data Fields
see Column Metadata.

 Show HTML Export Grid Lines – Sets the default value for the HTML output option to show
grid. This can be modified in the Options Menu of the Report Designer.

 Save on Report Execution – Set to False to disable automatic saving of reports when
executing from the Report Designer.

 Enable Right-Click Menus – Set to False to disable right click menus Exago.

 Enable Reports Tree Drag and Drop – Set to False to disable the dragging of reports and
folders in the Main Menu.

 Show Report Upload/Download Options – Set to True to enable users to upload and
download report files by right clicking on folders and reports. Default value is False.

 Allow interactive HTML – Set to False to disable interactive HTML capabilities including
changing column width, styling output and interactive filters.

 Show HTML Toolbars – Specify if HTML output should display paging, search and export
options.

o Auto - Exago will detect if the report only displays a single plage of content from the
Report Footer Section. If so the HTML Toolbar will be hidden, otherwise it will show.

o Show – The toolbar will always show.

o Hide – The toolbar will never show.

 Default interactive HTML dock is open – Set to False to have the HTML Dock minimized by
default.

 Interactive HTML default dock placement – Specify if the HTML Dock should appear on
the right or left of HTML output.

 Allow save to report design for interactive HTML – Set to False to prevent users from
saving interactive html changes onto the report.

Programmable Object Settings

The Programmable Object Settings enable you to specify names for parameters that will be passed
from Exago to stored procedures, web services or .NET Assemblies. Using these parameters will allow
filtering to be done before the data is sent to Exago which will increase performance and reduce server
resources. For more information on these types of Data Objects see Web Services & .NET
Assemblies.

Exago Technical Guide

55 Exago Inc.

Names for the following Parameters can be set:

 Call Type Parameter Name– Integer that specifies what Exago needs at time of the call.
There are three possible values.

o 0 : Schema - return a DataSet with no rows.

o 1 : Data - return a full DataSet.

o 2 : Filter Dropdown Values – returns data for the filter dropdown list. The Data Field
requested is passed in the Column Parameter and the filter value is passed in the Filter
Parameter (see below).

 Column Parameter Name - Name of the column being requested by the user. Only this
column needs to be returned to Exago.

 Filter Parameter Name –

o CallType = 1: The filter string specific to the Data Object being called passed as
standard SQL.

o CallType = 2: The current value of the filter whose dropdown is being requested.

 Full Filter Parameter Name –

o CallType = 1: The filter string for the entire report passed as standard SQL.

o CallType = 2: The Tenant and Row Level filters passed as standard SQL.

 Sort Parameter Name - The sort string for the report. This is for informational purposes only
as Exago sorts data upon return from stored procedures and Web Services.

 Data Category Parameter Name – The Data Object’s Category. Can be used in conjunction
with the Data Object ID Parameter.

 Data Object ID Parameter Name – Id of Data Object being called. For more information see
Calling a Single Web Service/.Net Assembly/Stored Procedure.

Filter Settings

The Filter Settings provide control over what filter options are exposed to users and how dropdowns in
filters behave.

Exago Technical Guide

56 Exago Inc.

Names for the following Parameters can be set:

 Show Group (Min/Max) Filters – Displays/Hides the Min/Max Filter menu. Set to False to
disable users from using Min/Max filters.

 Allow New Filters at Execution – Controls the creation of new filters when a user is
prompted for a filter value at the time of report execution. Set to False to disable new filters
from being created at execution.

 Read Database for Filter Values – Enables/Disables filter dropdowns to contain values from
the database. Set to false only if retrieving values for the dropdown will take more than a
couple of seconds.

 Allow Filter Dependencies – Causes filter dropdowns to retrieve values dependent on the
filters above them in the menu. Set to True to enable.

o NOTE. This setting only works for Data Objects from databases and will not change
dropdowns from Web Services, .NET Assemblies, stored procedures, etc.

o NOTE. Dropdowns after an ‘OR’ filter will not be dependent on previous filters.

 Show Filter Description – Enables/Disables reports to have a description text for the filters
menu. The filter description is set in the Description tab of the New Report Wizard or the
Description Menu. A help button will appear in the Filters menu and display the filter description
when clicked.

 Default Filter Execution Window – Species the type of filter execution window to new
reports should use by default.

o Standard – New reports display the standard filter execution window.

o Simple with Operator – New reports display a simplified filter execution window that
only allows the operator and value to be changed.

o Simple without Operator – New reports display a simplified filter window that only
allows the value to be changed.

 Allow User to Change Filter Window – Enables/Disables reports to change the type of filter
execution window that is displayed.

Exago Technical Guide

57 Exago Inc.

 Include Null Values for 'NOT' Filters – Indicates to include NULL values for filters with
using the operators ‘not equal’ or ‘not one of’.

 Custom Filter Execution Window – Specifies a control or URL that contains Custom Filter
Execution Window. See Custom Filter Execution Window for more details.

Database Settings

The Database Settings allow administrators to adjust how Exago interfaces with databases. Additional
type-specific settings allow you to specify which driver to utilize when connecting to each data source.

The following Database Settings are available:

Database Timeout – Maximum number of seconds for a single query to run.

NOTE. This setting will also control the maximum number of seconds that a Web Service
Api method can run. If set to ‘0’ the Web Service time out will be ‘infinite’.

 Database Row Limit – Maximum number of rows returned on a query. This only applies to
Tables, Views and Functions. Set to ‘0’ to return all rows.

 Disable Non-Joined Data Objects – If True users are not able to add Data Objects to a
report that does not have a join path with at least one other Data Object on the report. Set to
False to disable this behavior.

 Enable Special Cartesian Processing – If True any on-to-many Joins will cause special
processing to avoid data repeating on the report. Set to False to disable this behavior.

Type-Specific Database Settings

Each Type of Data Sources has the following settings available.

Data Provider – The name that can be used programmatically to refer to the data provider. This
matches the InvariantName found as a property of DbProviderFactories in the machine.config file. See
http://msdn.microsoft.com/en-us/library/12kxkt25(v=vs.80).aspx for more information.
Table Schema Properties – Specifies how to retrieve the schema of tables.
View Schema Properties – Specifies how to retrieve the schema of views.
Function Schema Properties – Specifies how to retrieve the schema of Functions.
Procedure Schema Properties – Specifies how to retrieve the schema of Procedures.

http://msdn.microsoft.com/en-us/library/12kxkt25(v=vs.80).aspx

Exago Technical Guide

58 Exago Inc.

NOTE. For any of the Schema Property settings you can dynamically refer to properties from the
Data Source’s connection string by surrounding the property name in @ symbols. Ex.
"@database@" will be replaces with the database name from the connection string of the Data
Source being queried.

Scheduler Settings

Reports can be emailed or scheduled for recurring automated delivery to an email address. The
Scheduler settings are used to configure these services. Before adjusting the settings ensure that the
scheduler service ‘ExagoScheduler’ is installed, running and set to automatically start. For more
information see Installing the Scheduler Service.

The Remote Execution service can be used to move processing to a different server or to provide load
balancing across multiple servers. For more information see Load Balancing.

The following Scheduler Settings are available:

 Enable Report Scheduling - If False will override Show Report Scheduling Option, Show
Email Report Options, & Show Schedule Manager to False.

 Show Report Scheduling Option – Displays/Hides the scheduler icon on the Main Menu. Set
to False to disable users from creating scheduled reports.

 Show Email Report Options – Displays/Hides the email report icon on the Main Menu. Set to
False to disable users from emailing reports.

 Show Schedule Manager – Displays/Hides the scheduler manager icon on the Main Menu.
Set to False to disable users from editing existing schedules.

Exago Technical Guide

59 Exago Inc.

 Show Schedule No End Date Option – Controls if users must set an end date for recurring
report schedules. Set to False to force users to set a limit to the schedule.

 Show Schedule Intraday Recurrence Option – Displays/Hides options in the Recurrence
tab to have a schedule repeat throughout the day it is scheduled.

 Show Schedule Intraday Recurrence Option – Displays/Hides options in the New Schedule
Wizard to have the schedule repeat throughout the day it is run. Set to False to disable users
having schedules repeate during its execution day.

 Scheduler Manager User View Level – Controls what information each user can see in the
Schedule Manager. These levels utilize the Parameters companyId and userId. There are three
possible values:

o Current User: Can only view and delete report jobs that have been created by that
user. This setting will hide the Host, User Id and Company Id columns of the Schedule
Manager.

o All Users in Current Company: User can only view and delete report schedules for
their company. This setting will hide the Host and User Id columns of the Schedule
Manager.

o All Users in All Companies: User can view and delete report schedules for all
companies (administrator).

 Email Scheduled Reports – Set to False to have the Scheduling Service save reports to a
repository instead of attaching them to emails. For more details see Saving Scheduled
Reports to an External Repository.

 Show Schedule Delivery Type Options – Set to true to allow users to choose the output
option (e.g. email or archiving) with each schedule. When enabled the default value will
reflect whatever is set in the 'Email Scheduled Reports' setting.

 Schedule Remoting Host– Sets the server and port for the ‘ExagoScheduler’ windows
service.

 Enable Remote Report Execution – Permits report execution to be done on a different
server via the scheduler service. Set to True to enable this behavior.

 Enable Access to Data Sources Remotely – Permits all non-execution data base calls to be
done on a different server via the scheduler service. Set to True to enable this behavior.
Example calls include Filter value dropdowns, Data Object Schema retrieval, and Data Source
schemata retrieval in the Administration Console.

 Remote Execution Remoting Host – Specifies the server(s) to use for remote execution.
The Port is set in the schedule remoting configuration of the scheduler. Separate multiple
servers with commas or semicolons. Ex. http://MyHttpServer1:2001,tcp://MyTcpServer:2001.

 Delete Schedules upon Report Deletion – When a report is deleted corresponding
schedules can be deleted automatically by Exago. Set to True to enable this behavior.

 Default Email Subject – Set a default subject that will be displayed in the schedule report
wizard. Parameters such as @reportName@ may be utilized in this area.

Exago Technical Guide

60 Exago Inc.

 Default Email Body – Sets a default body that will be displayed in the schedule report wizard.
Parameters such as @reportName@ may be utilized in this area.

 Password Requirement (for PDFs only) – Requires a password for PDF export. This
parameter can be made up of the following values:

o A: requires an upper case letter for each ‘A’.

o a: requires a lower case letter for each ‘a’.

o n: requires a numeric character for each ‘n’

o 4: password must have at least 4 characters.

Ex. ‘AAnna6’ would require a password of at least six characters with 2 capitals, 1 lower case
and 2 numeric characters..

 Custom Scheduler Recipient Window - Provides URL, height and width for custom
Scheduler Recipient window. See Custom Scheduler Recipient Window for more information.

User Settings

The User Settings give administrators choices about how to store and utilize users’ preferences such as
which Dashboards and/or Reports to execute when they enter Exago.

The following User Settings are available:

 User Preference Storage Method – How to store User Preferences such as which
Dashboards and/or Reports to execute when a user enters Exago. There are two possible
values:

o None – Users will not have the ability modify User Preference features. The User
Preferneces button will be hidden.

o Cookie – User Preferences are stored in the browsers cookie. This is the default
behavior as it does not require any additional setup. However a user’s preferences will
not be carried over to other machines or browsers and will be lost if the user deletes
their browser’s cookies.

NOTE. A user is identified by the values of the Paramters userId and companyId.

o External Interface – User Preferences are stored and retrieved via the External
Interface. This requires the host application to implement the methods
SetUserPreference and GetUserPreferences in the External Interface but User
Preferences will be preserved for a user across browsers and machines.

Exago Technical Guide

61 Exago Inc.

o Server Events – User Preferences are stored and retrieved via Server Events. This
requires the global events onGetUserPreferences and onSetUserPreferences must
be implemented.

 Startup Report(s) Replace Getting Started – Set to False to display both the Getting
Started Content and any Dashboard and/or Reports that were set to run at startup. Set to
True to hide the Getting Started Content if any Dashboards and/or Reports execute when a user
enters Exago.

 Maximum Number of Startup Reports – Sets the number of Dashboards and/or Reports
that can be executed when a user enters Exago.

 Allow User Reports – Set to False to prevent users from saving changes made to Interactive
HTML as User Preferences. Set to True to allow changes in Interactive HTML to stored in User
Preferences and applied to future report executions.

Other

Administrative options that do not fall into any of the previous categories are found in the Other
category.

The following Other Settings are available:

 Excel Export Target – Choose the type of Excel export you would like. Choosing 2003 will
automatically split the workbook into multiple worksheets when Excel’s row limit is reached.

 External Interface – Provide a Web Service URL or .NET Assembly to interface with the
external module. For more information see External Modules.

Exago Technical Guide

62 Exago Inc.

 Enable HTML Paging – Controls when data for HTML output is sent to the client. Set to true
to send data as each page is requested (this will cause multiple hits to the server). Set to False
to send all the data to the client browser at once.

 Renew Session Automatically – This setting is used to bypass the session timeout property
set in web.config. Set to True to send a server side AJAX callback every two minutes to keep
the session from expiring.

NOTE. This will only work if the timeout period set in web.config is greater than two
minutes.

 Write Log File – Set to True to write a log file for debugging purposes. For more information
see Read the Log File.

 Enable Debugging – Set to True to enable debugging. For more information see Manually
Creating a Debug Package.

 Maximum Age for Temp Files – Maximum number of minutes a temp file can exist before
Exago’ automatic cleanup of temp files will remove it. It is important to understand that setting
the maximum age too low may cause an error as users might spend some time viewing a report
executed in HTML which uses AJAX to read temp paging files. The default value is 1440 minutes
(1day). The minimum this value can be set to is 30 minutes.

 Enable Web Service/Assembly Data Mapping – Allows Web Service and .NET Assembly
methods to replace Data Field names.

 Limit Report to One Category – Limits reports to Data Objects within a single category. Set
to True to enable this behavior.

 Cache External Services – Caches external Web Services and .NET Assemblies. Setting to
False may reduce performance due to loading/unloading of services.

 Schema Access Type – Specifies whether to query the Data Source for an Object’s schema or
to read it from Column Metadata. See Note on Retrieving Data Object Schemas for more
information.

 Allow Multiple Sessions – Allows multiple sessions of Exago per user. Set to True to enable
this behavior.

 ‘LoadImage’ Cell Function Parameter Prefix – A string that is prepended to the
LoadImage Function when the report is run. This setting allows an administrator to hide the
report path of images on your server.

 Ignore Inaccessible Report Folders – If False Exago throws an error message if a folder
has an accessibility issue. Set to True to ignore the error and hide the inaccessible folder.

 User ID – User Id to gain Access to the Administration Console. Leave blank to permit
unverified access to the Administration Console.

 Password – Used in conjunction with User ID to gain access to the Administration Console.

 Confirm Password – Used to confirm the value of “Password.”

Exago Technical Guide

63 Exago Inc.

 Debug Password – A password that enables clients to send a debug package directly to
Exago Inc. Leave blank to disable Debug Extraction. When set to true, correct permissions must
be set on the ./Debug Folder. For me details see Submitting a Debug Package.

 Exago Expiration Date – A date when users will no longer be able to access Exago.

 Custom Code Supplied by Exago – Used for custom functionality.

Roles

This chapter explains how to use the Roles to control access to Data and override the General settings.

 To add a new role select ‘Roles’ in the Main Menu then click the Add button ().

 To edit a role either double click it or select it and click the edit button ().

 To delete a role select it and click the delete button ().

About Roles

Roles are created to specify how a user or group of users interfaces with Exago. Roles can restrict
access to folders or Data Objects. Roles can also override the general settings.

NOTE. Exago was designed to be an integrated reporting solution for other applications using the
application’s own security and authentication methods. Although you can create Roles through
the Administration Console, Roles are typically created through the API to dynamically set the
users access. For more information see chapters Integration and API.

Roles have five sections to control access: Main, General, Folders, Objects, & Filters.

Main – controls the broad properties of the Role.

Exago Technical Guide

64 Exago Inc.

General – overrides General Settings.
Folders – controls which report folders a role can see and edit.
Objects – controls which Data Objects a role can access.
Filters – provides row level filters on Data Objects.

Creating Roles

To create a Role click ‘Roles in the Main Menu and click the Add button (). This will open the Main
Section.

Main Settings

The main settings control the broad properties of the Role.

The Main settings control:

Id – A name for the role.
Active – Check to activate the role.
Include All Folders – If checked all folders that are not listed in Folder Access will be available. If
unchecked only those listed in Folder Access will be available.
 All Folders Read Only – If checked all folders that are not specified in Folder Access will be execute-
only. If unchecked only those specified in Folder Access will be execute-only.
Allow Folder Management – Displays/Hides the Folder Management Icon and functionality.
Include All Data Objects – If checked all Data Objects that are not listed in Objects Access will be
available. If unchecked only those listed in Objects Access will be available.

General Settings

The General Settings of a Role override the Global General Settings. Utilize the API in order to
overwrite additional settings for a user or group of users. For more information see API.

Exago Technical Guide

65 Exago Inc.

The following settings can be overwritten:

 Report Path – The parent folder for all reports. The Report Path can be:

o Virtual Path

o Absolute Path – used to provide increased security (ex. C:\Reports)

o Web Service URL or .NET Assembly – using a Web Service or .NET Assembly allows
reports and folders to be managed in a database. For more information see Report
Folder Storage & Management. A Web Service should be formatted as
‘url=http://WebServiceUrl.asmx’. A .NET Assembly should be formatted as ‘assembly =
AssemblyFullPath.dll;class-Namespace.ClassName’.

 Date Format – The format of date values. Can be any .NET standard (ex. MM/dd/yyyy). Leave
blank to use the browser culture.

 Time Format – The format of time values. Can be any .NET standard (ex. h:mm:ss tt). Leave
blank to use the browser culture.

 Date Time Format – The format of date-time values. May be any .NET standard (ex. M/d/yy
h:mm tt). Leave blank to use the browser culture.

NOTE. For more details on .NET Date, Time and DateTime Format Strings please visit
http://msdn.microsoft.com/en-us/library/8kb3ddd4%28v=vs.71%29.aspx.

http://msdn.microsoft.com/en-us/library/8kb3ddd4%28v=vs.71%29.aspx.

Exago Technical Guide

66 Exago Inc.

 Numeric Separator Symbol – Symbol used to separate 3 digit groups (ex. thousandths) in
numeric values. The default is ‘,’.

 Numeric Currency Symbol – Symbol prepended to numeric values to represent currency.
The default is ‘$’.

 Numeric Decimal Symbol – Symbol used for numeric decimal values. The default is ‘.’.

 Server Time Zone Offset – Value that is used to convert server to client time (the negation is
used to convert client to server time). Leave blank to use server time, or to use External
Interface to calculate value.

 Show HTML Export Grid Lines – Sets the default value for the HTML output option Show
Grid. This can be modified in the Options Menu of the Report Designer.

 Show Crosstab Reports – Displays/Hides the Crosstab Report Wizard and Insert Crosstab
button in the Report Designer.

 Show Express Reports – Displays/Hides the Express Report Wizard.

 Show Styling Toolbar – Displays/Hides the styling tools in the Layout tab of the Express
Report Wizard.

 Show Themes – Displays/Hides the Theme dropdown in the Layout tab of the Express Report
Wizard.

 Show Grouping – Displays/Hides the grouping tools in the Layout tab of the Express Report
Wizard.

 Show Formula Button – Displays/Hides the Formula Editor button in the Layout tab of the
Express Report Wizard.

 Show Standard Reports – Displays/Hides the Standard Report Wizard and Report Designer.

NOTE. If ‘Show Standard Reports’ is False then attempts to edit Standard or Crosstab reports
will cause an ‘access denied’ message. Additionally if False, users will not be able to create
Crosstab reports.

 Database Timeout – Maximum number of seconds for a single query to run.

 Read Database for Filter Values – Enable/Disables filter dropdowns to contain values from
the database. Set to false only if retrieving values for the dropdown will take more than a
couple of seconds.

 Show Report Scheduling Option – Displays/Hides the scheduler icon on the Main Menu. Set
to False to disable users from creating scheduled reports.

 Show Email Report Options – Displays/Hides the email report icon on the Main Menu. Set to
False to disable users from emailing reports.

 Show Schedule Manager – Displays/Hides the scheduler manager icon on the Main Menu.
Set to False to disable users from editing existing schedules.

Exago Technical Guide

67 Exago Inc.

 Scheduler Manager User View Level – Controls what information each user can see in the
Schedule Manager. These levels utilize the Parameters companyId and userId. There are three
possible values:

o Current User: Can only view and delete report jobs that have been created by that
user.

o All Users in Current Company: User can only view and delete report schedules for
their company.

o All Users in All Companies: User can view and delete report schedules for all
companies (administrator).

Folder Access

The Folder Access controls which report folders are visible and executable for the Role.

NOTE. If Include All Folders is checked this list will deny access to the folders added, if
unchecked the list will allow access to the folders added.
If All Folders Read Only is checked this list will overwrite the setting when a folder is added
without the Read Only option checked.

To add a folder click New ().
Click in the Folder Name column and select the Folder you want to add.
To make the folder execute only check the box in the Read Only column.
To delete a folder click the delete button ().

Object Access

The Objects Access controls which Data Objects are accessible to the Role. A report can only be
executed if the Role has access to all the Data Objects on the report.

Exago Technical Guide

68 Exago Inc.

NOTE. If Include All Data Objects is checked this list will deny access to the Data Objects
added, if unchecked the list will allow access to the Data Objects added.

To add a Data Object click New ().
Click in the Data Object Name column and select the Object you want to add.
To delete an Object click the delete button ().

Filters Access

The Filter Access provides a means to filter a Data Object by Role.

To add a Data Object click New ().
Click in the Data Object Name column and select the Object you want to add.
Enter the filter string in the Filter String Column. The filter string should be Standard SQL. This string
will be added to the Where clause.
To delete a Data Object click the delete button ().

Extensions

This chapter explains how to utilize several of Exagos Extensions, which permit the host application to
extend the capabilities and behaviors of Exago.

There are several types of Extensions offered:

 Functions – Custom code that can be used as formulas inside or reports and dashboards.

Exago Technical Guide

69 Exago Inc.

 Filter Functions – Custom code to provide filters with dynamic values that are updated each
time the report is executed.

 Server Events – Events in the Exago runtime where custom code handlers can determine the
application’s behavior.

 Custom Options – Place holders for values that a user can specify while editing a report.
These values can then be utilized by other extensions such as custom functions or server
events.

Functions

Exago comes with a large number of predefined functions that can be used to make formulas in the
Formula Editor. As an administrator you may create additional custom functions using high level coding
languages. Custom functions will be accessible to users in the Formula Editor or by typing their name
into a cell of a report. Functions can be added to a preexisting function category or a function can be
put into a new custom category.

Functions can be written in C#, JavaScript or VB. Net. Functions can take as few or many arguments as
inputs, provided that the max number of arguments is greater than or equal to the minimum number
of arguments.

Functions written in C# and VB.Net can get and set elements from the current session of Exago such
as Parameter values. See Exago Session Info for more information.

Creating Functions

To create a custom function, select ‘Functions’ in the Main Menu and click the Add button (). This
will open a Custom Function tab.

Each Custom Function has the following properties:

Name – A name for the function that will be displayed to the end users.
Description – A description of the function that will be displayed to the end users.

Exago Technical Guide

70 Exago Inc.

NOTE. To support multi-language functionality, if the description matches the id of any
element in the language files then the string of that language element will be used
instead of the description. For more information see Multi-Language Support.

 Minimum Number of Arguments – The minimum number of values that an end user must
enter in the function separated by commas.

 Maximum Number of Arguments - The maximum number of values that an end user may
enter in the function separated by commas.

NOTE. Arguments are passed to your code as an array of generic objects so there can
be as many arguments as desired. The argument array is accessed by args[].Arguments
are passed into the function as objects.

 Category – A way of grouping similar functions. You can assign custom functions to an existing
Exago Category or create a new Category. To create a new Category, select “Other”. An input
field will appear. Leaving this field blank will assign your Function to the “Other” Category in
the Exago Formula Editor. A non-empty value in this field tells Exago to create a new Category
with the specified name.

NOTE. To support multi-language functionality, if the custom category matches the id of
any element in the language files then the string of that language element will be used
instead of the description. For more information see Multi-Language Support.

 Language – The high-level language of the code for the function. May be C#, JavaScript or
VB.Net.

 Reference – A semicolon-separated list of any dlls that need to be referenced by the Custom
Function. If the dlls are not accessible in the GAC then the dlls must be copied to the Bin folder
of Exago or the reference should point to their physical path.

NOTE. System.dll does not need to be listed as a reference as it is already available.

 Program Code – The program code for your Custom Function. Press the green check mark to

verify the code executes properly ().

NOTE. Parameters may be referenced within custom functions by placing their name
between @’s.

Exago Session Info

Exago Technical Guide

71 Exago Inc.

Custom Functions can access the Exago session state through a “sessionInfo” variable. Access to
sessionInfo allows powerful new capabilities such as the ability to persist values across function
invocations, allowing each invocation to be aware of previous calls and behave accordingly.

NOTE. sessionInfo can also be accessed by Server Events and Action Events. For more information see
Server Events and Action Events.

The second example in the next section provides a function that returns the line number of the report
being written by creating and incrementing a Stored Value which exists only for the report execution.

The following properties are available:

 PageInfo – this is the parent of all information in the current session. This includes the active
Report and SetupData objects.

NOTE. Since the Report and SetupData objects are accessed frequently, direct pointers are
include for these objects.

 Report – an object that contains all of the report’s Data Object, sort, filter and layout
information.

 SetupData – an object that contains all of the session’s configuration setting including Filters,
Parameters, Data Objects, Joins, Roles, etc.

 CompanyId – contains the value specified by the companyId Parameter.

 UserId – contains the value specified by the userId Parameter.

The following methods are available:

 GetReportExecuteHtml(string reportName) – a method that executes the specified report
and returns its html output. This could be used to embed a report within a cell of another
report.

NOTE. The reportName is relative to the session’s report path.

 GetParameter(string parameterName) – a method that returns the specigied Parameter
Object. GetParameter first looks in the Report Parameter collection, parameters beign utilized by
the report, and then in the Config Parameter collection, other parameters such as hidden
parameters or multi-tenant values.

 GetReportParameter(string parameterName) – a method that returns the specified
Parameter object that is utilized by the report being executed. Ex. If a parameter is prompting a
user for a value it will be available with the prompted value.

 GetConfigParameter(string parameterName) – a method that returns the parameter object
stored in the default configuration. Ex. Any parameter that is not being utilized by the report
being executed.

 WriteLog(string text) – a method that writes the specified text to the Exago’s log file.

Exago Technical Guide

72 Exago Inc.

NOTE. The following methods utilize Stored Values which are objects that can be created and set
by custom functions during report execution to pass data between custom function calls. Stored
Values only exist for the duration of report execution.

 GetStoredValue(string valueName, object initialValue = null) – a method that retrieves a
Store Value. If a there is no Stored Value with the specified valueName, then one will be
created with the specified initialValue.

 SetStoredValue(string valueName, object newValue) – a method that sets the value of a
Store Value. Setting newValue to null will delete the Stored Value.

Calling Exago Functions

Cases may arise where you want to call an existing function within your Custom Function. Using the
class CellFormula and returninging the method CellFormula.Evaluate(). An example of this is provided
at the end of the Example section belo.w

Example

The following are two examples of Custom Functions.

Name – ReverseString
Description – Reverses characters in the input string

 Minimum Number of Arguments – 1
 Maximum Number of Arguments – 1
 Language – C#
 Category – Other
 Program Code –

string inputString = args[0].ToString();
char[] inputChars = inputString.ToCharArray();
System.Text.StringBuilder reverseStringSb = new System.Text.StringBuilder("");

for (int i = inputChars.Length - 1; i >= 0; i--)
{
 reverseStringSb.Append(inputChars[i]);
}

return reverseStringSb.ToString();

Name – LineNumber
Description – Displays the number of the line of the report.

 Minimum Number of Arguments – 0
 Maximum Number of Arguments – 0
 Language – C#
 Category – Other
 Program Code –

// this function creates a Stored Value and increments the value by 1 each time
the value is rendered on a report
int i = (int)sessionInfo.GetStoredValue("IncrementNumber", 0);

// increment the value by 1 and return
sessionInfo.SetStoredValue(“IncrementNumber", ++i);
return i;

Exago Technical Guide

73 Exago Inc.

Name – BarCode
Description – Transforms the input into an image of a barcode.

 Minimum Number of Arguments – 1
 Maximum Number of Arguments – 1
 Language – C#
 Category – Other
 References – WebReports.Api.Reports;(A dll to create barcodes)
 Program Code –

//Get argumentstring
inputField = args[0].ToString();
// Call custom code to get image as a bit string
filenamestring imageFilename = null;
// create formula text
string formulaText = String.Format("=LoadImage(\"{0}\")", imageFilename);
// create embedded formula for LoadImage function
CellFormula formula = CellFormula.CreateFormula(sessionInfo.PageInfo, formulaText,
CellVariableCollectionFilter.DataField);
// evaulate and return result
return formula.Evaluate(null);

Filter Functions

This chapter explains how to create Custom Filter Functions. Custom Filter Functions provide the ability
to make functions that will dynamically calculate a value for a filter using high level code.

Filter Functions can be written in C#, JavaScript or VB. Net.

Filter Functions written in C# and VB.Net can get and set elements from the current session of Exago
such as Parameter values. See Exago Session Info for more information.

Creating Filter Functions

To create a custom function, select ‘Date Functions’ in the Main Menu and click the Add button ().
This will open a Date Function tab.

Each Custom Date Filter Function has the following properties:

 Name – A name for the filter function that will be displayed to the end users.

 Description –

NOTE. To support multi-language functionality, if the filter function’s name or description
prepended with ‘_wrFunctionId’ matches the id of any element in the language files then the
string of that language element will be displayed to the user instead of the function
name/description.

Ex. For the example function below you could create a language id
‘Begining_of_Month_wrFunctionId’. The string associated with this id would be displayed
instead of the name. For more information see Multi-Language Support.

 Filter Type – The data type of filters the fitler function should be available for.

Exago Technical Guide

74 Exago Inc.

 List Order – The order the filter function will appear amongst other filter functions of the same
type. Functions with a lower number will appear higher on the list. If two functions have the
same list value they will display in alphabetic order. All the built in filter functions start with list
value 100 or greater.

 Language – The high-level language of the code for the date function. May be C#, JavaScript
or VB.Net.

 Reference – A semicolon-separated list of any dlls that need to be referenced by the Date
Function. If the dlls are not accessible in the GAC then the dlls must be copied to the Bin folder
of Exago or the reference should point to their physical path.

NOTE. System.dll does not need to be listed as a reference as it is already available.

 Program Code – The program code for your Date Function. The code must return a DateTime

value. Press the green check mark to verify the code executes properly ().

NOTE. Parameters may be referenced within custom functions by placing their name
between @’s.

Example

The following is an example of a Custom Function.

 Name – Begining_of_Month
 Language – C#
 Program Code –

// retrieve the first day of the current month
DateTime now = DateTime.Now;
DateTime FirstDayInMonth = new DateTime(now.Year, now.Month, 1);
// return as date time
return FirstDayInMonth;

Server Events

Exago Technical Guide

75 Exago Inc.

In an effort to meet the reporting needs of unique and varied environments, Exago offers numerous
extensibility features. As part of this effort Exago makes available certain events during the report
execution process. When these events occur, an Event Handler consisting of a .Net Assembly method
or custom code snippet can be executed to make impactful changes on the report execution process.

This chapter explains how to create Events Handlers that run custom code when reports are executed.

 To add a new Event Handler select ‘Server Events’ in the Main Menu then click the add button (

).

 To edit an existing Event Handler either double click it or select it and click the edit button (

).

 To delete an Event Handler select it and click the delete button ().

Event Handlers

Event Handlers provide code that Exago can execute when certain events happen during the report
execution process. This code can either come from a .Net Assembly method or within Exago
configuration.

All existing Event Handlers are listed in the Main Menu under Server Events. All the Event Handlers
you are adding or editing will be displayed in a Tab entitled Server Events.

Each Event Handler has the following properties:

 Name – Provides a unique identifier for each Event Handler

 Function – Can either be Custom Code or a .Net Assembly method.

o Custom Code – To save code directly in Exago, select Custom Code from the first
function dropdown. Clicking on the second dropdown opens the custom code menu.
See Custom Code for information on how to access the arguments for each Event.

Press the green check mark to verify the code executes properly ().

Custom Code has three properties:

 Language – Code can be written in C#, Javascript or VB. Net.

 References – A semicolon-separated list of any .Net Assembly dlls that need to
be referenced by the Event Handler

NOTE. System.dll does not need to be listed as a reference as it is already available.

 Code – The code that will be executed by Exago when called.

Exago Technical Guide

76 Exago Inc.

o .Net Assembly Method – To utilize a .Net Assembly method first create a .Net
Assembly Data Source. Select the desired assembly from the first Function dropdown.
Clicking on the second dropdown will open a list of available methods.
See .Net Assemblies for information on how to access the arguments for each Event.

NOTE. The Assembly’s dll will be locked by Exago when it is first accessed. To replace
the dll, unlock it by restarting the IIS App pool.

NOTE. If you want to utilize the sessionInfo object that is passed to all Event Handlers
the Assembly must include a reference to WebReportsApi.dll. For more information see
Session Info.

NOTE. All methods used as Event Handlers must be static.

 Global Event – In this dropdown select an Event to indicate that the Event Handler should be
called whenever this event occurs for all report execution. Leave Global Event set to ‘None’ to
indicate the Event Handler is meant for a specific report.

o Specified Event – The Event Handler will be called when the specified Event happens
during the execution of all reports.

Ex. Selecting OnReportExecuteStart from this dropdown will cause the Event Handler to
be called whenever any Report Execution begins.

Exago Technical Guide

77 Exago Inc.

o None – The Event Handler will not be called automatically for all reports, but can be set
to run for the execution of specific reports. See Setting Event Handlers on Specific
Reports for more information.

Custom Code

Event Handler custom code can be saved directly in Exago via the Administration Console. There are
two objects that custom code can utilize to access information relevant to an Event.

 sessionInfo – Without any special references, all custom code can make use of a
sessionInfo object that provides access to elements of Exago current session such as
parameters, filters, the logger, etc.

 arguments array – Custom code can also access an array of input values called args[]. For
each Event the content of the args array will be different. The content of this array is detailed in
Full Description of Events.

.Net Assemblies

Event Handlers can also reside in .Net Assemblies. The following are important details for using .Net
Assemblies as Event Handlers.

 The Assembly’s dll will be locked by Exago when it is first accessed. To replace the dll, unlock it
by restarting the IIS App pool.

 The first argument of all Event Handlers is the sessionInfo object which can be used to access
elements within the Exago session. To make use of this object the assembly must reference
WebReportsApi.dll.
If the code does not need to make use of sessionInfo then the method signature in the
assembly can declare sessionInfo as an object instead of as a sessionInfo data type. For more
information see Available Events.

Setting Event Handlers on Specific Reports

Event Handlers can either be set to run during the execution of every report or to only be called when
executing specific reports.

NOTE. When multiple Event Handlers are set to run for a single Event, all the Event Handlers are run
using the same input values and then the first non-null return value is used by Exago. This means that
the return value of Report-specific Event Handlers will take precedence over global Event Handlers.

Ex. Suppose there is a global Event Handler for OnExecuteSqlStatmentConstructed that logs
each reports SQL query and a report specific Handler that modifies the ‘Where’ clause of the
SQL. When the specified report is run, both Handlers will be executed and return an SQL string.
If non-null, the modified SQL from the report specific Event Handler will be utilized by Exago to
query the database.

To set an Event Handler to be report specific:

In the Administration Console:

1. Set the Event Handler’s Global Event to None. Click Apply or Ok.

Exago Technical Guide

78 Exago Inc.

2. In the Feature/UI Settings set Show Events Window to True. Click Apply or Ok.

In the Reporting Application:

1. In the Main Menu select the desired report and double click or click the edit button ().

2. Select the Report Options drop-down menu and hover over Advanced. Click Events. This will
cause the Events Menu to appear.

3. In the Event Menu click the Add button ().

4. From the Event dropdown select when the Event Handler should be called.

5. From the Action dropdown select which the desired Event Handler.

6. Click Okay and save the report.

Displaying User Messages from Server Events

Some Server Events are designed to displays messages to the user based return value. However for the
other server events* a user message can be displayed by throwing the following excetion method.

Exago Technical Guide

79 Exago Inc.

WrUserMessage(string messageOrId, wrUserMessageType Type)

Description Displays a message to the user.

Remarks

wrUserMessageType can either be Text or Id.

 Text – The user message will display the string messageOrId

 Id – The user message will display the string associated with the Id in the Language

Files.

This requires a reference to WebReports.Api.Common

Example

//OnWebServiceExecuteEnd, inspect the returned value and throw a
//message if it matches any of the error messages.

object webServiceResult = args[0];

switch(webServiceResult.ToString())
{
 case "message1" : throw new WrUserMessage("Some Message to User",
WrUserMessageType.Text);

 // add any other messages
}

return webServiceResult;

NOTE. This cannot be used for the Events OnConfigLoadStart or OnConfigLoadEnd.

Quick List of Events

The following Events can be assigned Event Handlers for runtime invocation.

OnDataCombine – occurs when data is combined and initially processed; expects a Data Table to be
returned.
OnReportExecuteStart – occurs when report execution begins; expects a string to be returned to
indicate if execution should proceed.
OnReportExecuteEnd – occurs when a report execution finishes; any return value will be ignored.
OnWebServiceExecuteEnd – occurs when a web service data source returns data; expects an xml
string to be returned.
OnExecuteSqlStatmentConstructed – occurs before the data source is queried for report
execution; expects an SQL string to be returned.
OnFilterSqlStatmentConstructed – occurs before the data source is queried to populate the filter
dropdown; expects an SQL string to be returned.
OnOkFiltersDialog – occurs when Ok is clicked on the Filter Execution Window; expects a string to
be returned to indicate if execution should proceed.
OnOkParametersDialog – occurs when Ok is clicked on the Parameter Execution Window; expects a
string to be returned to indicate if execution should proceed.
OnScheduledReportExecuteSuccess – occurs when a scheduled report is executed; expects a
Boolean to be returned to indicate if the report should be sent as scheduled or intercepted.

Exago Technical Guide

80 Exago Inc.

OnRenameFolderStart – occurs when a user attempts to rename a folder; expects a string to be
returned to indicate if execution should proceed.
OnRenameFolderEnd – occurs when a folder has been renamed; any return value will be ignored.
OnConfigLoadStart – occurs when the configuration of Exago is initially loaded; expects a void
return.
OnConfigLoadEnd – occurs after the last Api changes have been made to of Exago’ configuration;
expects a void return.
OnDataFieldsRetrieved – occurs after Data Fields are retrieved from specific Data Objects; expects a
Data Table to be returned to indicate how to display the Data Fields.
OnGetUserPreferences – called to retrieve user preferences when entering the application and
editing/executing reports.
OnSetUserPreferences – called to save user preferences when a user specifies startup reports or
saves interactive html changes as a user report.

NOTE. For the following descriptions the data type WebReports.Api.Reports.SessionInfo is refered to as
SessionInfo. The class System.Data.DataTable is referred to as DataTable.

Full Description of Events

OnDataCombined

The OnDataCombined Event allows the inspection and/or modification of the raw data set after
retrieval from the Data Sources and initial combining within Exago. A common use of this event is to
modify or blank sensitive data fields in a Report depending on the authorizations available to the user
executing the report.

Signature

For custom code the args array is structured as follows:

args[] contains a single DataTable of the combined data in position zero.

For .Net Assemblies the method signature is as follows:

DataTable EventHandlerName(SessionInfo sessionInfo, DataTable combinedData)

Expected Return

The OnDataCombined Event expects a DataTable to be returned. The schema of the DataTable must
match that of combinedData.

Notes

In the DataTable, if a Data Object has an Id then that will be used as the column names, otherwise the
database name will be used. Data Fields will always use their database names despite any Column
Metadata.

Example

The following example checks a Parameter called AllowViewSSN and then censors the columns named
SocialSecurityNumber.

Exago Technical Guide

81 Exago Inc.

System.Data.DataTable dt = (System.Data.DataTable) args[0];
if (sessionInfo.GetConfigParameter(“AllowViewSSN”) == “true” &&
dt.Columns.Contains("Employees.SocialSecurityNumber"))
{
 //change the value of SSN to blank
 foreach (System.Data.DataRow row in dt.Rows)
 {
 for (int i = 0; i < row.ItemArray.Length; i++)
 {
 row["Employees.SocialSecurityNumber"] = “xxx-xx-xxxx”;
 }
 }
}
return dt;

NOTE. This assumes the column SocialSecurityNumber is saved as a string. If trying to set a date or
date time field to blank use System.DBNull.Value.

The following example filters the data based on a calculated age value.

// get field name and age from parameters to compare against
string fieldName = sessionInfo.GetParameter("fieldName").Value;
int age = int.Parse(sessionInfo.GetParameter("age").Value);

// log parameters
sessionInfo.WriteLog("FilterByAge fieldName: " + fieldName);
sessionInfo.WriteLog("FilterByAge age value: " + age.ToString());

// get DataTable view and filter
System.Data.DataTable dt = (System.Data.DataTable)args[0];
System.Data.DataView dv = dt.DefaultView;

foreach(System.Data.DataRowView drv in dv)
{
 if (drv[fieldName] == System.DBNull.Value || (int)((System.DateTime.Today -
(System.DateTime)drv[fieldName]).Days / 365) < age)
 drv.Delete();
}

// return filtered DataTable
return dv.ToTable();

OnReportExecuteStart

The OnReportExecuteStart Event occurs at the beginning of the Report Execution process. This Event
could be used to check properties of a report and log or stop execution.

Signature

For custom code the args array is structured as follows:

args[] is empty.

For .Net Assemblies the method signature is as follows:

string EventHandlerName(SessionInfo sessionInfo)

Expected Return

Exago Technical Guide

82 Exago Inc.

The OnReportExecuteStart Event expects a string to be returned. Based on the return string there are
three possible results.

 Null / Whitespace – If the string is null or whitespace then the report execution will continue
as expected.

 LanguageId – If the string matches the id of any element in the language files then the string
of that language element will be displayed as a message to the user and the report execution
will terminate. For more information see Multi-Language Support.

 Other – If the string does not match the id of any element in the language files then the
returned value will be displayed as a message to the user and the report execution will
terminate.

Notes

The report being executed can be accessed through the sessionInfo object by using sessionInfo.Report.

Example

The following example shows how each report execution can be written to a log file.

//Writes the current time, companyId, userId and report name to a specified log file.
File.WriteAllText(“C:\ReportExecutionLogFile”, String.Format(“{0}, {1}, {2}, {3}”,
DateTime.Now.ToString(), sessionInfo.CompanyId, sessionInfo.UserId, sessionInfo.Report.Name));
//returns null to proceed with execution
return null;

OnReportExecuteEnd

The OnReportExecuteEnd Event occurs at the end of the Report Execution process. This Event could be
used to track which report executions return data.

Signature

For custom code the args array is structured as follows:

args[] contains a single Boolean indicating if Data qualif ied (True), or not (False).

For .Net Assemblies the method signature is as follows:

string EventHandlerName(SessionInfo sessionInfo, bool DataQualified)

Expected Return

Anything can be returned to the OnReportExecuteEnd Event. Any return value will be ignored.

OnWebServiceExecuteEnd

The OnWebServiceExecuteEnd Event occurs when data is returned from a Web Service Data Source.
This Event could be used to decompress or decrypt data being returned from a Web Service Data
Source.

Signature

For custom code the args array is structured as follows:

Exago Technical Guide

83 Exago Inc.

Args[] contains a single string of the data coming from the Web Service in position zero.

For .Net Assemblies the method signature is as follows:

string EventHandlerName(SessionInfo sessionInfo, string webServiceXml)

Expected Return

The OnWebServiceExecuteEnd Event expects a string to be returned.

NOTE. This Event is only occurs when the callType Parameter has the value 1.

Example

The following example shows how information from a web service could be decompressed.

byte[] compressedBuffer = Convert.FromBase64String((string)args[0]);

using (System.IO.MemoryStream stream = new System.IO.MemoryStream())
{

int uncompressedLength = BitConverter.ToInt32(compressedBuffer, 0);
 stream.Write(compressedBuffer, 4, compressedBuffer.Length - 4);
 byte[] uncompressedBuffer = new byte[uncompressedLength];

stream.Position = 0;
 using (System.IO.Compression.GZipStream compress = new
System.IO.Compression.GZipStream(stream, System.IO.Compression.CompressionMode.Decompress))
 {
 compress.Read(uncompressedBuffer, 0, uncompressedBuffer.Length);
 compress.Close();
 return System.Text.Encoding.UTF8.GetString(uncompressedBuffer);
 }
}

OnExecuteSqlStatementConstructed

The OnExecuteSqlStatementConstructed Event occurs just before SQL is sent to the Data Source to
retrieve data for report execution. This Event could be used to inspect, log or modify the SQL that is
being used for report execution.

Signature

For custom code the args array is structured as follows:

args[] contains a string representing the execution SQL in position zero.

For .Net Assemblies the method signature is as follows:

string EventHandlerName(SessionInfo sessionInfo, sting exectuionSql, SqlObject sqlObject)

Expected Return

The OnExecuteSqlStatementConstructed Event expects a string to be returned.

Example

Exago Technical Guide

84 Exago Inc.

The following example shows how report execution SQL can be written to a specified log file.

//Writes the current time, companyId, userId and report name to a specified log file.
File.WriteAllText(“C:\ReportSqlLogFile”, String.Format(“{0}, {1}, {2}, {3}”,
DateTime.Now.ToString(), sessionInfo.CompanyId, sessionInfo.UserId, args[0]));
//returns null to proceed with execution
return args[0];

OnFilterSqlStatmentConstructed

The OnFilterSqlStatementConstructed Event occurs just before SQL is sent to the Data Source to
retrieve data to populate the filter dropdown menu of Exago. This Event could be used to inspect, log
or modify the SQL that is being used to populate the filter dropdown menu.

Signature

For custom code the args array is structured as follows:

args[] contains a string representing the filter SQL in position zero.

For .Net Assmblies the method signature is as follows:

string EventHandlerName(SessionInfo sessionInfo, sting filtersSql, SqlObject sqlObject)

Expected Return

The OnFilterSqlStatementConstructed Event expects a string to be returned.

Note

This Event will provide the SQL for the Filter Dropdown Object if that feature is being utilized. See
Data Objects for more information on Filter Dropdown Objects

Example

The following example shows how the filter dropdown SQL can be modified to provide the top 200
results instead of the top 100.

//this code example assumes SQL Server as a Data Source
string sql = args[0].ToString();
string newSqul = sql.Replace(“Top 100” , “Top 200”);
return newSql;

OnOkFiltersDialog

The OnOkFiltersDialog Event occurs when a user clicks on the Ok button in the Filter Execution
Window. This window only displays if prompt for value was checked for a filter. This Event could be
used to see what filters are being used on the report and/or assure that a filter exists.

Signature

For custom code the args array is structured as follows:

args[] is empty.

Exago Technical Guide

85 Exago Inc.

For .Net Assemblies the method signature is as follows:

string EventHandlerName(SessionInfo sessionInfo)

Expected Return

The OnOkFiltersDialog Event expects a string to be returned. Based on the returned string there are
three possible results.

 Null / Whitespace – If the string is null or whitespace then the report execution will continue
as expected.

 LanguageId – If the string matches the id of any element in the language files then the string
of that language element will be displayed as a message to the user and the report execution
will terminate. For more information see Multi-Language Support.

 Other – If the string does not match the id of any element in the language files then the
returned value will be displayed as a message to the user and the report execution will
terminate.

Notes

The filters of the report being executed can be accessed through the sessionInfo object by using
sessionInfo.ReportExecFilters.

Example

The following example provides C# code that will prevent the Filter Execution Window from closing if
there are no filters specified. This and similar checks can help prevent users from executing Reports
that result in unnecessarily-large queries going against the Data Source(s).”

string hasFilters = null;

if(sessionInfo.Report.Filters.Count() > 0)
{
 hasFilters = “Please add Filters to the Report.”;
}

return hasFilters;

OnOkParametersDialog

The OnOkParametersDialog Event occurs when a user clicks on the Ok button of the Parameter Prompt
Window. The window will only displays if the report has a non-hidden parameter with a prompt text.
This Event could be used to see what values the user is setting for each prompting parameter.

Signature

For custom code the args array is structured as follows:

args[] is empty.

For .Net Assmblies the method signature is as follows:

Exago Technical Guide

86 Exago Inc.

string EventHandlerName(SessionInfo sessionInfo)

Expected Return

The OnOkParametersDialog Event expects a string to be returned. Based on the returned string there
are three possible results.

 Null / Whitespace – If the string is null or whitespace then the report execution will continue
as expected.

 LanguageId – If the string matches the id of any element in the language files then the string
of that language element will be displayed as a message to the user. For more information see
Multi-Language Support.

 Other – If the string does not match the id of any element in the language files then the
returned value will be displayed as a message to the user.

Notes

This Event cannot override the value of Parameters for the report execution.

The Parameters of the report being executed can be accessed through the sessionInfo object by using
sessionInfo.Report.

Example

The following example provides C# code that will prevent the Parameters Execution Window from
closing if a specified parameter is blank. The user will be prompted with a message from the language
file.

//assumes the language file has an element with the id “PleaseEnterParam”
return (String.IsNullOrWhiteSpace(sessionInfo.GetReportParameter("promptName").Value) ?
"PleaseEnterParam" : null);

OnScheduledReportExecuteSuccess

The OnScheduledReportExecuteSuccess Event occurs when scheduled report execution is finished. This
event can be used to create an audit log of scheduled reports or check values on the report and
determine if they should be sent as scheduled or interrupted.

Signature

For custom code the args array is structured as follows:

args[] is empty.

For .Net Assemblies the method signature is as follows:

bool EventHandlerName(SessionInfo sessionInfo)

Expected Return

The OnScheduledReportExecuteSuccess Event expects a Boolean to be returned. Returning True will
prevent the scheduled report from being sent. Returning False will allow the report schedule to proceed
with processing.

Exago Technical Guide

87 Exago Inc.

NOTE. This server event is called for Remote Execution of reports. However, the return value
will be ignored as there is no email to be prevented.

OnConfigLoadStart

The OnConfigLoadStart Event occurs after the configuration file is loaded.This may happen in the Api
when the api object is initialized or in Exago when entering the application directly. This event can be
used to change any configuration information on-the-fly via the SessionInfo object, such as decrypting
database connection strings.

Signature

For custom code the args array is structured as follows:

args[] is empty.

For .Net Assmblies the method signature is as follows:

void EventHandlerName(SessionInfo sessionInfo)

Expected Return

The OnConfigLoadStart Event has a void return value.

OnConfigLoadEnd

The OnConfigLoadEnd Event occurs after all Api changes are made and the host application container
is redirected to Exago. If entering Exago directly this event is occurs immediately after
OnConfigLoadStart. If the Api is being used but the host application does not redirect to Exago (such
as using the direct Report.GetExecuteData method) the event can manually be called using the public
method Api.SetupData.FireOnConfigLoadEndEvent().

Similar to the OnConfigLoadStart event, this event can also be used to change configuration
information on-the-fly via the sessionInfo object. However making these changes after the Api calls can
provide extra convience. For example if the host application is using the Web Service Api it can set a
single parameter value using the WebService and then based on that parameter make further
configuration changes within this event. This provides better performance, security and a reduction of
http requests.

Signature

For custom code the args array is structured as follows:

args[] is empty.

For .Net Assemblies the method signature is as follows:

void EventHandlerName(SessionInfo sessionInfo)

Expected Return

The OnConfigLoadEnd Event has a void return value.

OnRenameFolderStart

Exago Technical Guide

88 Exago Inc.

The OnRenameFolderStart Event occurs when a user attempts to rename a folder. This event happens
before the folder is renamed permitting you to stop the renaming if desired.

Signature

For custom code the args array is structured as follows:

args[] is contains two strings, the first represents the fully qualif ied current folder name, the
second is the new folder name.

For .Net Assemblies the method signature is as follows:

string EventHandlerName(SessionInfo sessionInfo, string currentFolderName, string
newFolderName)

Expected Return

The OnRenameFolderStart Event expects a string to be returned. Based on the returned string there
are three possible results.

 Null / Whitespace – If the string is null or whitespace then the report execution will continue
as expected.

 LanguageId – If the string matches the id of any element in the language files then the string
of that language element will be displayed as a message to the user. For more information see
Multi-Language Support.

 Other – If the string does not match the id of any element in the language files then the
returned value will be displayed as a message to the user.

OnRenameFolderEnd

The OnRenameFolderEnd Event occurs after user has renamed a folder.

Signature

For custom code the args array is structured as follows:

args[] is contains two strings, the first represents the fully qualif ied old folder name, the second
is the new folder name.

For .Net Assemblies the method signature is as follows:

string EventHandlerName(SessionInfo sessionInfo, string currentFolderName, string
newFolderName)

Expected Return

Anything can be returned to the OnRenameFolderEnd Event. Any return value will be ignored.

OnDataFieldsRetrieved

The OnDataFieldsRetrieved Event occurs after Data Fields are retrieved for a specific Data Object. This
event is commonly used to change the order Data Fields are displayed in the Data Menu of the Report
Designer.

Exago Technical Guide

89 Exago Inc.

Signature

For custom code the args array is structured as follows:

args[] is contains three objects, the first a System.Data.DataTable containing the names and
metadata of the Data Fields, the second the Data Object as a WebReports.Api.Reports.Entity
object, the third a reference to a WebReports.Api.Data.DataObjectBase object which calls the
event.

For .Net Assemblies the method signature is as follows:

string EventHandlerName(SessionInfo sessionInfo, DataTable originalDataFields, Entity
dataObject, DataObjectBase eventCaller)

Expected Return

Expects a System.Data.DataTable return value, which represents the modified data.

Notes

The DataTable being being passed to the event in the first argument has already applied Column
Metadata.

Example

The following example shows how the fields could be displayed in reverse alphabetic order.

//this code example makes referens to System.Data.dll and System.xml.dll and uses the namespaces
Syste.Data, WebReports.Api.Reports and WebReports.Api.Data

DataTable dt = args[0] as DataTable;
DataView dv = dt.DefaultView;
dv.Sort = “column_name desc”;
return dv.ToTable();

OnGetUserPreferences

The OnGetUserPreferences Event is used to retrieve user preferences when entering the application
and when editing/executing reports.

Signature

For custom code the args array is structured as follows:

args[] is contains two objects, the first a string with the user preference’s id and the second a
string with the user preference’s value.

For .Net Assemblies the method signature is as follows:

string EventHandlerName(SessionInfo sessionInfo, string id, string value)

Expected Return

Expects a string return value, which represents the user preference’s value.

Notes

Exago Technical Guide

90 Exago Inc.

The event will only be called if the ‘User Preference Storage Method’ is set to Server Events in the User
Settings.

Example

The following example shows how the event can retrieve the user prefence’s value from a database.

//this code retrieves user preferences from a database. This assumes two things:
// 1. A global variable exists called reportTableName which represents where the user preferencs
are stored
// 2. A method called ExecuteSQLCmd exists to execute sql statements

string stmt = String.Format("Select upValue From {0} Where id = @id", reportTableName);
List<SqlParameter> sqlParams = new List<SqlParameter>();
sqlParams.Add(new SqlParameter("@id", id));
Object queryResult;
queryResult = ExecuteSQLCmd(stmt, sqlParams);
return queryResult == null ? null : queryResult.ToString();

OnSetUserPreferences

The OnSetUserPreferences Event is used to store user preferences when setting startup reports or
saving interactive html changes as user reports.

Signature

For custom code the args array is structured as follows:

args[] is contains two objects, the first a string with the user preference’s id and the second a
string with the user preference’s value.

For .Net Assemblies the method signature is as follows:

void EventHandlerName(SessionInfo sessionInfo, string id, string value)

Expected Return

The event has a void return value.

Notes

The event will only be called if the ‘User Preference Storage Method’ is set to Server Events in the User
Settings.

Example

The following example shows how the event can retrieve the user preference’s value from a database.

//this code retrieves user preferences from a database. This assumes two things:
// 1. A global variable exists called reportTableName which represents where the user preferencs
are stored
// 2. A method called ExecuteSQLCmd exists to execute sql statements

string stmt = String.Format("Select upValue From {0} Where id = @id", reportTableName);
List<SqlParameter> sqlParams = new List<SqlParameter>();
sqlParams.Add(new SqlParameter("@id", id));
Object queryResult;

Exago Technical Guide

91 Exago Inc.

queryResult = ExecuteSQLCmd(stmt, sqlParams);
return queryResult == null ? null : queryResult.ToString();

Action Events

Action Events are custom combinations of client-side and server-side code defined in order to change
Exago UI functionality, add UI functionality, or create a custom action items in a report.

This chapter explains how to create action events which may activate Locally, when an action item is
clicked or loaded, or Globally, on the Exago interface.

 To create a new Event Handler select ‘Action Events’ under ‘Extensions’ in the Main Menu then

click the add button ().

 To edit an Event Handler either double click it or select it and click the edit button ().

 To delete an Event Handler select it and click the delete button ().

Event Handlers

Action Event Handlers provide code that Exago can execute when certain events occur within the
Report Designer or the report HTML. These handlers can either be imported from a .Net Assembly or
created within the Administration Console.

Each Event Handler has the following properties:

 Name – Provides a unique identifier for each Event Handler

 Function – Can either be Custom Code or a .Net Assembly method.

o Custom Code – To save code directly in Exago, select Custom Code from the first
function dropdown. Clicking on the second dropdown opens the custom code menu.

Exago Technical Guide

92 Exago Inc.

See Custom Code for information on how to access the arguments for each Event.
Press the green check mark to verify the code executes properly ().

Custom Code has three properties:

 Language – Code can be written in C#, Javascript or VB. Net.

 References – A semicolon-separated list of any .Net Assembly dlls that need to
be referenced by the Event Handler

NOTE. System.dll does not need to be listed as a reference as it is already available.

 Code – The code that will be executed by Exago when called.

o .Net Assembly Method – To utilize a .Net Assembly method first create a .Net
Assembly Data Source. Select the desired assembly from the first Function dropdown.
Clicking on the second dropdown will open a list of available methods.
See .Net Assemblies for information on how to access the arguments for each Event.

NOTE. The Assembly’s dll will be locked by Exago when it is first accessed. To replace
the dll, unlock it by restarting the IIS App pool.

NOTE. If you want to utilize the sessionInfo object that is passed to all Event Handlers
the Assembly must include a reference to WebReportsApi.dll. For more information see
Session Info.

NOTE. All methods used as Event Handlers must be static.

 Event Type – Select an option in this dropdown to create an event that will be executed when
certain client-side actions are taken.

o Load – The event handler will execute when a user executes a report to HTML.

o Click – The event handler will execute when a user clicks on an item in the executed
report HTML.

o In order to apply an event handler to an item in a report, see Local Action Events.

Exago Technical Guide

93 Exago Inc.

 Global Event Type – Select an option in this dropdown to create an event that will be
triggered at a certain point during the execution process. These actions are special client-side
events that can intercept and modify behavior.

o In order to modify the behavior of the Report Designer, see Creating Global Events.

 Assigned UI Item(s) – This field designates a comma-separated list of UI item IDs for items
in the Report Designer or HTML viewer. These elements can be intercepted and modified by
assigning them in this field.

o NOTE. The easiest way to determine the ID of a UI item is to use Inspect Element tool
in a web browser.

For example, using Google Chrome, the blue text is the ID of the Save Button.

Custom Code

Event Handler custom code can be saved directly in Exago via the Administration Console. There are
two objects that custom code can utilize to access information relevant to an Event.

 sessionInfo – Without any special references, all custom code can make use of a
sessionInfo object that provides access to elements of Exago current session such as
parameters, filters, the logger, etc.

 arguments array – Custom code can also access an array of input values called args[]. For
each event the content of the args array will be different.

.Net Assemblies

Event Handlers can also reside in .Net Assemblies. The following are important details for using .Net
Assemblies as Event Handlers.

 The Assembly’s dll will be locked by Exago when it is first accessed. To replace the dll, unlock it
by restarting the IIS App pool.

 The first argument of all Event Handlers is the sessionInfo object which can be used to access
elements within the Exago session. To make use of this object the assembly must reference
WebReportsApi.dll.

Writing Action Events

Exago Technical Guide

94 Exago Inc.

 clientInfo is the primary object that Action Events interact with. The object contains
information about the linked report, dashboard, cell, or UI item on which it was called. This
object is present on the client side and is called from within the client side javascript.
clientInfo contains one or more of the following objects, depending on the context of the
event call.

o contextObject
o dashboardItem
o dashboard
o report
o chartData
o chartSeriesDataPoint
o chartItemDataPoint
o reportWidgets
o categoriesCtrl
o uiElement

 sessionInfo contains a special JavascriptAction object when used in an Action Event. This

object is primarily used to load the client-side Javascript.
o JavascriptAction.SetJsCode(string JsCode) – Sets the custom javascript string.

o NOTE. An Action Event must return the JavascriptAction object.

Local Action Events

Action Events can be linked to specific reports in order to extend report functionality. In order to link an
action event to a report, the event handler is added to specific cells in an indiv idual report by using the
Report Designer’s ‘Linked Action Events’ button.

NOTE. The ‘Linked Action Events’ button is disabled by default. Use the following steps to enable it:

1. Open the Exago Admin interface.

2. Double-click on the ‘Feature/UI Settings’ button.

3. Under the ‘Standard Report Designer Settings’ subsection, set ‘Show Linked Report’ to True
using the dropdown menu.

4. Click OK ().

Use the following steps to set an event handler to activate for a specific cell when a report is executed:

1. Select the cell on which you wish to link an Action Event.

2. Click on the Linked Action Event button () in the main toolbar.

3. In the menu that appears, click Add ().

4. In the dropdown menu select the appropriate event handler, then click OK ().

Exago Technical Guide

95 Exago Inc.

The following example demonstrates the code one may use to create a Local Action Event to find the
lowest and highest values of a chart and change their colors accordingly.

NOTE. The last statement must return sessionInfo.JavascriptAction. The event type is
Load, and it is linked to a chart cell in the report designer.

sessionInfo.JavascriptAction.setJsCode("

var lowValueIdx = 0;
var highValueIdx = 0;
for (var i = 1; i < clientInfo.chartData.data.length; i++) {
 if (clientInfo.chartData.data[i].value <
clientInfo.chartData.data[lowValueIdx].value)
 lowValueIdx = i;
 if (clientInfo.chartData.data[i].value >
clientInfo.chartData.data[highValueIdx].value)
 highValueIdx = i;
 }
clientInfo.chartData.data[lowValueIdx].color = "#FF0000";
clientInfo.chartData.data[lowValueIdx].label += " (lowest)";
clientInfo.chartData.data[highValueIdx].color = "#00FF00";

Exago Technical Guide

96 Exago Inc.

clientInfo.chartData.data[highValueIdx].label += " (highest)";");

return sessionInfo.JavascriptAction;

Creating Global Events

Global Action Events can be used to modify the Exago UI. Event handlers can be set to activate
whenever a report is Saved, after a Data Object is added to a report, or before a Data Object is
removed from a report.

Use the following steps to create a Global Event Handler:

1. In the Exago Admin Console, create a new Action Event by highlighting Action Event and

clicking the New () button.

2. Name – Give it a unique name.

3. Function – Select an existing function or select Custom Code and use the drop-down to
open a custom code input box.

4. Event Type – Set this to ‘None’ if it is not already.

5. Global Event Type – Select one of the items or use the Assigned UI Item(s) box.

6. Assigned UI Item(s) – You may populate this box with a comma-delinated list of UI Item
IDs with which you intend to attach your event handler.

7. Click OK ().

The following example creates a custom dialog in order to collect additional information and saves it
along with the report. The code is placed in a custom .NET Assembly and mapped to a SaveReport
method within the assembly. The Global Event Type is set to OnSaveReport.

The following code is the server-side assembly:

NOTE. The function must return sessionInfo.JavascriptAction.

namespace AssemblyDataSource
{
 public class SaveReportDataOther
 {
 public string x;

Exago Technical Guide

97 Exago Inc.

 public int y;
 }
 public class SaveReportData
 {
 public string reportName;
 public string description;
 public SaveReportDataOther other;
 public string[] array;
 }
 public class ActionEvent
 {
 public static object SaveReport(SessionInfo sessionInfo, string actionType, string
jsonData)
 {
 JavascriptAction jsAction = sessionInfo.JavascriptAction;
 switch (actionType)
 {
 case null:

jsAction.SetJsCode("clientInfo.refreshDataOnReturn = false;
clientInfo.ServerCallback(\"SaveReport\", \"show\");");

 break;
case "show":
jsAction.SetJsCode(String.Format("parent.ShowSaveReportWindow(clientInfo,\"{0}\",\
"{1}\",\"{2}\");",

 sessionInfo.Report.Id, jsAction.EncodeString(sessionInfo.Report.Name),
jsAction.EncodeString(sessionInfo.Report.Description)));
 break;
 case "save":
 SaveReportData data = Json.Deserialize(jsonData, typeof(SaveReportData)) as
SaveReportData;

 string reportXml = sessionInfo.ReportObject.GetXml();
 sessionInfo.JavascriptAction.SetJsCode("clientInfo.Alert(\"Report has been
saved\");");
 break;
 default:
 throw new Exception(String.Format("Invalid actionType: {0}", actionType));
 }
 return sessionInfo.JavascriptAction;
 }
}

The following code is placed in a client-side web application to create a custom HTML window:

function ShowSaveReportWindow(clientInfo, reportId, reportName, description) {
 var html = "<div style='padding:15px'>";
 html += "

Fill in the fields below, then click Ok to continue
save.";
 html += "

";
 html += "Report Folder \\ Name <input id='reportName' type='text' />";
 html += "

";
 html += "Description <input id='description' type='text' />";
 html += "

";
 html += "Other Info <input id='other' type='text' />";
 html += "

";
 html += "</div>";

 var options = {

Exago Technical Guide

98 Exago Inc.

 height: 300, width: 400, titleText: "Save Report", okCallback: function () {
parent.OnOkSaveReport(clientInfo); },
 cancelCallback: function () { parent.OnCancelSaveReport(clientInfo); },
renderOnly: true, showButtons: true
 };

 clientInfo.LoadHtmlDialog(html, options);

 clientInfo.GetDialogElementById("reportName").value = reportName;
 clientInfo.GetDialogElementById("description").value = description;
 clientInfo.ShowDialog();
 }

 function OnOkSaveReport(clientInfo) {
 var reportName = clientInfo.GetDialogElementById("reportName").value;
 var description = clientInfo.GetDialogElementById("description").value;
 var other = clientInfo.GetDialogElementById("other").value;
 var oth = { x: 'xData', y: 7 };
 var arr = ['a', 'b', 'z'];
 var obj = { reportName: reportName, description: description, other: oth, array: arr
};
 clientInfo.ServerCallback("SaveReport", "save", obj);
 clientInfo.CloseDialog();
 }

function OnCancelSaveReport(clientInfo) {
 clientInfo.CloseDialog();
 }

Custom Options

This chapter explains how to create Custom Options. Custom Options provide a modifiable menu for
end users to set values that can be utilized by Custom Functions, Server Events or the API.

 To add a new Option select ‘Custom Options’ in the Main Menu then click the add button (
).

 To edit an existing Option either double click it or select it and click the edit button ().

 To delete an Option select it and click the delete button ().

About Option

Custom Options enable you to define settings that users can be modify on a per report basis in the
Report Designer. Options can be accessed during report execution by Server Events or Custom
Functions.

The name of each option can be controlled on a per-user basis using our multi-language feature.
Custom Options can store several types of data such as integer, boolean, text, etc. Each data type
provides an appropriate UI element for the user to select a value.

Creating Options

Exago Technical Guide

99 Exago Inc.

To create a Custom Option, select ‘Custom Options’ in the Main Menu and click the Add button ().
This will open a Custom Options tab.

Each Custom Option has the following properties:

Id – The unique id of the option. The Id is used in accessing the option and may be displayed in the
Custom Options Menu as the user sets its value on a report.

NOTE. To support multi-language functionality, create an element in the language file(s) with an
Id that matches the Option’s Id. The string of that language element will be displayed to the
user in the Custom Options Menu. For more information see Multi-Language Support.

Type – The data type the Option should display. Each data type will display an appropriate input
element in the Custom Options Menu. The following types are available.

o Int – Represents a whole number.

o Decimal – Represents a decimal.

o Bool – Represents a Boolean value. A checkbox is displayed.

o Text – Represents text and displays a text box.
o List – Represents a choice from among multiple values. Click the add button () to

define choices.

Setting Options

After Custom Options are created the Custom Options Menu will be available in the Report Designer of
Standard and Crosstab Reports. In the Custom Options Menu, options can be set using the UI elements
displayed above.

NOTE. The Custom Options Menu will only display if Custom Options exist.

Exago Technical Guide

100 Exago Inc.

Accessing Options

The .Net Api, Server Events and Custom Functions can access Custom Options values through the
SessionInfo object by using the following method:

string GetCustomOptionValue(string id)

Description Returns the value of the specified Custom Option as a string.

Remarks For Bool options the value returned will be “true” or “false”.

For List Options, the chosen Id is returned.

NOTE. List options will return the Id of the selected value and not the displayed

language string.

Example A Custom Function could use the following C# code to return the value of a Custom

Option. The Id of the Option is entered as an argument of the Custom Function.

return sessionInfo.GetReportCustomOptionValue(args[0].ToString());

Exago Technical Guide

101 Exago Inc.

Integration

The following chapter details how to integrate Exago into your host application.

This chapter will assume that you have already used the Administration Console to establish the
desired data structure, general settings and roles.

About

Exago is designed to be seamlessly integrated into the host application. Integration can entail either
styling Exago’ interface to match the host or making API calls such as report execution directly from
the host application. To access the user interface, Exago can either be embedded in a div or iframe or
users can be directed to a separate page.

Whether you are exposing the provided interface or calling API methods it is important to:

 Ensure users are verified through the host application: Users should be signed in
through the API to access Exago. To ensure that this happens, disable direct access to Exago by
setting the parameter ‘Allow direct access to Exago’ to False in the Main Settings.

 Assure the correct permissions and features are available to the user: As the user is
signed in, activate the correct role and set values for any necessary parameters to assure that
the user can only access the data, features, folders and reports that he/she has permission to
use. For more information see Roles.

To further integrate Exago you can:

 Re-style the user interface to match the aesthetic of your application. See Styling.

 Translate or modify any text that appears in the user interface. See Multi-Language
Support.

 Customize the Getting Started Tab and/or create additional custom tabs. See Customizing
Getting Started Content.

 Integrate the Exago installer into the host application’s installer. See Manual Application
Installation.

Integration utilizes several types of files. The diagram below details the role of these files:

Exago Technical Guide

102 Exago Inc.

Styling

Visually modifying and rebranding the user interface is a simple but effective step toward integrating
Exago into the host application. For styling purposes Exago can be thought of as a control that sits
within a div on an .aspx page. Aesthetic changes can be made for single users or groups of users by
directing each user/group to different custom .aspx pages.

To visually integrate Exago make a copy of the.aspx example below and modify the elements
surrounding the Exago control or override the CSS of the user interface itself.

NOTE. Do not make changes directly to ExagoHome.aspx as they will be overwritten during upgrades.
Instead use the example below to create a custom .aspx page.

Styling Exago’ Surroundings

The example below demonstrates an .aspx page that contains the Exago control. In this page basic
html and CSS are used to change the title and the background color of the page. Additionally, a logo
image is added as an example.

<%@ Page Language="C#" EnableViewState="false" %>
<%@ Register src="WebReportsCtrl.ascx" tagname="WebReportsCtrl" tagprefix="wr" %>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
 <head id="Head1" runat="server">
 <title>NorthWind Reports</title>
 <style type="text/css">
 html, body
 {

Exago Technical Guide

103 Exago Inc.

 height:100%;
 width:100%;
 overflow:auto;
 margin:0;
 padding:0;
 background-color:white;
 }

 #BodyFade
 {
 position:absolute; top:0px; left:0; right:0; height:80px;
 background: #023f6b;
 background: -moz-linear-gradient(top, #023f6b 0%, #ffffff 95%);

background: -webkit-gradient(linear, left top, left bottom, color-
stop(0%,#023f6b), color-stop(95%,#ffffff));

 background: -webkit-linear-gradient(top, #023f6b 0%,#ffffff 95%);
 background: -o-linear-gradient(top, #023f6b 0%,#ffffff 95%);
 background: -ms-linear-gradient(top, #023f6b 0%,#ffffff 95%);
 background: linear-gradient(top, #023f6b 0%,#ffffff 95%);

filter: progid:DXImageTransform.Microsoft.gradient(
startColorstr='#023f6b', endColorstr='#ffffff',GradientType=0);

 }
 #WebReportsContainer
 {
 position:absolute;
 top:80px;
 bottom:7px;
 left:7px;
 right:7px;
 overflow:hidden;
 }
 #Logo {position:relative;}

 </style>
 </head>
 <body>
 <form id="form1" runat="server">
 <div id="BodyFade"></div>

<!--
-->

 <div>
 <div id="WebReportsContainer">
 <wr:WebReportsCtrl ID="WebReportsCtrl" runat="server" />
 </div>
 </div>
 </form>
 </body>
</html>

The effect of these changes is seen below.

Exagohome.aspx:

Exago Technical Guide

104 Exago Inc.

NorthWindHome.aspx:

Exago Control Properties

Exago Technical Guide

105 Exago Inc.

Within each .aspx page several properties can be set on the Exago Control to modify various settings
and behaviors of Exago. The following properties can be set.

 ConfigFile – Loads a configuration file other than that created by the Administration Console
(ex. ConfigFile="NorthwindConfig.xml").

NOTE. If entering Exago through the Api this parameter is ignored.

 Language File - Specify which language file(s) to use in place of the ‘Language File’
parameter of Main Settings in the configuration file. (ex. LanguageFile ="es-mx,
gettingstartedcustom").

 ForceIECompatMode – Setting to True will force certain JavaScript functions to working in
‘compatibility’ mode. Currently this property only needs to be set if dragging a Data Field into a
cell of the Report Designer does not work properly. (ex. ForceIECompatMode="true").

 XUaCompat – Setting that controls whether to remove the meta u-ax-comptaible tag when
running reports to PDF in IE8. The default is ‘false’ which removes the tag. If you are
experiencing issues downloading PDF reports in IE8 setting this flag to True may resolve the
issue. (ex. XUaCompat="true").

Changing CSS

All of the CSS used by Exago can be modified at the bottom of the .aspx page. This means that every
indiv idual element or class of objects can be modified. To do make changes, add <style
type="text/css"></style> to your .aspx page in the line above </body>. Between these style tags place
the desired modifications to the CSS.

The table below details the recommend CSS classes for styling.

Class Feature Property Example

 Text Elements
.wrMain Modifies text throughout Exago. color .wrMain { color:Red; }
.wrInputText Modifies the text of input boxes and

dropdowns.

color .wrInputText { color:Blue; }

.wrTree Modifies the text of tree controls

such as the reports in the Main

Menu or the Data Fields in the

Report Designer.

color .wrTree { color:Green; }

.wrTreeItemSelected Modifies the selected item in a tree

control.

color .wrTreeItemSelected{color:
yellow; }

.wrTabItem Modifies the text of unselected tabs. color .wrTabItem { color:Aqua; }

.wrTabItemSelected Modifies the text of the selected

tab.

color .wrTabItemSelected{color:
#FF00FF; }

.wrDialogTitle Modifies the text of the title of

dialog menus

color .wrDialogTitle{color: Orange; }

 Background Elements
.wrMainLeftPaneGradient

Modifies the gradient at the top of

the Main Menu

background

.wrMainLeftPaneGradient{backgrou
nd: -webkit-gradient(linear,
left top, left bottom,
from(white), to(Blue));}

.wrMainLeftPane

Modifies the background of the Main

Menu

background-

color

.wrMainLeftPane{background-
color: Blue;}

Exago Technical Guide

106 Exago Inc.

.wrTabContent

Modifies the background of all Tabs background-

color

.wrTabContent{background-color:
Blue;}

.wrTabContentWizard

Modifies the background of all

Wizards (ex. the New Report

Wizard)

background-

color

.wrTabContentWizard{background-
color: Blue;}

.wrDialogShadow

Modifies the background of all

dialog menus (ex. the Filters Menu)

background

.wrDialogShadow
{background: -webkit-
gradient(linear, left top, left
bottom, from(white), to(Blue));}

.wrPopupMenu Modifies the background of all

popup menus (ex. the Folder

Management Menu)

background .wrPopupMenu{ background: -
webkit-gradient(linear, left
top, left bottom, from(white),
to(blue));

.wrDesignLeftPane

Modifies the background of the Data

Field Menu in the Report Designer

background-

color

.wrDesignLeftPane{background-
color: Blue;}

.wrDsgnTbContainer

Modifies the background of the

Report Designer

background-

color

.wrDsgnTbContainer{background-
color: Blue;}

.wrTabItem

Modifies the background unselected

tabs

background-

color

.wrTabItem{background-color:
Blue;}

.wrDsgnTbSection

Modifies the gradient behind the

buttons on the Report Designer

background

.wrDsgnTbSection{background: -
webkit-gradient(linear, left
top, left bottom, from(white),
to(Blue));}

Selected Elements
.wrTabItemSelected

Modifies the selected tab background

.wrTabItemSelected{background: -
webkit-gradient(linear, left
top, left bottom, from(white),
to(Blue));}

.wrTreeItemSelected Modifies the selected item in a tree

control

background-

color

.wrTreeItemSelected{background-
color:Purple; }

.wrPopupMenuItemHover,

wrPopupMenuItem:hover

Modifies the selected item popup

menu (ex. the Report Folder

Management)

background-

color

.wrPopupMenuItemHover,

.wrPopupMenuItem:hover{backgroun
d-color:Purple; }

.wrTbImgHover,

.wrMainTbImgHover,

.wrTbImg:hover

Modifies the background of tool bar

images when they are hovered

over.

background-

color

.wrTbImgHover,

.wrMainTbImgHover,

.wrTbImg:hover{background-
color:Orange;}

Other Elements
.wrImageButton,
.wrButton1

Modifies the buttons (ex. Ok,
Cancel)

background .wrImageButton, .wrButton1
{background: -webkit-
gradient(linear, left top, left
bottom, from(white), to(Blue));}

.wrLine

Modifies the lines used throughout
Exago

border-top,
border-

bottom

.wrLine{border-top: solid 1px
#55D8F2;border-bottom: solid 1px
blue;}

.wrDialogDragBar

Modifies the bar atop all dialog

menus (ex. the Filters Menu)

background .wrDialogDragBar{background: -
webkit-gradient(linear, left
top, left bottom, from(white),
to(Blue));}

.wrMainReportDescription Modifies the report description in border .wrMainReportDescriptionContaine

Exago Technical Guide

107 Exago Inc.

Container

the Main Menu r{border: solid 1px blue;}

The code below demonstrates an example of custom CSS styling.

Code:

<style type="text/css">
 .wrMain { color:Red; }

 .wrInputText { color:Blue; }
 .wrTree { color:Green; }
 .wrTreeItemSelected { background-color:Purple; }
 .wrTabItem { color:Aqua; }
 .wrTabItemSelected { color: Pink; }
 .wrDialogTitle { color: Orange; }
 </style>

Before:

After:

Exago Technical Guide

108 Exago Inc.

Changing Icon Images

To further Exago’s integration capabilities, any icon in Exago can be changed on a per-company or per-
user basis.

To change the icons of Exago:

1. Create the custom images you would like to display.

2. Identify the Id of the image you want to change. See Finding Image Ids for more details.

3. Create a language file that maps the Ids to the location of the custom images. See Multi-
Language Support for more information.

Ex. <element id="ExportTypeMenuHtml" image=
"Config\Images\Custom\HTMLExecutIconLarge.png"></element>

Hovering Images

For icons that have hover effects (ex. the next page button on report output) there is a special naming
convention.

To change cusom icons with hover effects:

1. Follow the steps above to create the non-hover icon.

2. Create the custom icon with the hover effect. Save it to have the same name as the non-hover
icon and append “_h” to its name.

Exago Technical Guide

109 Exago Inc.

Finding Image Ids

To find the Ids of icons in Exago:

1. Open Exago in a browser.

2. Use the browser’s developer tools to inspect the icon you want to change. For most browsers
this can be done by pressin F12.

3. Look at the id property of the icon. There will be several words separated by underscores. Use
the last element as the image Id (see example below).

Styling the Administration Console

Though we strongly recommend against exposing the administration console to end-users or clients, it
can be stylized much like the Exago interface.

To style the administration console:

1. Make a copy of ExagoHome.aspx and give it a unique name (ex. CompanyAdmin.aspx)

2. At the top of this copy change the source from WebReportsCtrl.ascx to WebAdminCtrl.ascx (see
example below.

<%@ Page Language="C#" EnableViewState="false" %>
<%@ Register src="WebAdminCtrl.ascx" tagname="WebAdminCtrl" tagprefix="wr" %>

3. Modify surrounding styles and css in the same manner described in the sections above.

Multi-Language Support

NOTE. The language elements discussed in this section do not include those created by users or
administrators such as reports, folders, express report/crosstab themes or Data Field names. To modify
Data Field names please see Column MetaData. To modify theme names please see Express
Report and Crosstab Themes.

To help localize Exago, any text in the application can be translated or modified. This can be
accomplished by creating xml files in the Language folder that map ID’s to strings. Any place within
Exago that displays text has an associated ID. When a text element is required in the application Exago
will read the file(s) specified in the ‘Language File’ parameter of Main Settings and use the string that
is mapped to the ID.

Exago comes with both a standard English file ‘en-us.xml’ and a Spanish translation ‘es-mx.xml’. Below
is an example of the multi-language functionality. Notice that the prompt text in the New Report Wizard
can be set by changing the string associated with the id NewReportLb1.

Exago Technical Guide

110 Exago Inc.

En-us.xml:

<NewReport>
<element id="NewReportLbl">Complete the steps in the wizard below to create a new
report</element>

</NewReport>

Es-mx.xml:

<NewReport>
<element id="NewReportLbl">Complete los pasos en el asistente para crear un nuevo
informe</element>

</NewReport>

NOTE. Some language strings contain special place holders between curly brackets (ex. {0}). These
hold the place of elements that must be filled in dynamically by Exago. Do not translate anything
inside curly brackets. The place holders may be moved within the string but do not delete them.

The example below demonstrates three place holders that will be replaced by dropdown menus in the
Scheduling Wizard.

<element id="ScheduleRecurrenceRelativeMonthlyTxt">The {DayPosition} {DayOfWeek} of every
{MonthNumber} month(s)</element>

Translating Exago

To translate the entire interface, make a copy of the file ‘en-us.xml’ and give it a different name. Make
sure this copy is in the folder ‘<webapp_dir>/Config/Languages’. Without changing the IDs translate
the strings as desired (see example above). Then set the ‘Language File’ parameter of Main Settings
to specify the desired translation.

Exago Technical Guide

111 Exago Inc.

NOTE. If you are using the Exago Scheduler Service be sure to copy all custom language xml files to
the ‘<scheduler_dir>/Languages’ folder of the Scheduler Service.

Modifying Select Language Elements

To change specific language elements without copying the entire mapping you can use a base file and
specify changes in separate language files. When you set the parameter ‘Language File’ list the all of
the files you want to load separated by comas or semicolons. Exago will load the files from left to right,
meaning the first file listed will be used as a base and can be changed by the files loaded after it.

As an example you can create the file en-custom.xml which only contains the lines:

<?xml version="1.0" encoding="utf-8" ?>
<element id="GettingStartedTab">Home</element>

Set the ‘Language File’ parameter to ‘en-us, en-custom’ and the Getting Started tab will reflect the
change made in the custom file.

NOTE. Begin all language xml files with the line ‘<?xml version="1.0" encoding="utf-8" ?>’

Text of Prompting Filters and Parameters on Dashboards

When adding a Report to a Dashbaord a user can specify text for any prompting Filters or Parameters.
By default this text will match the strings associated with the ids
CompositeReportOptionsFilterDefaultPromptText and
CompositeReportOptionsParameterDefaultPromptText respectively.

If a user changes the default and enters a different language Id then the associated text for that new
Id will display when the dashboard is executed.

If a user enters text that does not match any language Id the text will be displayed when the
dashboard is executed.

Exago Technical Guide

112 Exago Inc.

Customizing Getting Started Content

The Getting Started tab is displayed as a user enters Exago. This tab can be customized by loading
custom html. This is done by modifying the language element ‘GettingStartedContent’ in the file ‘en-us-
getting-started.xml’. To assist in customizing the Getting Started tab, Exago provides several JavaScript
functions to open the New Report Wizard, execute reports, open other custom tabs and display reports
as dashboards.

The example below demonstrates a custom tab with links to the New Report Wizard and Dashboards.

NOTE. It is recommended to make custom tabs in a separate language file to make it easy to change
tabs by user or groups of users. See Modifying Select Language Elements.

Creating Additional Custom Tabs

Addition custom tabs can be created by creating two language elements with unique names. One
element specifies the title of the custom tab and the second contains the html content. Custom tabs

Exago Technical Guide

113 Exago Inc.

can be opened with the JavaScript function wrAddTabbedContent (see Available JavaScript
Functions).

The example below demonstrates a custom tab that has buttons to launch reports.

<element id="QuickReportsTabName">Quick Reports</element>
<element id="QuickReportsTab">

<style type="text/css">
 .Button
 {
 height:20px;
 width: 60px;
 color: black;
 font-size:8pt;
 margin-right:5px;
 }
 .divProductDescription
 {
 margin-bottom:3px;
 }
 </style>
 <p style="font-family:Arial; font-size:12pt; font-weight:bold; text-decoration:underline;
text-align:center; margin-bottom:10px;">Click the format below the report you want to run. </p>

 <div class="divProductDescription">
 Revenue by Category (with drilldown) - Complete list of revenue generated
by each category of products.
 </div>
 <div class="divProductButtons">
 <input type="button" class="Button" value="HTML" onclick="wrExecuteReport('Sales
Reports\\Revenue by Category','html')" />
 <input type="button" class="Button" value="EXCEL" onclick="wrExecuteReport('Sales
Reports\\Revenue by Category','excel')" />
 <input type="button" class="Button" value="PDF" onclick="wrExecuteReport('Sales
Reports\\Revenue by Category','pdf')" />
 <input type="button" class="Button" value="RTF" onclick="wrExecuteReport('Sales
Reports\\Revenue by Category','rtf')" />
 <input type="button" class="Button" value="CSV" onclick="wrExecuteReport('Sales
Reports\\Revenue by Category','csv')" />
 </div>
</element>

Available JavaScript Functions

To assist with the creation of custom tab content, Exago provides a small number of JavaScript
functions to allow custom html to call features of Exago.

void wrStartNewReportWizard()

Description Opens the New Report wizard in a new tab.

Example Ex. Click <span style="text-decoration:underline; cursor:pointer;"

onclick="wrStartNewReportWizard();">here to create a new

report.

Exago Technical Guide

114 Exago Inc.

void wrStartDuplicateReportDialog(string reportFolder\\reportName):

Description Opens the Duplicate Report dialog.

Remark If the report name is null or blank Exago will use the report selected in the Main
Menu.

Example Ex. Click <span style="text-decoration:underline; cursor:pointer;" onclick="

wrStartDuplicateReportDialog();">here to create a duplicate this
report.

void wrExecuteReport(string reportFolder\\reportName, string format)

Description Executes the specified report in the specified format.

Example Ex. <input type="button" class="Button" value="HTML"
onclick="wrExecuteReport('Sales Reports\\Revenue by Category','html')

string wrGetSelectedReportName()

Description Returns the name of the report that is selected in the Main Menu.

Remark The returned string will include the folder structure of the report separated by
slashes.

void wrAddTabbedContent(string ContentID, string TabName)

Description Opens a new tab and loads the html stored in the element of the Language file that

corresponds to the Content ID.

Remark The ContentID should match the element ID of the html you want to load.

The TabName should make the element ID of the name you want the tab to display.

data-onloadreportname= “ReportFolder\\ReportName”

Description Executes a report as HTML and loads it into a div or iframe.

Remark The report string should be formatted as Report Folder \\ Report Name.

NOTE. When using this function make sure the setting Enable Debugging in Other

settings is False.

Example Ex. <div class="Report" data-onloadreportname="Employee

Reports\\Number of Sales by Employee"></div>

data-useviewer ="True/False"

Exago Technical Guide

115 Exago Inc.

Description Specifies to load a report as raw html or utilize Exago dynamic report viewer.

Remark Default value is True. In cases where the dynamic capabilities of the Exago viewer is

not need set to False to load raw html.

Example Ex. <div class="Report" data-onloadreportname="Employee

Reports\\Number of Sales by Employee" data-useviewer= “False”></div>

data-enablescrolling ="True/False"

Description Specifies whether or not to show scroll bars.

Remark Default value is True. This can helpful for certain reports that may not fit exactly

within the startup content.

Example Ex. <div class="Report" data-onloadreportname="Employee
Reports\\Number of Sales by Employee" data-enablescrolling=

“False”></div>

data-reloadinterval="n"

Description Reloads a report every n seconds.

Remark This function is used in conjunction with data-onloadreportname.

Example Ex. <div class="Report" data-onloadreportname="Employee
Reports\\Number of Sales by Employee" data-reloadinterval="2"></div>

data-allowexport="0/1"

Description Specifies wether or not to show the re-export menu for the report.

Remark The default value is 0 (does not show the menu). Set to 1 to have the re-export
options display.

Example Ex. <div class="Report" data-onloadreportname="Employee

Reports\\Number of Sales by Employee" data-reloadinterval="1"></div>

Themes: Charts, Crosstabs, Express Reports & Maps

Themes allow a user to quickly stylize reports or elements of reports such as maps and charts. Exago
comes with several themes pre-installed. Additional custom themes can also be created.

Pre-installed themes are saved in the Themes folder of Exago. By default custom themes are saved in
the Report Path, which is specified in Main Settings. Alternatively the host application can manage
theme storage by implementing the GetTemplate, GetTemplateList, and SaveTemplate functions. See
Report and Folder Management for more information.

Exago Technical Guide

116 Exago Inc.

NOTE. To support multi-language functionality, if the theme name concatenated with ‘_wrThemeId’
matches the id of any element in the language files then the string of that language element will
be displayed to the user instead of the theme name. Ex. For the Basic theme that is installed with
Exago, there exists a language id ‘Basic_wrThemeId’. The string associated with this id is displayed.
For more information see Multi-Language Support.

Chart Themes

A user can quickly select colors for Charts by applying a chart theme.

To create custom Chart themes:

1. In folder specified in the Report Path of Main Settings create a text file containing a comma
separated list of the css values of the desired colors. Save the file and change the extension to
‘wrth’.

NOTE. The file name will be displayed to the end user. To translate the name of a custom
theme, see the note above section.

Ex: The theme ‘Cocktails In Miami.wrth’ contains the list: Navy, #00ff00,Yellow,Orange,Red.

Crosstab Themes

A user can quickly style Crosstabs by applying a crosstab theme. Crosstab themes can specify
background color, foreground color, section shading, borders, fonts and text size.

To create custom Crosstab themes:

1. Create a Crosstab with as several Tabulation Data, Row Headers, Column Headers as well as
sub-totals and grand totals.

NOTE. If a user adds more Tabulation Data, Row Headers or Colum Headers than existed on the
theme they will appear without styling. We recommend Crosstab Themes have five Row
Headers, Column Headers, Tabulation Data, sub-total rows, and sub-total columns as well as a
grand total row and a grand total column.

2. In the Report Designer stylize each cell of the Crosstab as desired.

3. Move your cursor over the Crosstab. Notice a dropdown menu appears in the bottom left corner.

4. Hold Alt+Ctrl+Shift and click on the dropdown.

Exago Technical Guide

117 Exago Inc.

5. Click ‘Save as Theme’.

6. Enter a name for the Theme. This name will be displayed to the end-users.

Express Report Themes

A user can quickly style Express Reports by applying an express report theme. Express report themes
can specify background color, foreground color, section shading, borders, fonts and text size.

To create custom Express Report themes:

1. Create an Express Report with Headers, Footers and a Page Header/Footer and a Grand Total.

NOTE. If a user adds more Columns, Headers, or Footers than existed on the theme they will
appear without styling. We recommend Express Report Themes utilize many Columns, Headers
and Footers.

2. In the Layout tab stylize the report as desired.

3. Hold Alt+Ctrl+Shift and click on the save button ().

4. Enter a name for the theme. This name will be displayed to the end-users.

Exago Technical Guide

118 Exago Inc.

Map Themes

A user can quickly select colors for Maps by apply ing a map theme.

To create custom Map themes:

1. In folder specified in the Report Path of Main Settings create a text file containing a comma
separated list of the css values of the desired colors. Save the file and change the extension to
‘wrtm’.

NOTE. The file name will be displayed to the end user. To translate the name of a custom
theme, see the note above section.

Ex: The theme ‘Cocktails In Miami.wrtm’ contains the list: Navy, #00ff00,Yellow,Orange,Red.

Using Exago within a WinForm

To embed Exago within a WinForm application the following properties should be set within the
WebReportsCtrl line of the .aspx page that contains Exago (default is Exagohome.aspx).

 WinFormsApp – Set to True to ensure proper functionality within Exago.

 BrowserEmulation – Forces Exago to emulate the behavior of a specific browser. Valid Values
are as follows: IE7, IE8, IE9, Firefox, Chrome, and Safari.

The example below shows these properties being set to force emulation of IE9 and make Exago aware
that it is running within a WinForms application.

<wr:WebReportsCtrl ID="WebReportsCtrl" runat="server" BrowserEmulation="IE9" WinFormsApp="true"
/>

NOTE. The Host application can disable right clicking within Exago by setting the property
IsWebBrowserContextMenuEnabled on the browser control to False.

Cloud Environment Integration

Exago Technical Guide

119 Exago Inc.

By default, Exago stores all f iles on the server where it is installed, however, Exago can be deployed in
cloud environments. This can be accomplished through either direct support of Microsoft Azure or by
building a .NET Assembly or Web Service to handle the storage and retrieval of reports, folders,
themes, document templates, images and temporary files.

Azure Cloud Support

To deploy Exago within an Azure environment the storage of 3 file-groups must be handled.

 Configuration files
 Reports, folders, themes, and document templates
 Temp files and and images

Configuration File Storage

Configuration files are the xml and encrypted xml that is created by the Admnistration Console. Instead
of being stored in the default ./Config folder, these files can be stored in Azure.

This can be accomplished in one of two ways:

 Within the root directory of Exago modify the file ‘appSettings.config’ and add the Azure
connection information as shown in the example below.
Ex: <appSettings>

<add key="ExagoConfigPath" value="pathtype=azure;credentials='My Azure
Credentials Connection String';storagekey=config"/>
</appSettings>

Then when the host application instantiates the Api use the api constructor that includes the
Azure Path using the same connection string as above.

o For the .Net Api use Constructor(string appVirtualPath, string configFile, string
azurePath)

 Within the host application add the xml below to either the web.config or app.config file to
specify the Azure connection information.

Ex: <appSettings>
<add key="ExagoConfigPath" value="pathtype=azure;credentials='My Azure

Credentials Connection String';storagekey=config"/>
</appSettings>

NOTE. For details on the format of Azure connection strings please see the section Report Storage
below.

Report Storage

Exago has direct support for the storage and retrieval of reports, foldersm, themes, and templates
using Microsoft Azure. To enable this set the Report path of Main Settings in the Administration
Console to an Azure path that follows the format below.

pathtype=azure;credentials='Credentials String';storagekey=``;usefilestorage=false

 Pathtype: Indicates the type of report repository. Currently, the only valid value is ‘Azure’.
 Credentials: Indicates the credentials to the Azure account.

Exago Technical Guide

120 Exago Inc.

 Storagekey: (optional) Defaults to ‘wrreports’. This is prefix for a blob container or fileshare
used to store report files and can be used to allow different sets of report storage based on the
end-user client. For example: If the value for storagekey = ‘user1’ all reports will be stored in
the container or fileshare ‘user1-reports’, templates will be stored in ‘myreports-templates’, and
themes will be stored in ‘user1-themes’.

 Usefilestorage: (optional) Defaults to ‘false’ which uses Azure blob storage. If set to 'true’,
Exago will use Azure file storage.

o As of March 2015 Azure file storage is still in beta and may be unstable.
o Templates and themes always use blob storage.
o Templates are automatically stored in blobs when using the template upload button.
o Themes must be uploaded manually via an external application.

Temp Cloud service

For Exago to store temp files and images in Azure set an azure path with the following format in the
‘Temp Cloud Service’ Main Setting of the Administration Console.

 ‘type=azure;credentials='UseDevelopmentStorage=true;DevelopmentStorageProxyUri=http://12
3.4.5.6’

With the connection string in place Exago will read and write temp files directly to a blob container.

.Net Assembly/Web Service Cloud Support

To integrate Exago into a non-azure cloud environment two things are required.

 Report/Folder Management must be used to store and retrieve reports, folders, themes and
tempaltes. See Report and Folder Management for more information

 A .Net Assembly or Web Service must be implemented to handle the storage and retrieval of
Temp files and Images. See below for more details.

To handle temp file storage create and specify a .Net Assembly or Web Service in the Temp Cloud
Service of the Main Settings in the Administration Console.

NOTE. .NET Assembly format should be ‘assembly = AssemblyFullPath.dll;class-
Namespace.ClassName’. Web Service should be formatted as ‘url=http://WebServiceUrl.asmx’.

The .Net Assembly/Web Service must have the following functions:

void SetValue (string companyId, string userId, string key, byte[] value)

Description Provides the byte content of the temp file to be saved.

Remark The key is the name of the file being stored.

byte[] GetValue (string companyId, string userId, string key)

Exago Technical Guide

121 Exago Inc.

Description Returns the byte content of the temp file.

Remark The key is the name of the file being retrieved.

void CleanUp (string companyId, string userId, int maxFileAge)

Description Optional function to delete old temp files.

Example

using System;

using System.IO;

namespace Exago.Services

{

public class TempStorage

{

public static void SetValue(string companyId, string userId,

string key, byte[] value)

{

File.WriteAllBytes(@"c:\Exago\AssemblyDataSource\Temp\" +

key, value);

}

public static byte[] GetValue(string companyId, string userId,

string key)

{

return

File.ReadAllBytes(@"c:\Exago\AssemblyDataSource\Temp\" +

key);

}

public static void Cleanup(string companyId, string userId, int

maxFileAge)

{

try

{

DateTime expiredTime =

DateTime.Now.AddMinutes(maxFileAge * -1);

DirectoryInfo dirInfo = new

DirectoryInfo(@"c:\Exago\AssemblyDataSource\Temp");

FileInfo[] files = dirInfo.GetFiles();

foreach (FileInfo file in files)

{

if (file.LastWriteTime < expiredTime)

{

try { file.Delete(); }

catch { /* not critical */ }

}

}

}

Exago Technical Guide

122 Exago Inc.

catch { /* not critical */ }

}

}

}

Multi-Tenant Environment Integration

Exago supports a variety of approaches to make sure that users can only access the data that is
assigned to them. These approaches can eliminate the need to create different reports for each user.
This can be done in one of four ways. Using either column, schema, database, or custom SQL based
tenancy.

Column Based Tenancy

The most basic multi-tenant environment is when each table, view and stored procedure has one or
more columns that indicate which user(s) has access to each row.

To set column based tenancy in Exago:

1. Create a Parameter for each tenant column.

NOTE. For these parameters set Hidden to False.

2. For each Data Object click the Tenant Columns dropdown. Use the Tenant Columns menu to
match each tenant column in the Data Object with its corresponding Parameter.

3. When initializing Exago through the Api, set the value of each tenant parameter for the current
user.

Schema Based Tenancy

Some multi-tenant environments create multiple tables/views/stored procedures with the same name
and columns but different database schema. Information is then stored in the appropriate table based
on database schema.

Exago Technical Guide

123 Exago Inc.

To set schema based Tenancy in Exago:

1. On the Data Source set ‘Schema/Owner Name (blank for default)’ to any valid value.

2. For each table/view/stored procedure create a Data Object. In the Name dropdown select the
object that utilizes the schema value used in step 1. This will tell Exago that for this Data Object
it should retrieve the schema from the Data Source.

3. When initializing Exago through the Api, set the schema on the Data Source for the current
user.

Database Based Tenancy

Another way to assure that each user can only access their data is to provide a separate database for
each user. In this situation each database should have the same tables, views and stored procedures.

To support database based tenancy in Exago:

1. Create a Data Source and corresponding Data Objects using any one of the Databases.

2. When initializing Exago through the Api, set the connection string on the Data Source to access
the appropriate database for the current user

Custom SQL Based Tenancy

Multi-Tenant security can also be assured by using Custom SQL for all Data Objects. Exago can pass
parameter values into each SQL statement to filter data based on user.

To set Custom SQL based tenancy in Exago:

1. For each Data Object open the Custom SQL menu and create the desired SQL utiliz ing
parameters to assure only appropriate information is available.

NOTE. Parameters should be surrounded by single quotes.

2. When initializing Exago through the Api, set the value of any parameters utilized in the SQL for
the current user.

Exago Technical Guide

124 Exago Inc.

Manual Application Installation

If the host application is deployed on site it may prove convenient and advantageous to integrate the
installation of Exago into the host’s installer. This section will detail how to integrate the installation. To
accomplish this task there must be an existing installation of Exago, Exago Web Service Api and Exago
Scheduler from which to copy files and directories.

This section will show how to integrate the installation of:

Exago and Exago Web Service Api
Exago Scheduler Service

NOTE. Due to significant differences in IIS before and after version 7, some sections will provide
separate explanations for versions prior to IIS 7 and after IIS 7.

Exago and Exago Web Service Api Installer Integration

Summary

The installer integration of Exago and/or the Exago Web Service Api has four steps:

1. Copy the Exago and/or the Exago Web Service Api files to installation folders.

2. Create IIS Virtual Directory to point to Exago/Exago Web Service Api.

3. Configure IIS as required for Exago/Exago Web Service Api setup.

4. Modify the system registry (optional).

NOTE. The installation of Exago Web Service Api is only used for clients who wish to develop using the
Web Service Api instead of the .NET Assembly.

Exago Technical Guide

125 Exago Inc.

Directory Structure

The directory structure should be preserved as follows:

Exago:
 [Exago Physical Directory]

o /Bin
o /Config
o /Images
o /Temp

Exago Web Service API:
 [ExagoApi Physical Directory]

o /Bin
o /Config

File Installation

The host installer should create a copy of all the files that are initially created by the Exago/Exago Web
Service Api Installer.

NOTE. (optional)

The following configuration files are not part of the initial Exago/Exago Web Service Api installation.
Including the configuration files with the installation will help to minimize manual configuration. The
files are stored in the following directory tree:

Exago:
 /Config/

o WebReports.xml and/or WebReports.xml.enc

Exago Web Service Api:
 /Config

o WebReportsApi.xml

IIS Configuration

The method of creating new web applications and services differs depending on what version of IIS the
server is using. Microsoft made significant changes to IIS versions 7+ which simplified creating new
Web Sites, Virtual Directories, etc.

NOTE. Verify that the Virtual Directory does not exist before attempting to create the new one.

IIS Version 5.0-6.0

Create Virtual Directory

A virtual directory requires the following input:

Exago Technical Guide

126 Exago Inc.

 siteName – Name of the IIS Web Site where it will be installed. (ex. ‘Default Web Site’)
 vDirName – Name of Virtual Directory for the installation (ex. ‘Exago’ or ‘ExagoApi’)
 physicalPath – Physical installation path. (ex. ‘C:\Program Files\Exago\Exago’)

The following C# code provides an example of how to set these properties.

public void CreateVDir(string siteName, string vDirName, string physicalPath)
{

System.DirectoryServices.DirectoryEntry oDE;
System.DirectoryServices.DirectoryEntries oDC;
System.DirectoryServices.DirectoryEntry oVirDir;

oDE = new DirectoryEntry(siteName + "/Root");

//Get Default Web Site

 oDC = oDE.Children;

// Delete before it re-create
bool isVDirExists = true;
try
{

DirectoryEntry dirEnt = oDC.Find(vDirName, oDE.SchemaClassName.ToString());

if (dirEnt != null)
{

//Changed to Update virtual directory physical path.
//If virtual directory already exist do not delete and
//recreate.
dirEnt.Properties["Path"].Value = physicalPath;
dirEnt.CommitChanges();

}
}
catch (DirectoryNotFoundException)
{

isVDirExists = false;
}
catch (COMException comEx)
{

if (comEx.Message == "Exception from HRESULT: 0x80005008")
return;

else
throw;

}

if (isVDirExists)

return;

//Add row
oVirDir = oDC.Add(vDirName, oDE.SchemaClassName.ToString());

//Commit changes for Schema class File
oVirDir.CommitChanges();

//Create physical path if it does not exists
if (!Directory.Exists(physicalPath))
{

Directory.CreateDirectory(physicalPath);
}

Exago Technical Guide

127 Exago Inc.

//Set virtual directory to physical path
oVirDir.Properties["Path"].Value = physicalPath;

//Set read access
oVirDir.Properties["AccessRead"][0] = true;

//Create Application for IIS Application (as for ASP.NET)
oVirDir.Invoke("AppCreate", true);
oVirDir.Properties["AppFriendlyName"][0] = vDirName.Substring(vDirName.LastIndexOf('/') +
1);
oVirDir.Properties["DefaultDoc"][0] = "Home.aspx";
oVirDir.Properties["EnableDefaultDoc"][0] = false;
oVirDir.Properties["AppIsolated"][0] = 2;

//Save all the changes
oVirDir.CommitChanges();

}

Configure Framework

All Exago components require .NET Framework 4.0. Thus, IIS needs to be set to an app pool that also
uses .NET Framework 4.0. The host installer should verify that this Framework is currently installed on
the web server.

The following C# code provides an example of how to check and set the proper Framework.

public static void SetFramework(string webSitePath)
{

try
 {

string frameworkPath = Environment.GetEnvironmentVariable("WINDIR") +
@"\microsoft.net\framework";

 // Check to see if the system has the 64 bit version of .NET
 if (Directory.Exists(frameworkPath + "64"))
 {
 frameworkPath += "64";
 }

 // Set the .NET Framework to .NET 4.0
 string strExe = frameworkPath + @"\v4.0.30319\aspnet_regiis.exe";
 if (File.Exists(strExe))
 {
 ProcessStartInfo pi = new ProcessStartInfo();
 pi.FileName = strExe;
 pi.Arguments = "-s " + webSitePath.Replace(@"IIS://localhost/", "");
 pi.UseShellExecute = false;
 pi.CreateNoWindow = true;
 Process proc = Process.Start(pi);
 proc.WaitForExit();
 }
 }
 catch
 {

 throw;
 }
}

Exago Technical Guide

128 Exago Inc.

IIS Version 7+

The following is a C# code sample of how to create a new IIS installation of Exago/Exago Web Service
API, using Microsoft.Web.Administration.dll. The code requires the following input:

 siteName – Name of the IIS Web Site where it will be installed. (ex. ‘Default Web Site’)

 vDirName – Name of Virtual Directory for the installation (ex. ‘Exago’ or ‘ExagoApi’)

 physicalPath – Physical installation path. (ex. ‘C:\Program Files\Exago\Exago’)

public new void CreateVDir(string siteName, string vDirName, string physicalPath)
{

try
{

ServerManager iisManager = new ServerManager();
string virtDirName = @"/" + vDirName;

// Check if Application/Virtual Directory exists
if (iisManager.Sites[siteName].Applications[virtDirName] != null)
{

iisManager.Sites[siteName].Applications[virtDirName].VirtualDirectories[@"/
"].PhysicalPath =

 physicalPath;
}
// Create new Application/Virtual Directory
else
{

iisManager.Sites[siteName].Applications.Add(virtDirName, physicalPath);

Microsoft.Web.Administration.Application app =
iisManager.Sites[siteName].Applications[virtDirName];

app.ApplicationPoolName = "DefaultAppPool";

}

// Commit changes to the webserver
iisManager.CommitChanges();

}
catch
{

throw;
}

}

Exago Scheduler Installer Integration

Summary

The installer integration of the Exago Scheduler has six steps:

Exago Technical Guide

129 Exago Inc.

1. Check to see if the Exago Scheduler is running as a Windows Service (if so stop this service).

2. Copy the Exago Scheduler files to installation folders.

3. Modify the system registry (optional).

4. Modify the security settings on the Exago Scheduler directory.

5. Create a new Windows Service for the Exago Scheduler

6. Enable the Exago Scheduler service.

File Installation

Before running the installation, the Windows Services should be checked to see if the Exago Scheduler
is currently installed and/or running as a service. If the Exago Scheduler is currently installed and/or
running as a service it should be shut down. The host installer should then create a copy of all the files
that are initially created by the Exago Scheduler Installer.

NOTE. Overwrite the file ExagoScheduler.xml with a version configured for the host application.

The following C# code provides an example of how to stop the scheduler service if it is running.

ServiceState serviceSt = WindowsServiceInstaller.GetServiceStatus(“ExagoScheduler”);

// check to see if the Exago Scheduler service exists
if (serviceSt != ServiceState.NotFound && serviceSt != ServiceState.Unknown)
{

CreateServiceDelegate stDel = new
CreateServiceDelegate(WindowsServiceInstaller.StopService);

stDel(“ExagoScheduler”);

for (int ProgCtr = 0; ProgCtr <= 120; ProgCtr++)
{

Thread.Sleep(1000);
serviceSt = WindowsServiceInstaller.GetServiceStatus(“ExagoScheduler”);

if (serviceSt == ServiceState.Stop)

break;

if (InvokeRequired)
Invoke(new Change(OnChange), ProgCtr);

(sender as BackgroundWorker).ReportProgress(ProgCtr);

}
}

Directory Security Settings

The Exago Scheduler service will require changes to the security settings of the installation directory to
enable Windows to run the program scheduler.exe as a Windows Service.

The following C# code provides an example of how to make the necessary security changes . It requires
the following input.

 dirName – Physical path to Exago Scheduler (ex. ‘c:\Program Files\Exago\ExagoScheduler\’)

Exago Technical Guide

130 Exago Inc.

private void SetDirSecurity(string dirName)
{

try
{

if (dirName == null)
return;

if (!Directory.Exists(dirName))

return;

DirectoryInfo dirInfo = new DirectoryInfo(dirName);

// get a DirectorySecurity object that represents the current
// security settings
DirectorySecurity dirSecurity = dirInfo.GetAccessControl();

// Add the FileSystemAccessRule to the security settings
dirSecurity.AddAccessRule(new FileSystemAccessRule("LOCAL SERVICE",

FileSystemRights.FullControl, AccessControlType.Allow));
dirSecurity.AddAccessRule(new FileSystemAccessRule("LOCAL SERVICE",
 FileSystemRights.FullControl,

InheritanceFlags.ContainerInherit | InheritanceFlags.ObjectInherit,
PropagationFlags.InheritOnly, AccessControlType.Allow));

// Set the new access settings
try
{

dirInfo.SetAccessControl(dirSecurity);
}
catch (Exception ex)
{

MessageBox.Show(ex.Message);
}

}
catch (Exception ex)
{

MessageBox.Show(this,"Unable to set privileges on install directory: " + dirName +
 ". Please set 'LOCAL SERVICE' privileges.\n\nException: " + ex.Message,

"Error");
}

}

Windows Service Creation

Before installing the Exago Scheduler as a new service, verify that it is not installed and/or running. If
the Exago Scheduler is not installed, install the software and make sure it is running.

The following C# code provides an example of how to make this check.

serviceSt = WindowsServiceInstaller.GetServiceStatus(“ExagoScheduler”);
// is Exago Scheduler already installed as a service
if (serviceSt == ServiceState.NotFound || serviceSt == ServiceState.Unknown)
{

// install Exago as a new Windows Service
WindowsServiceInstaller.Install(“ExagoScheduler”,“ExagoScheduler”,

f ilePath + “ExagoScheduler.exe”);

for (int timeCtr = 0; timeCtr <= 120; timeCtr++)
{

Exago Technical Guide

131 Exago Inc.

serviceSt = WindowsServiceInstaller.GetServiceStatus(“ExagoScheduler”);

if (serviceSt == ServiceState.Stop)
{

break;
}

if (InvokeRequired)

Invoke(new Change(OnChange), timeCtr);

(sender as BackgroundWorker).ReportProgress(timeCtr);
}

RegistryKey key = Registry.LocalMachine.OpenSubKey("SYSTEM\\CurrentControlSet\\Services\\" +
 “ExagoScheduler”, true);

if (key != null)
{

key.SetValue("Description", "Exago Scheduler Windows Service");
}

}

// found service already installed, check to see if it is running

else
{

// if the service is not running, attempt to start it
if (this.initialStatus != ServiceState.Stop)
{

CreateServiceDelegate stDel = new CreateServiceDelegate(WindowsServiceInstaller.StartService);
stDel(“ExagoScheduler”);

for (int timeCtr = 0; timeCtr <= 120; timeCtr++)
{

serviceSt = WindowsServiceInstaller.GetServiceStatus(“ExagoScheduler”);

if (serviceSt == ServiceState.Starting || serviceSt == ServiceState.Run)
{

break;
}

if (InvokeRequired)

Invoke(new Change(OnChange), timeCtr);

(sender as BackgroundWorker).ReportProgress(timeCtr);
}

}

}

Optional Setup Information

Registry keys may be added to better enable reinstallation functionality (ex. pre-selecting values such
as installation path, virtual directory name, etc.). These keys are optional and are not required for
installer integration.

Creating a Registry

A new registry item will need to be created in the path HKEY_LOCAL_MACHINE/SOFTWARE. Below are
examples of such paths for the application, the Api and the scheduler.

Exago:
 HKEY_LOCAL_MACHINE

o SOFTWARE
 Exago

 Exago
o Default Web Site/WebReports

Exago Technical Guide

132 Exago Inc.

Exago Web Service Api:
 HKEY_LOCAL_MACHINE

o SOFTWARE
 Exago

 ExagoAPI
o Default Web Site/WebReportsAPI

Exago Web Service Api:
 HKEY_LOCAL_MACHINE

o SOFTWARE
 Exago

 ExagoScheduler

Values in a Registry

The following values can be added to the appropriate registry folders:

 CreateDate – Initial Installation date (ex. 6/17/2012 12:35:60)
 DisplayName – Has two possible values

o Exago/Exago Web Service Api - Set to the Installation Web Site followed by the
Virtual Directory Name (ex. Default Web Site/Exago).

o Exago Scheduler – Set to the directory name where the Exago Scheduler was installed
(ex. Exago).

 Location – Physical installation path (ex. c:\Program Files\Exago\Exago).
 UpdateDate – Initially set to the installation date. Should be updated whenever Exago is

reinstalled.
 Version – Set to the version of Exago being installed (ex. 2012.1.1). This value can be found

by pressing ‘Ctrl + Shift+ V’ in Exago.

Example of Registry

The following C# code provides an example of how to add items to the registry. It requires the
following input.

 application – Set to ‘ExagoScheduler’, ‘Exago’ or ‘ExagoApi’.

 path – Set to the installation path.

 website – Set to the IIS Web Site where Exago is installed. Leave blank for the Exago
Scheduler.

 vdir – Set to the virtual directory that Exago is set up as. Leave blank for the Exago Scheduler.

public static void AddRegistryKey(string application, string path, string webSite, string vdir)
{

try
{
 string ExagoRegKey = application;
 if (application != “ExagoScheduler”)

{

Exago Technical Guide

133 Exago Inc.

 vdir = vdir.Replace(@”\”, @”/”);
 ExagoRegKey += @”\” + webSite + @”/” + vdir;
 }

RegistryKey registryKey = Registry.LocalMachine.OpenSubKey(REGISTRY_KEY_ROOT +
 ExagoRegKey, true);
if (registryKey == null)
{

registryKey = Registry.LocalMachine.CreateSubKey(REGISTRY_KEY_ROOT
+ ExagoRegKey);

if (registryKey == null)
throw (new Exception("Error creating RegistryKey"));

else
registryKey.SetValue("CreateDate",
 System.DateTime.Now.ToString(CultureInfo.InvariantCulture));

}
using (registryKey)
{

registryKey.SetValue("DisplayName", ExagoRegKey);
registryKey.SetValue("UpdateDate",

System.DateTime.Now.ToString(CultureInfo.InvariantCulture));
registryKey.SetValue("Location", path);
registryKey.SetValue("Version",

System.Reflection.Assembly.GetExecutingAssembly().GetName().Version)
;

}

return;
}
catch
{

throw;
}

}

Exago Technical Guide

134 Exago Inc.

Extensibility

The following chapter details features of Exago that can be enhanced or extended by the host
application to provide additional functionality.

Load Balancing Execution

Report execution can be balanced across servers to improve performance. As one execution is being
processed subsequent report execution calls will be sent to different servers in the order they are
specified.

The following instructions provide an overview for setting up report execution on remote servers:

On each remote server:

 Install the Exago Scheduler Service. For detailed instructions see: Scheduler Service
Installation.

 The following conditions must be met:

o The Scheduler version must match the Exago Application version.

o The Scheduler’s language files and the Exago Application’s language files must match.

o Any custom assemblies must be present in the Scheduler directory.

 Configure the Exago Scheduler. For detailed instructions see: Configuring Scheduler
Services.

o By default the execution host will pass the reports back to the Exago Application. In
order to save reports to an external repository, see: Saving Scheduled Reports to
External Repository.

NOTE. Multiple scheduler services can point to the same repository.

In the Exago Application:

1. Using the Admin Console, open the Scheduler Settings menu.

o Set ‘Enable Remote Report Execution’ to True in the Report Scheduling Settings.

o In ‘Remote Execution Remoting Host’ list the servers you want to use delineated by
commas or semicolons (ex. http://MyHttpServer1:2001, tcp://MyTcpServer:2121). The
servers will be prioritized based on the listed order.

NOTE. When multiple remote execution hosts are enabled, the Exago application will prioritize the one
with the lowest number of queued jobs.

NOTE. When an execution host is used for both scheduling and remote execution, the Exago
application will place immediate priority on Remote Execution tasks.

Exago Technical Guide

135 Exago Inc.

Multiple Data Models

In some cases a user may want the same Data Objects to be joined together differently.. To accomplish
this, Data Objects and Joins can be placed into Categories to create multiple data models. When an
end user selects a Data Object from a Category it indicates which joins to use.

The following steps detail how to create multiple data models.

1. In the Administration Console open Other Settings and set ‘Limit Report to One Category’ to
True.

2. Open the configuration file (WebReports.xml) in the Config folder.

3. In the <webreports> section, begin by creating a <category> for each data model.

NOTE. Each xml tag must be closed (ex. <category> must be closed with </category>).

4. For each data model:

5. Specify an ID with the <category_id> tag. The ID should be a unique identifier for the data
model and will be utilized by the Data Objects and Joins.

6. Give the model a name that will be displayed to the end user using the <category_name> tag.

NOTE. The <category_name> tag - acts as a ‘folder’ to group Data Objects. Sub-‘folders’ can be
created by entering the category name followed by a backslash then the sub-category name.
Ex. ‘Sales\Clients’.

Example:

<category>
 <category_name>Exago University\Advisors</category_name>
 <category_id>advisorModel</category_id>
</category>

 For each Data Object (<entity> tag):

o With the <category> tag, create a comma separated list of IDs for each data model

in which you want the Object to be available. In the example below two data models
are specified by their IDs (advisorModel & classesModel).

Example:

<entity>

 <entity_name>Professors</entity_name>
 <db_name>Professor</db_name>
 <category> advisorModel,classesModel</category>
 <datasource_id>7</datasource_id>
 <object_type>xmltable</object_type>
 <key>
 <col_name>ID</col_name>
 </key>

Exago Technical Guide

136 Exago Inc.

 </entity>

 For each Join (<join> tag):

o With the <category> tag, create a comma separated list of IDs for each data model

in which you want the Join to be utilized. In the example below a Join between two
Data Objects is being set to one data model (advisorModel).

Example:

<join>
 <entity_from_name>Professor</entity_from_name>
 <entity_to_name>Student</entity_to_name>
 <join_type>rightouter</join_type>
 <relation_type>1M</relation_type>
 <weight>0</weight>
 <category>advisorModel</category>
 <joincol>
 <col_from_name>ID</col_from_name>
 <col_to_name>Advisor</col_to_name>
 </joincol>
</join>

Example

The following configuration example demonstrates how three Data Objects are made available in two
different relational models. In the advisorModel model Students are joined directly to Professors, while
in the classesModel model Students are joined to Professors indirectly through Classes.

Models:

<category>
 <category_name>Exago University\Advisors</category_name>
 <category_id>advisorModel</category_id>
 </category>
 <category>
 <category_name>Exago University\Classes</category_name>
 <category_id>classesModel</category_id>
 </category>

Data Objects:

 <entity>
 <entity_name>Classes</entity_name>
 <db_name>Class</db_name>
 <category>advisorModel,classesModel</category>
 <datasource_id>7</datasource_id>
 <object_type>xmltable</object_type>
 <key>
 <col_name>ID</col_name>
 </key>
 </entity>
 <entity>
 <entity_name>Students</entity_name>
 <db_name>Student</db_name>
 <category> advisorModel,classesModel </category>

Exago Technical Guide

137 Exago Inc.

 <datasource_id>7</datasource_id>
 <object_type>xmltable</object_type>
 <key>
 <col_name>ID</col_name>
 </key>
 </entity>
 <entity>
 <entity_name>Professors</entity_name>
 <db_name>Professor</db_name>
 <category>advisorModel,classesModel</category>
 <datasource_id>7</datasource_id>
 <object_type>xmltable</object_type>
 <key>
 <col_name>ID</col_name>
 </key>
 </entity>

Joins:

NOTE. The Professors => Classes join is utilized by both Data Models because no <category> is set.

 <join>
 <entity_from_name>Professor</entity_from_name>
 <entity_to_name>Student</entity_to_name>
 <join_type>rightouter</join_type>
 <relation_type>1M</relation_type>
 <weight>0</weight>
 <category>advisorModel</category>
 <joincol>
 <col_from_name>ID</col_from_name>
 <col_to_name>Advisor</col_to_name>
 </joincol>
 </join>
 <join>
 <entity_from_name>Professor</entity_from_name>
 <entity_to_name>Class</entity_to_name>
 <join_type>inner</join_type>
 <relation_type>1M</relation_type>
 <weight>0</weight>
 <joincol>
 <col_from_name>ID</col_from_name>
 <col_to_name>Professor</col_to_name>
 </joincol>
 </join>
 <join>
 <entity_from_name>Student</entity_from_name>
 <entity_to_name>Class</entity_to_name>
 <join_type>inner</join_type>
 <relation_type>1M</relation_type>
 <weight>0</weight>
 <category>classesModel</category>
 <joincol>
 <col_from_name>Enrolled in</col_from_name>
 <col_to_name>Title</col_to_name>
 </joincol>
 </join>

Exago Technical Guide

138 Exago Inc.

External Interface

There are certain features of Exago that the host application may want to control directly. In some
cases Exago provides the ability for the host application to do this by calling out to a specified Web
Service or .NET Assembly with specific methods.

To utilize the External Interface:

1. Create a Web Service or .Net Assembly that contain the functions described below.

2. Specify the Web Service or .NET Assembly in the External Interface property of Other
Settings.

NOTE. A different external interface can be specified within the Scheduling Service
configuration. For more details see Configuring Scheduler Settings.

NOTE. The Web Service should be formatted as ‘url=http://WebServiceUrl.asmx’. The .NET
Assembly should be formatted as ‘assembly =
AssemblyFullPath.dll;class=Namespace.ClassName’. For a .NET Assembly all methods should be
static.

The functions below will use the parameters ‘companyId’, and ‘userId’ which should be set through
the Api as users enter Exago.

Report Execution Start Event

To enable the host to track report executions, Exago and the Exago Scheduling Service will f ire an
event at the start of each report execution. The following method will be used.

void ReportExecuteStart(string companyId, string userId, string reportName)

Description Used to track report execution by user.

Remark Should not return any value.

User Preference Management

By default Exago will store User Preferences such as which Dashboard Reports to execute on startup in
a browser’s cookie. While convenient this means if a user switches browsers or machines their
preferences will be lost. Instead the host application can manage how these User Preferences are
stored using the External interface.

To handle the storage of User Preferences:

1. In the User Settings, set User Preference Storage Method to “External Interface”
2. Implement the following methods:

void SetUserPreference(string companyId, string userId, string id, string value)

Description Used to set a particular user preference value. The id is a unique identifier for the

user preference, and the value is the user preference value (may be null).

Exago Technical Guide

139 Exago Inc.

Remark Should not return any value.

string GetUserPreference(string companyId, string userId, string id)

Description Used to retrieve the value parameter of most recent SetUserPrefernce call for the

companyId and userId.

Remark Returns a string

Handling Time Zones

A server in one time zone may be utilized by users around the globe. This presents problems when
handling functions that run on the server such as Now(). There are two ways to handle such a
situation: Use the Culture Setting, Server Time Zone Offset, or use the external interface functions
below.

NOTE. For these functions to be called the Culture setting Sever Time Zone Offest must be blank.

DateTime ConvertToServerDateTime(string companyId, string userId, DateTime clientDateTime)

Description Used to adjust clients time to server’s time zone.

Remark Returns a DateTime.

DateTime ConvertToClientDateTime(string companyId, string userId, DateTime serverDateTime)

Description Used to adjust server time to client‘s time zone.

Remark Returns a DateTime.

Email List for Report Scheduling

Through the external interface, the Exago Scheduling Service can retrieve email distribution groups
from the host application. This prevents having to maintain separate lists of email addresses within
Exago.

When a report is scheduled, a call out is made to the host application to get the list of email addresses
and distribution groups for the user to select from. This is done with the following method.

string GetEmailListXml(string companyId, string userId)

Description Returns a string listing folders and report names in xml format (see example).

Remark Leave the tag <email> blank for an entry to indicate it is a distribution group.

Exago Technical Guide

140 Exago Inc.

Example

<emailAddressList>
 <item>
 <name>John Smith</name>
 <email>jsmith@mycompanydomain.com</email>
 </item>
 <item>
 <name>Sales Group</name>
 <email></email>
 </item>
</emailAddressList>

If a scheduled report uses a distribution list then the following method will be called at the time the
report is executed.

string GetEmailDistributionListXml(string companyId, string userId, string listName)

Description Returns a string listing folders and report names in xml format (see example).

Remark Do not leave the <email> tag blank. The name item does not need to be returned for

this method.

Example

<emailAddressList>
 <item>
 <email>jsmith@mycompanydomain.com</email>
 </item>
 <item>
 <email>ajones@mycompanydomain.com</email>
 </item>
</emailAddressList>

Custom Scheduler Recipient Window

To utilize the Custom Scheduler Recipient Window feature the following function may exist in the
External Interface. See Custom Scheduler Recipient Window for more information.

string GetEmailList(string controlData)

Description Sends the external interface the Control Data previously provided by host application

when a user clicks OK in the Custom Scheduler Recipient window.

Remark Returns a string of email addresses separated by commas or semi colons.

Scheduler Repository Notification

When ‘Email Scheduled Reports’ is set to False in the Administration Console the following method
will call the External Interface to let the host application know when a scheduled report has been saved
in the Scheduler Repository.

See Saving Scheduled Reports to External Repository for more information.

Exago Technical Guide

141 Exago Inc.

void ScheduledReportExecutionComplete(string companyId, string userId, string reportName, string
exportFileName, int statusCode, string statusMsg)

Description Sends the external interface a notification that a scheduled report has been saved to

the Scheduler Repository.

Remark statusCode is 0 if the execution was successful, 1 if an error occurred or no data

qualified.

statusMsg details the result of the execution (eg. "Report has successfully executed",

or "There were errors in the report layout; please edit or contact your administrator").

Return value is void.

Custom Scheduler Recipient Window

When the functions GetEmailListXml and GetEmailDistributionListXml exist in the External Interface
the To and Cc buttons on the Schedule Report Wizard become clickable and open a dialog for users to
select email addresses or groups. This dialog can be replaced with a custom window created by the
host application.

To utilize a Custom Scheduler Recipient Window:

1. Set a URL, height and width in the Custom Scheduler Recipient Window parameter in the
Scheduler Settings. Ex url=www.CustomScheduler.com;height=100;width=300;

NOTE. Height and Width are numbers that represent the dimensions of the window in pixels.

2. In the custom window utilize the following JavaScript functions:

wrGetScheduleRecipientWindowEmailAddressData ()

Description Use this function to retrieve any existing email address data the user has entered into

the Schedule Report Wizard.

wrSetScheduleRecipientWindowEmailAddressData (string displayData, string controlData)

Description Call this function when the user clicks OK to tell Exago the email address data.

Remark The displayData will appear in the To or Cc box of the Recipients window.

The controlData will be passed back to the Host application when the Scheduled

report is run and sent out.

wrCancelScheduleRecipientWindow ()

Description Call this function to close the custom window.

3. Create the function GetEmailList(string controlData) in the External Interface to convert the
control data into the actual email addresses when the scheduled report has been run and is
ready to be sent.

Exago Technical Guide

142 Exago Inc.

Custom Filter Execution Window

When a report is executed, a filter execution dialog will appear if any of the filters on the report are set
to ‘Prompt for Value’. This dialog can be replaced with a custom window created by the host
application. The custom window can be either a control saved within Exago or a separate webpage
outside of Exago

To create Custom Filter Execution Window as a control within Exago:

1. Create an ascx file in the installation directory of Exago. Ex CustomFilterWindow.ascx

2. Set the control, height and width in the Custom Filter Execution Window parameter in the Filter
Settings. Ex control=CustomFilterWindow.ascx;height=100;width=300;

NOTE. Height and Width are numbers that represent the dimensions of the window in pixels.
These settings are optional. If omitted, the dialog is sized to the value in the
wrDialogMasterContainerCentered css class, which is currently 70%.

3. In the control use the JavaScript functions described below to show the custom filter window
and create or modify filters before report execution begins.

To create Custom Filter Execution Window as a web page:

1. Set a URL, height and width in the Custom Filter Execution Window parameter in the Filter
Settings. Ex url=www.CustomFilterExecution.com;height=100;width=300;

NOTE. Height and Width are numbers that represent the dimensions of the window in pixels.

NOTE. To notify the host application the user’s language the URL will be appended with the
‘Language File’ of Main Settings and a context parameter (listed below). Ex.
www.CustomFilterExecution.com?language=en-us

2. In the custom webpage use the JavaScript functions described below to show the custom filter
window and create or modify filters before report execution begins.

NOTE. all the JavaScript functions must begin with ‘parent.’ as the page is placed inside an
iFrame by Exago.

Available JavaScript Functions

The following JavaScript functions are available for the Custom Filter Execution Window.

object[] wrGetFilterWindowData()

Description Gets the report’s existing filters created in Exago as an array.

Remark Returns an array of filter objects. For more information on the filter objects see

wrReportFilter().

object[] wrGetFilterWindowDataObjects()

Exago Technical Guide

143 Exago Inc.

Description Gets the Data Categories of the report and their associated Data Fields.

Remark Returns an array of representing the available Data Categories.

Each Data Category has a string providing its Name and a sub array representing the
Data Fields.

Each Data field has a string providing its Name and an integer representing its Data

Type. This integer uses the Data Type Constant described below.

DataType Constants:

0 - String
1 – Date

2 – Integer

3 - Bit

4 - Numeric
5 - Float

6 - Decimal

7 - Guid

8 - DateTime

9 – Time - not currently used
10 - Image

NOTE. All the Categories names being passed are the Alias for each Data Object.

Similarly the Data Fields will return the name specified in column metadata if

provided.

string wrGetActiveReportName()

Description Returns the name of the report being executed.

Remark The returned string includes the folder path of the report separated by slashes.

bol wrShowFilterWindow()

Description Displays the custom filter execution window.

void wrReportFilter()

Description Creates a Filter object that can be added to the Filters array returned by

wrSetFilterWindowData().

Remark Filter Objects have the following properties:

Name – The name of the data field being used.

Operator – Operator for filter. Uses enumeration wrFilterOperator
Values – Value(s) of filter

AndFlag – Boolean to set And/Or with next filter.

GroupWithNext – Boolean to group with next filter.

GroupStartCount – The number of opening parentheses that were manually added to
the filter using ctrl + [.

GroupEndCount – The number of closing parentheses that were manually added to

the filter using ctrl +].

DataType – the type of data being filtered. Uses constants DataType (see below.

DataType Constants:
0 - String

Exago Technical Guide

144 Exago Inc.

1 – Date

2 – Integer
3 - Bit

4 - Numeric

5 - Float

6 - Decimal

7 - Guid
8 - DateTime

9 – Time - not currently used

10 - Image

bol wrSetFilterWindowData(object[] filters)

Description Sets the filters for the report, closes the custom filter execution window, and then
begins report execution.

Remark Returns a Boolean to indicate success.

This or wrCancelFilterWindow() should be the last function called by the custom filter
execution window.

bol wrCancelFilterWindow()

Description Closes the custom filter execution window without changing the report’s filters.

Remark Returns a Boolean to indicate success.

This or wrSetFilterWindowData() should be the last function called by the custom

filter execution window.

Example Custom Filter Execution Control

<%@ Control Language="C#" ClassName="MyCustomFilterDialog" EnableTheming="false" %>
Hello Custom Filter Dialog
<input type="button" value="Ok" onclick="OnOk();" />
<input type="button" value="Cancel" onclick="OnCancel();" />
<script type="text/javascript">
 OnOk = function()
 {
 // create array of wrReportFilter objects to send back to parent
 var filters = new Array();
 var filter = new wrReportFilter();
 filter.Name = "Employee.First Name";
 filter.Operator = wrFilterOperator.OneOf;
 filter.Values.push("Travis");
 filter.Values.push("Stew");
 filters.push(filter);
 wrSetFilterWindowData(filters); // also continues execution
 }
 OnCancel = function()
 {
 wrCancelFilterWindow();
 }
 // initialize custom window with values from the parent
 var filters = wrGetFilterWindowData();
 var dataObjects = wrGetFilterWindowDataObjects();

Exago Technical Guide

145 Exago Inc.

 wrShowFilterWindow();
</script>

Example Custom Filter Execution WebPage

<%@ Page Language="C#" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<script runat="server"></script>
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title></title>
 <script type="text/javascript">
 window.onload = function() { Initialize(); };
 function Initialize()
 {
 // initialize custom window with values from the parent
 var filters = parent.wrGetFilterWindowData();
 var dataObjects = parent.wrGetFilterWindowDataObjects();
 parent.wrShowFilterWindow();
 }
 function OnOk()
 {
 // create array of wrReportFilter objects to send back to parent
 var filters = new Array();
 var filter = new parent.wrReportFilter();
 filter.Name = "Employee.First Name";
 filter.Operator = parent.wrFilterOperator.OneOf;
 filter.Values.push("Travis");
 filter.Values.push("Stew");
 filters.push(filter);
 parent.wrSetFilterWindowData(filters); // also continues execution
 }
 function OnCancel()
 {
 parent.wrCancelFilterWindow();
 }
 </script>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <input type="button" value="Ok" onclick="OnOk();" />
 <input type="button" value="Cancel" onclick="OnCancel();" />
 </div>
 </form>
</body>
</html>

Saving Scheduled Reports to External Repository

When using the Exago Scheduling Service you may specify for reports to be saved to a repository
instead of having them emailed as attachments. When a Scheduled report is run and saved a callout to
the External Interface will be made to notify the host application. This will allow the host application
to notify the appropriate users their report is available.

To utilize the Repository:

Exago Technical Guide

146 Exago Inc.

1. Set ‘Email Scheduled Reports’ in the Scheduler Settings to False.

2. In the Exago Scheduling Service installation open the file ExagoScheduler.xml.

3. Set the parameter “<report_path>” to specify the repository you want to use.

4. Create the function ScheduledReportExecutionComplete(string companyId, string userId, string
reportName, string exportFileName, int statusCode, string statusMsg) in the External
Interface to notify the host application the report execution is complete.

Custom Context Sensitive Help

Exago is installed with context sensitive help. When a user clicks the help button a tab appears
displaying the appropriate section of the Exago User Guide. The content of this tab can be replaced
with custom content managed by the host application

To implement Custom Context Sensitive Help:

1. Create a webpage for the custom help.
2. Set the URL of the webpage in the Custom Help Source parameter in Feature/UI Settings.

Ex url=http://www.Customhelp.com/Exago;

NOTE. When a user clicks the help button Exago will populate a tab with the content received
from the URL. To notify the host application the user’s language the URL will be appended with
the ‘Language File’ of Main Settings and a context parameter (listed below). Ex.
http://www.customhelp.com/Exago?helpKey= newreport&language=en-us

Context Parameter Details

tabexecute The user has report output active.

Express Report Wizard

tabExpressName The user has the Name tab of the Express Report Wizard active.

tabExpressCatepgories The user has the Categories tab of the Express Report Wizard active.

tabExpressSorts The user has the Sorts tab of the Express Report Wizard active.

tabExpressFilters The user has the Filters tab of the Express Report Wizard active.

tabExpressLayout The user has the Layout tab of the Express Report Wizard active.

tabExpressOptions The user has the Options tab of the Express Report Wizard active.

New Crosstab Wizard

tabCrosstabName The user has the Names tab of the New Crosstab Report Wizard active.

tabCrosstabCategories The user has the Categories tab of the New Crosstab Report Wizard active .

tabCrosstabFilters The user has the Filters tab of the New Crosstab Report Wizard active.

tabCrosstabLayout The user has the Layout tab of the New Crosstab Report Wizard active.

New Report Wizard

tabStandardName The user has the Names tab of the New Standard Report Wizard active.

tabStandardCategories The user has the Categories tab of the New Standard Report Wizard active.

tabStandardSorts The user has the Sorts tab of the New Standard Report Wizard active.

tabStandardFilters The user has the Filters tab of the New Standard Report Wizard active.

tabStandardLayout The user has the Layout tab of the New Standard Report Wizard active.

Report Designer

tabDesign The user is editing a standard or crosstab report and has the design grid active.

dialogName The user has the Rename Menu active.

dialogDescription The user has the Description Menu active.

dialogCategories The user has the Categories Menu active.

dialogSorts The user has the Sorts Menu active.

Exago Technical Guide

147 Exago Inc.

dialogFilters The user has the Filters Menu active.

dialogGeneralOptions The user has the Options Menu active.

listItemReportHtmlOptionsG

eneral

The user has the General section of the HTML Options active.

listItemReportHtmlOptionsFi

lters

The user has the Filter section of the HTML Options active.

listItemReportHtmlOptionsS

orts

The user has the Sorts section of the HTML Options active.

dialogTemplate The user has the Template Menu active.

dialogJoins The user has the Advanced Menu active.

dialogJoinEdit The user has the Report Join Menu active.

dialogFormulaEditor The user has the Formula Editor active.

dialogLinkedReport The user has the Linked Report Menu active.

tabCellFormatNumber The user has the Number tab of the Cell Format Menu active.

tabCellFormatBoder The user has the Border tab of the Cell Format Menu active.

tabCellFormatConditional The user has the Conditional tab of the Cell Format Menu active.

dialogCrosstabDesign The user has the Crosstab Menu active.

dialogGroup The user has the Group Section Menu active.

dialogSectionShading The user has the Section Shading Menu active.

tabChartType The user has the Type tab of the Chart menu active.

tabChartLabels The user has the Labels tab of the Chart menu active.

tabChartData The user has the Data tab of the Chart menu active.

tabMapType The user has the Type tab of the Map menu active.

tabMapLocations The user has the Locations tab of the Map menu active.

tabMapData The user has the Data tab of the Map menu active.

tabGaugeType The user has the Appearance tab of the Gauge menu active.

tabGaugeData The user has the Data tab of the Gauge menu active.

Dashboards

tabDashboardDesigner The user has the Dashboard designer active.

dialogDashboardUrlOptions The user has the Insert Url menu active.

dialogDashboardName The user has the Dashboard Rename menu active.

dialogDashboardDescription The user has the Dashboard Description menu active.

dialogDashboardOptions The user has the Dashboard Options menu active.

tabDashboardReportOptions The user has the Report tab of the Insert Report menu active.

tabDashboardReportOptions

FilterPrompts

The user has the Filters tab of the Insert Report menu active.

tabDashboardReportOptions

ParameterPrompts

The user has the Parameters tab of the Insert Report menu active.

tabDashboardReportOptions
Options

The user has the Options tab of the Insert Report menu active.

tabDashboardFilterOptionsR

eports

The user has the Reports tab of the Insert Filter menu active.

tabDashboardFilterOptionsFi

lter

The user has the Filter tab of the Insert Filter menu active.

dialogDashboardVisualizatio

nOptions

The user has the Options menu of a Data Visualization active.

Scheduler

tabScheduleReportManager The user has the Schedule Report Manager active.

tabScheduleRecurrence The user has the Recurrence tab of the New Schedule Wizard active.

tabScheduleParameters The user has the Parameter tab of the New Schedule Wizard active.

tabScheduleFilters The user has the Filter tab of the New Schedule Wizard active.

tabScheduleRecipients The user has the Recipients tab of the New Schedule Wizard active.

NOTE. Create a default page to handle any cases where an undocumented or null context
parameter is passed. This guarantees that a valid help page will always be shown.

Report Templates Setup

Exago Technical Guide

148 Exago Inc.

Exago can map data onto PDF, RTF and Excel templates. To utilize this feature the templates must be
properly set up in order to accept data from Exago. After being configured (see below) templates
should be saved in the report path and these templates will be detected automatically by Exago.

NOTE. Configuring templates varies slightly by format.

PDF Templates

On the PDF Template file create Form Fields where you want to map data. Remember that the name of
the field will be displayed to users in Exago.

For items that repeat (those that will be mapped to cells in a ‘detail section’) give each form field the
same name followed by a period and a number starting with 0. (ex. item.0, item.1, item.2, etc.)

Check the Multiline property on any PDF field where data may need to wrap to fit inside the field.

NOTE. Although you can use any program you would like to create and edit PDF templates we
recommend Adobe Acrobat Professional or http://www.pdfescape.com.

Check Boxes in PDF Templates.

Checkboxes are not currently supported in PDF templates. However the steps below detail how to have
Exago populate a text field with a check mark.

1. For the PDF text field you want to contain checks set the font to wingdings. Do not put a border
on the field. Save the template and place it in the report path.

2. In a cell on the report use an IF function whose results are char(254) for a checked box and
char(111) for an unchecked box [ex. =if({Employees.Title} = 'Sales Representative' , char(254),
char(111))]

3. In the Template menu assign the cell to the pdf field.

RTF Templates

For RTF Template files create Bookmarks where you want to map data. Bookmark names do not display
on the document, so we suggest typing the bookmark name in the document where the field will go,
then select the text and make it a bookmark. The typed text within the bookmark will be replaced by
mapped data when the report is executed.

There are two ways to display content that repeats on an RTF Template (those that will be mapped to
cells in a ‘detail section’).

 If there will be a limited number of repetitions. Give each bookmark the same name followed
by an underscore and a number starting with 0. Ex. item_0, item_1, item_2, etc.

 For content that may need to repeat an indefinite number of times. Create a single line of
content and create a bookmark with the name structure RepeatForEach_bookmarkname.

Dynamic content with RTF Templates

RTF Templates may also use Bookmarks to dynamically hide/display text or entire paragraphs.

http://www.pdfescape.com/

Exago Technical Guide

149 Exago Inc.

To do this:

1. Select the text/paragraph you want to display/hide.
2. Make a bookmark using the naming convention KeepIF_name
3. In Exago make a formula that as that returns 1 if the text should be displayed and 0 if it

shouldn’t (ex. ‘=if({Products.ProductName} = ‘Chai’, 1, 0)’)
4. In the Document Template menu set the cell with the if condition to the bookmark.
5. Run the report as RTF.

Excel Templates

The first worksheet of the Excel template should be left blank (except for the first row) as this is where
Exago will populate the data. In the top row of this sheet place the name of the column that will be
seen by the end user. All the other worksheets in the template will remain unchanged by Exago.

Referencing Data in Excel Templates

When using an Excel Template there are two ways for Charts or Pivot Tables to reference the data
populated by Exago: Named Ranges or referencing specific rows.

Named Ranges

Excel has a concept of a Named Range which can be used by Charts or Pivot Tables to refer to a range
of cells.

When creating the Template utilize Named Ranges by:

1. In the formula tab open the Name Manager

2. Add a new Named Range whose name matches the name of the first Worksheet. In the “Refers
To” property select the upper left and upper right boundaries of the desired range. (Ex. If you
want all the data from columns A – J, select cells ‘Sheet1!A1:J1’.)

NOTE. When the report is executed Exago will modify this range to include all of the rows in
these columns that include data. (In the previous example if the report had 100 rows the range
would be updated to ‘Sheet1!A1:J100’.)

Exago Technical Guide

150 Exago Inc.

3. Set the Chart or Pivot Table to use the Named Range as its Data Source.

Row Selection

Instead of using Name Ranges each Chart or Pivot Table can be set to reference the first two rows on
the first worksheet. (Ex. For a template with 5 columns the reference would be ‘=Sheet1!A1:E2’.)
When the data is populated by Exago rows are inserted in a fashion that these references will
automatically expand to incorporate each row of data.

Report and Folder Storage/Management

By default, Exago stores the reports in a file system folder. The location of this folder is specified in the
‘Report Path’ property set in the Admin istration Console. Alternatively, report, template and folder
storage, and retrieval can be handled by building a Web Service or .NET Assembly. This would allow for
reports, folders and templates to be stored in a database. To do this, specify the Web Service or .NET
Assembly in the Report Path of Main Settings. The Web Service or .NET Assembly should contain all
of the methods specified in List of Methods.

User Defined Fields

Exago Technical Guide

151 Exago Inc.

Exago has optional support for a User Defined Field (UDF) in a report. UDFs allow for storing custom
attributes within reports. You can use UDFs in a custom folder management solution in order to
associate an ID with an indiv idual report.

NOTE. UDFs are not required for folder management. They are provided for convenience.

Certain folder management methods are overloaded to support UDFs. These methods are associated
with report retrieval. If a UDF is associated with a report, Exago will pass it as an argument to these
methods.

If a UDF is set it is stored in an element in the report XML called <linked_udf>. Report storage methods
do not overload a UDF argument since they include the report XML as an argument.

List of Methods

NOTE. The methods will use the parameters ‘companyId’, and ‘userId’ which should be set through
the Api as users enter Exago from the host application.

NOTE. If using a .Net Assembly, the folder management code can use alternative method signatures to
be passed Exago’s SessionInfo object for additional flexibility. See Accessing SessionInfo in Folder
Management for more information.

string GetReportListXml(string companyId, string userId)

Description Returns a string listing folders and report names in xml format (see example).

Remark For reports set the flag <leaf_flag> to True. For folders set this flag to False.

If an error occurs return null and a generic error will be displayed to the user.

Example Returns:

 <entity>
 <name>Travis' Reports</name>
 <leaf_flag>false</leaf_flag>
 <readonly_flag>false</readonly_flag>
 <entity>
 <name>Sales Report</name>
 <leaf_flag>true</leaf_flag>
 <readonly_flag>false</readonly_flag>
 </entity>
 <entity>
 <name>Employee Reports</name>
 <leaf_flag>false</leaf_flag>
 <readonly_flag>false</readonly_flag>
 <entity>
 <name>Employee Benefits Report</name>
 <leaf_flag>true</leaf_flag>
 <readonly_flag>false</readonly_flag>
 </entity>
 </entity>
 </entity>

string GetReportXml(string companyId, string userId, string reportName, [string udfData = null])

Exago Technical Guide

152 Exago Inc.

Description Returns a string containing the report in xml format.

Remark If an error occurs return null and a generic error will be displayed to the user.

string SaveReport(string companyId, string userId, string reportName, string reportXml)

Description Saves a report (reportName is fully qualified)

Remark Returns an error message if one occurs, else return null.

NOTE. To support multi-language functionality, if the returned string matches the id of

any element in the language files then the string of that language element will be

displayed to the user instead of the returned value. For more information see Multi-
Language Support.

string DuplicateReport(string companyId, string userId, string reportName, string reportXml)

Description Duplicates a report (reportName is fully qualified). If this method is not provided,

SaveReport will be called.

Remark Returns an error message if one occurs, else return null.

NOTE. To support multi-language functionality, if the returned string matches an id of

any element in the language files then the string of that language element will be

displayed to the user instead of the returned value. For more information see Multi-

Language Support.

string DeleteReport(string companyId, string userId, string reportName, [string udfData = null])

Description Deletes a report (reportName is fully qualified)

Remark Returns an error message if one occurs, else return null.

NOTE. To support multi-language functionality, if the returned string matches the id of

any element in the language files then the string of that language element will be

displayed to the user instead of the returned value. For more information see Multi-

Language Support.

string RenameReport(string companyId, string userId, string reportName, string newReportName,
[string udfData = null])

Description Renames a report (reportName & newReportName are fully qualified). If this method

is not provided, DeleteReport and SaveReport will be called.

Remark Returns an error message if one occurs, else return null.

NOTE. To support multi-language functionality, if the returned string matches the id of

any element in the language files then the string of that language element will be

displayed to the user instead of the returned value. For more information see Multi-
Language Support.

Exago Technical Guide

153 Exago Inc.

string AddFolder(string companyId, string userId, string folderName)

Description Adds a report folder (folderName is fully qualified). Folder should not be named to

one that already exists.

Remark Returns an error message if one occurs, else return null.

NOTE. To support multi-language functionality, if the returned string matches the id of

any element in the language files then the string of that language element will be

displayed to the user instead of the returned value. For more information see Multi-

Language Support.

string DeleteFolder(string companyId, string userId, string folderName)

Description Deletes a report folder (folderName is fully qualified).

Remark Exago’ default report template management will not allow a folder to be deleted that

contains any reports.

Returns an error message if one occurs, else return null.

NOTE. To support multi-language functionality, if the returned string matches the id of

any element in the language files then the string of that language element will be
displayed to the user instead of the returned value. For more information see Multi-

Language Support.

string RenameFolder(string companyId, string userId, string oldName, string newName)

Description Renames a report folder (folder names are fully qualified). Folder should not be

moved to a location where a Folder with a matching name already exists.

Remark Returns an error message if one occurs, else return null.

NOTE. To support multi-language functionality, if the returned string matches the id of

any element in the language files then the string of that language element will be
displayed to the user instead of the returned value. For more information see Multi-

Language Support.

string MoveFolder(string companyId, string userId, string oldName, string newName)

Description Moves a report folder (folder names are fully qualified). Folder should not be

renamed to one that already exists.

Remark Returns an error message if one occurs, else return null.

NOTE. To support multi-language functionality, if the returned string matches the id of

any element in the language files then the string of that language element will be

displayed to the user instead of the returned value. For more information see Multi-
Language Support.

bool ExistFolder(string companyId, string userId, string folderName)

Exago Technical Guide

154 Exago Inc.

Description Determines if a folder exists.

Remark Returns true or false.

List<string> GetTemplateList(string companyId, string userId)

Description Returns a list of strings or a string array containing the available templates.

Remark If an error occurs return null and a generic error will be displayed to the user.

byte[] GetTemplate(string companyId, string userId, string templateName)

Description Returns a byte array containing the template.

Remark If an error occurs return null and a generic error will be displayed to the user.

string SaveTemplate(string companyId, string userId, string templateName, byte[] templateData)

Description Saves a template

Remark Returns an error message if one occurs, else return null.

Note: To support multi-language functionality, if the returned string matches the id of

any element in the language files then the string of that language element will be

displayed to the user instead of the returned value. For more information see Multi-
Language Support.

List<string> GetThemeList(string companyId, string userId, string themeType)

Description Returns a list of strings or a string array containing the available themes.

Remark Valid values of themeType: “CrossTab”, “Express”.

If an error occurs return null and a generic error will be displayed to the user.

bool ExistTheme(string companyId, string userId, string themeType, string themeName)

Description Determines if a theme exists.

Remark Valid values of themeType: “CrossTab”, “Express”.

Returns true or false.

string GetThemeXml(string companyId, string userId, string themeType, string themeName)

Exago Technical Guide

155 Exago Inc.

Description Returns a string representing the theme in xml format.

Remark Valid values of themeType: “CrossTab”, “Express”.

If an error occurs return null and a generic error will be displayed to the user.

string SaveTheme(string companyId, string userId, string themeType, string themeName, string
themeXml)

Description Saves a theme.

Remark Valid values of themeType: “CrossTab”, “Express”.

Returns an error message if one occurs, else return null.

NOTE. To support multi-language functionality, if the returned string matches the id of

any element in the language files then the string of that language element will be
displayed to the user instead of the returned value. For more information see Multi-

Language Support.

Accessing SessionInfo in Folder Management

This section only applies to Folder Management using a .Net Assembly.

After adding a reference to WebReportsApi.dll you may gain additional flex ibility by replacing
companyId and userId with Exago’ sessionInfo object in the methods listed above. The sessionInfo
object grants access to all of the parameters, configuration, and report information of the Exago
session. See Exago SessionInfo for more information.

To utilize the sessionInfoObject replace the companyId and userId parameters in the method
signatures above with sessionInfo sessionInfo (see example below).

NOTE. To use the sessionInfoObject all the methods must be static.

Utiliz ing the sessionInfo object will allow the folder management code to access much more
information about the user and/or Exago. For example the capability to access the sessionInfo object
could be used to pass additional parameters to your folder management code such as the preferred
language of the user or from which part of the host application they entered Exago.

NOTE. Passing the sessionInfo object will lock the folder management Assembly. In order to unlock the
assembly, either IIS will need to be restarted, or the application pool running Exago will need to be
recycled.

The following is an example of the method signature for GetReportXml to utilize the sessionInfo object.

string GetReportXml(SessionInfo sessionInfo, string reportName)

Description Returns a string containing the report in xml format.

Exago Technical Guide

156 Exago Inc.

Remark If an error occurs return null and a generic error will be displayed to the user.

companyId and userId can still be retrived using the calls
sessionInfo.SetupData.Parameters.GetValue(‘comapnyId’) and

sessionInfo.SetupData.Parameters.GetValue(‘userId’) respectively.

The sessionInfo object must be the first parameter in the method.

Application Logging

An administrator can configure how Exago handles logging in order to change or extend functionality.

Logging Defaults

By default Exago saves a log file called ‘WebReportsLog.txt’ to the application’s Temp path (specified in
‘WebReports.xml’). The logger maintains a lock on the file for the lifespan of the application. The log
file cannot be edited or deleted without restarting the application.

There are three configurable verbosity levels for the logger. By default, Exago runs at the Info level.

 Error – Only logs error messages in the application.

 Info – Logs SQL statements, number of rows returned from each statement, and report
execution information, as well as all Error messages.

NOTE. Report execution information includes the following:

On execution start: Start time, userId, companyId, full report name, filter summary.

On execution end: End time, runtime, userId, companyId, full report name.

 Debug – Logs a variety of debugging information that can be used to time specific parts of the
app, as well as all Info and Error messages.

The logger can load its configuration from a file and continually watch the file for changes. A config file
can be used to lock or unlock the log file, as well as to customize and extend logging capability.

To create a custom config file, create a file called ‘log4net.config’ in the Config directory of the
Exago application. The following shows a sample config file:

<log4net>
 <appender name="RollingFileAppender" type="log4net.Appender.RollingFileAppender">
 <file value="C:\Exago\Temp\WebReportsLog.txt" />
 <encoding value="utf-8" />
 <appendToFile value="true" />
 <rollingStyle value="Size" />
 <maxSizeRollBackups value="10" />
 <maximumFileSize value="1MB" />
 <staticLogFileName value="true" />
 <lockingModel type="log4net.Appender.FileAppender+ExclusiveLock" />
 <layout type="log4net.Layout.PatternLayout">
 <conversionPattern value="%date %-5level [%property{SessionId}]
%message%newline"/>

Exago Technical Guide

157 Exago Inc.

 </layout>
 </appender>

 <!-- Setup the root category, add the appenders and set the default level -->
 <root>
 <level value="INFO" />
 <appender-ref ref="RollingFileAppender" />
 </root>
</log4net>

Custom Logging

Exago uses Apache Log4Net to handle custom logging. For more information and extensibility features,
see: Apache log4net. See the following examples for some simple modifications:

Changing Logfile Location

<file value="Path\To\Log.txt" />

Specifies the directory and filename for the log file.

Changing Logging Level

<level value="INFO" />

Specifies the Exago logging level: ERROR, INFO, or DEBUG.

Unlocking the Log File

<lockingModel type="log4net.Appender.FileAppender+ExclusiveLock" />

Configures the locking model in use for the log file. To temporarily disable the write lock, you can use:
log4net.Appender.FileAppender+MinimalLock

NOTE. This will result in a performance reduction until it is reset.

https://logging.apache.org/log4net/

Exago Technical Guide

158 Exago Inc.

Exago API

The following chapter details the Application Programming Interface (API) offered by Exago.

About

The Exago application consists of two basic parts: the user interface (and all of its support code), and
the Api. The user interface is built entirely on top of the .NET Api. This means .NET Applications can
interface directly with Exago. Non-.NET applications can interface through the Web Service Api which
offers a subset of the .NET Api.

NOTE. Non Windows IIS applications can interface with the Exago Web Service Api as long as a
Windows IIS Server is setup to run Exago and the Web Service Api.

.NET API

To use the .NET Api the host application must include a reference to the assembly WebReportsApi.dll in
its project.

Quick List of Name Spaces and Classes

Below the Name Spaces employed by Exago are listed. The name spaces utilized to integrate Exago
display their classes below.

WebReports.Api – main namespace; contains Api class used in application integration.
 Api
WebReports.Api.Charts – Chart creation and processing classes.
WebReports.Api.Common – Common classes used by classes in other namespaces.

ReportObjectFactory
 ReportObject
WebReports.Api.Custom – Classes used for custom work.
WebReports.Api.Composite.Dashboard – Classes used for Dashboard Reports.
 DashboardReport
WebReports.Api.Data – Data source and access classes.
 DataSource
 DataSourceCollection
WebReports.Api.Export – Report execution export classes.
WebReports.Api.Reports – All classes used in report creation.
 Filter
 Report
 ReportFilterCollection
 ReportSortCollection
 Sort
WebReports.Api.ExecuteData – Classes used for report execution processing.
WebReports.Api.Roles – Role creation and processing classes.
 DataObject
 DataObjectCollection
 DataObjectRow

Exago Technical Guide

159 Exago Inc.

 DataObjectRowCollection
 Folder
 FolderCollection
 General
 Parameter
 ParameterCollection
 Role
 RoleCollection
 Security
WebReports.Api.ReportMgmtBase – Base class used for report and folder management.

Exago Technical Guide

160 Exago Inc.

WebReports.Api

Api Class

The Api class is the main interaction class between Exago and the host application. All API session
parameters are accessed through this class. An Api object should be the first thing that is
created to interact with Exago.

An Api object has the following properties:

 Action – Value that may indicate to execute a report or open Exago directly to the Report
Design Grid or New Report Wizard. For the values ‘EditReport’, ‘NewReport’,
‘NewCrossTabReport, and ‘NewExpressReport’ the main menu will be disabled.

o Uses the enumeration wrApiAction(Default, Home, ExecuteReport, EditReport,
NewReport, NewCrossTabReport, NewExpressReport, NewDashboardReport,
ScheduleReport, ScheduleReportManager).

o NOTE. If you have a Report object loaded then the value of Default will execute the
report directly. Otherwise it will open the home page.

 AppVirtualPath – IIS virtual directory of Exago’ location. This should be set to an absolute
path (i.e. /ExagoWebSite/Exago).

 DataSources – DataSources collection. See DataSourceCollection Class.

 Parameters – Parameters collection. See ParameterCollection Class.

 ReportObjectFactory – Used to manage all report objects within the application. See
ReportObjectFactory Class.

 ReportScheduler – Scheduler object. See Report Scheduler Class.

 Roles – Roles collection. See RoleCollection Class.

 ShowTabs – Boolean value. Set to False to hide the tabs and help button of Exago.

 DefaultReportName – String value used in conjunction with api.Action.

o When api.Action is set to NewReport, NewCrossTabReport or
NewExpressReport: The DefaultReportName provides the full path name for the
report. The Info tab of the new report wizard will be hidden and the report designer will
not display menus to rename the report or change its description.

o When api.Action is set to EditReport: If DefaultReportName is any non-empty value
the report designer will not display menus to rename the report or change its
description.

An Api object has the following methods:

Constructor()

Exago Technical Guide

161 Exago Inc.

Remark Do not call this method from the .NET Api.

Constructor(string appVirtualPath)

Description Initializes an Api object and sets the AppVirtualPath.

Remarks Return value is void.

Constructor(string appVirtualPath, string configFile)

Description Initializes an Api object, sets the AppVirtualPath and loads the specified configuration.

Remarks Can be used to load configuration other than WebReport.xml.

Return value is void.

Constructor(string appVirtualPath, string configFile, string azurePath)

Description Initializes an Api object, sets the AppVirtualPath and loads the specified configuration

from Azure.

Remarks The specified Azure path must match that is app.config in the Exago installation. See
Azure Cloud Support for more information.

Return value is void.

GetUrlParamString()

Description Calls GetUrlParamString(“ExagoHome”)

Remarks Return value is void.

GetUrlParamString(string webPageName)

Description Returns the URL parameter string used to redirect browser or frame to Exago. Append

this string to your Exago URL.

GetUrlParamString(string webPageName, boolean showErrorDetail)

Description Returns the URL parameter string used to redirect browser or frame to Exago.

Append this string to your Exago URL. Set showErrorDetail to True to display detailed
error messages.

Exago Technical Guide

162 Exago Inc.

WebReports.Api.Data

DataSource Class

The DataSource class is used to set or override the data connection string of a pre-existing data source
at runtime.

A DataSource object has the following properties:

 Name – Name of the data source.

 DataConnStr – Value of data connection string.

A DataSource object has no available methods.

DataSourceCollection Class

This collection should not be instantiated; there is a single DataSourceCollection object that is
accessed through the DataSources property of the Api object.

The DataSources property of an Api object has one available method:

GetDataSource(string dataSourceName)

Description Returns a DataSourceObject. Returns Null if the object is not found.

Exago Technical Guide

163 Exago Inc.

WebReports.Api.Common

ReportObjectFactory Class

The ReportObjectFactory class is the entry point to application report object manipulation. This factory
manages access to reports via API, updating that report’s schedules when required (rename, delete),
and creation of new reports. This class logically sits on top of ReportMgmtBase and ReportScheduler
for higher level report management.

The ReportObjectFactory has the following properties:

 Active – The active report object. The active report object is whichever report was most recently
created/loaded/deleted/etc.

The ReportObjectFactory has the following methods:

ReportObject Create(wrReportType reportType)

Description Create a new report object, it has yet to be saved into the report repository

Remarks The created report object is made the active report object on return.

Both the Report class and the DashboardReport class inherit from ReportObject, a
cast to the appropriate child class is required for more specific access to the report.

ReportObject LoadFromRepository(string name)

Description Load an existing report object from the report repository.

Remarks The loaded report object is made the active report object on return.

Both the Report class and the DashboardReport class inherit from ReportObject, a
cast to the appropriate child class is required for more specific access to the report.

void Delete(string name)

Description Delete the provided report from the report repository.

Remarks The deleted report object is made the active report object on return.

void Delete(ReportObject reportObject)

Description Delete the provided report object the report repository.

Remarks The deleted report object is made the active report object on return.

Exago Technical Guide

164 Exago Inc.

void Delete()

Description Delete the currently active report object from the report repository.

void Rename(string name, string newName)

Description Rename the provided report in the report repository.

Remarks The renamed report object is made the active report object on return.

void Rename(ReportObject reportObject, string newName)

Description Rename the provided report object in the report repository.

Remarks The renamed report object is made the active report object on return.

void Rename(string newName)

Description Rename the currently active report object in the report repository.

void Copy(string name, string newName)

Description Copy the provided report in the report repository to another location in the report

repository.

void Copy(ReportObject reportObject, string newName)

Description Copy the provided report object to another location in the report repository.

void SaveToRepository(ReportObject reportObject)

Description Save the provided report object to the report repository. If it already exists it will be

overwritten.

void SaveToApi(ReportObject reportObject)

Description Save the provided report object to an API area which can be accessed by the
application once it’s given control via Api.GetUrlParamString

ReportObject Class

The ReportObject class is an abstract class that all report objects derive from. It contains all properties
and methods that are common for any type of report within the application.

The ReportObject has the following properties:

Exago Technical Guide

165 Exago Inc.

 ExportType – This value indicates which format to export the report.

o Uses the enumeration wrExportType (Html, Excel, Pdf, Rtf, Csv).

 IsEditAllowed – Boolean value. If False the report object cannot be edited because the active
role does not have access to one or more elements defined in the report object.

 IsExecuteAllowed - Boolean value. If False the report cannot be executed because the active
role does not permit access to one or more Data objects on the report.

WebReports.Api.Composite.Dashboards

DashboardReport Class

The DashboardReport class allows dashboard reports to be executed and manipulated from the host
application. This class does not need to be instantiated, it should be retrieved using methods defined in
ReportObjectFactory. The DashboardReport class is derived from the ReportObject abstract class.

A DashboardReport object has the following properties:

ReportItems – A list of ReportItem objects, each representing a report contained within the dashboard.
To find the index of a particular report on a dashboard:

 Enter the dashboard designer.
 Press Ctrl+Shift+I.
 Click on the desired report. The index will appear in the reports title bar.

ReportItem Class

The ReportItem class represents a report that is contained within a dashboard report.

A ReportItem object has the following properties:

Report – The report that this ReportItem represents (fully qualif ied name).

The ReportItem object has the following methods:

void SetFilterValue(string filterName, wrFilterOperator filterOperator, List<string> filterValues)

Description Set the dashboard value for a promptable filter that exists on this report

Remarks The number of entries in filterValues depends on the filter operator.

void SetParameterValue(string parameterName, string parameterValue)

Exago Technical Guide

166 Exago Inc.

Description Set the dashboard value for a promptable parameter that exists on this report

WebReports.Api.Reports

Filter Class

The Filter class is used to modify filters at runtime. New Filter objects should be created by the
NewFilter method of ReportFilterCollection.

A Filter object has the following properties:

 AndOrWithNext – Value indicates to use an ‘and’ or ‘or’ with the next filter added.

o Uses the enumeration wrFilterAndOrWithNext (And, Or).

 DbName - The fully qualif ied database (not mnemonic) name of the filter (i.e.
‘vw_optionee.Last Name’).

 GroupWithNext – Boolean indicating if the filter should be grouped with the next filter.

 Operator – The comparison operator.

o Uses the enumeration wrFilterOperator (EqualTo, NotEqualTo, LessThan, GreaterThan,
LessThanOrEqualTo, GreaterThanOrEqualTo, StartsWith, EndsWith, Contains, Between,
NotBetween, OneOf, NotOneOf).

 Prompt – Boolean indicating whether to prompt user for the value of this filter at time of
execution.

 Value – value of the filter if it uses an Operator that only takes a single value. Dates must be in
the following format YYYY-MM-DD.

 DataValues – values of the filter using an Operator that takes multiple values, such as One Of
or Between.

A Filter object has no available methods.

Report Class

The Report class allows standard and express reports to be executed directly from the host application.
This class does not need to be instantiated, it should be retrieved using methods defined in
ReportObjectFactory. The Report class is derived from the ReportObject abstract class.

A Report object has the following properties:

 Filters – Filters collection. See ReportFilterCollection class below.

 Sorts – Sorts collection. See ReportSortCollection class below.

 ShowStatus – Boolean value. This value indicates whether to show status window during
execution. Default is True.

Exago Technical Guide

167 Exago Inc.

A Report Object has the following methods:

GetExecuteHtml()

Description Executes the report and returns HTML.

Remarks The raw HTML can be used to populate a container in the host application. Does not

include Exago paging HTML viewer.

GetExecuteData()

Description Executes the report and returns data as a byte array.

Remarks Any export type can be executed in this way; use the ExportType property prior to

calling this method to set the export type.

GetExecuteSql()

Description Returns all SQL statements that would be generated as a result of executing the
report.

Remarks There may be more than one SQL statement generated if the report uses more than

one SQL data source.

ReportFilterCollection Class

This collection should not be instantiated; there is a single ReportFilterCollection object that is
accessed through the Filters property of the Report object.

The Filters property of a Report object has one available method:

NewFilter()

Description Returns a new Filter object and adds it to the collection.

Remarks The returned Filter object needs to have all of its properties filled or an error will

occur.

ReportSortCollection Class

This collection should not be instantiated; there is a single ReportSortCollection object that is
accessed through the Sorts property of the Report object.

The Sorts property of a Report object has one available method:

NewSort()

Exago Technical Guide

168 Exago Inc.

Description Returns a new Sort object and adds it to the collection.

Remarks The returned Sort object needs to have all of its properties filled or an error will occur.

Sort Class

The Sort class is used to modify sorts at runtime. New Sort objects should be created by the NewSort
method of ReportSortCollection.

A Sort object has the following properties:

 DbName – The fully qualif ied database (not mnemonic) name of the sort (i.e.
‘vw_optionee.Last Name’).

 Direction – Direction of the sort.

o Uses the enumeration wrSortDirection (Ascending, Descending)

A Sort object has no available methods.

Exago Technical Guide

169 Exago Inc.

WebReports.Api.Roles

DataObject Class

The DataObject class can allow or deny access to specific Data Objects for a particular user session.

A DataObject object has the following property:

 Name – The name (non-mnemonic) of the Data Object to include or exclude.

o A DataObject in the DataObjectCollection will be excluded if the property IncludeAll is
True and included if it is False.

A DataObject object has no available methods.

DataObjectCollection Class

This collection should not be instantiated; there is a single DataObjectCollection object that is
accessed through the DataObjects property of the Security object.

The DataObjectCollection has the following property:

 IncludeAll – Boolean indicating whether to include all of the Data Objects (default) or none of
the Data Objects.

The DataObjects property of a Security object has the following method:

GetDataObject (string dataObjectName)

Description Returns the DataObject object or null if not found.

NewDataObject ()

Description Returns a new DataObject object and adds it to the collection.

Remarks The returned DataObject object needs to have all of its properties filled or an error

will occur.

DataObjectRow Class

The DataObjectRow class can set Row Level filters to Data Objects for a particular user session.

A DataObjectRow object has the following properties:

 ObjectName – The name (non-mnemonic) of the Data Object.

 FilterString – The filter string for the Data Object. The filter string will be placed into the SQL
WHERE clause.

A DataObjectRow object has no available methods.

Exago Technical Guide

170 Exago Inc.

DataObjectRowCollection Class

This collection should not be instantiated; there is a single DataObjectRowCollection object that is
accessed through the DataObjectRoles property of the Security object.

The DataObjectRoles property of a Security object has the following method:

GetDataObject (string dataObjectRowName)

Description Returns the DataObjectRow object or null if not found.

NewDataObjectRow ()

Description Returns a new DataObjectRow object and adds it to the collection.

Remarks The returned DataObjectRow object needs to have all of its properties filled or an

error will occur.

Folder Class

The Folder class is used to allow or deny access to folders or sets folders as execute-only for a
particular user session.

A Folder object has the following propert ies:

 Name – The name (non-mnemonic) of the folder to include/exclude.

o The folder in the FolderCollection will be excluded if the property IncludeAll is True and
included if it is False.

 ReadOnly – Boolean indicating whether a folder is read only. Default is False.

 Propagate – Not used: Parameters set for a folder are always propagated down to all of its
subfolders unless parameters for specific child folder are set.

A Folder object has no available methods.

FolderCollection Class

This collection should not be instantiated; there is a single FolderCollection object that is accessed
through the Folders property of the Security object.

A FolderCollection object has the following property:

 IncludeAll – Boolean indicating whether to include all of the folders (default) or none.

 ReadOnly – Global read-only for all of the folders in the collection. Indiv idual Folder objects
can be set with a different ReadOnly property.

 AllowManagement – Boolean indicating whether or not to allow users to manage folders. Set
to False to hide the Manage Folder Icon.

Exago Technical Guide

171 Exago Inc.

The Folders property of a Security object has the following method:

GetFolder (string folderName)

Description Returns the Folder object or null if not found.

NewFolder ()

Description Returns a new Folder object and adds it to the collection.

Remarks The returned Folder object needs to have all of its properties filled or an error will
occur.

General Class

The General class is utilized to overwrite the General Settings of the Administration Console. This
collection should not be instantiated; there is a single General object that is accessed through the
General property of the Role object.

The General property of the Role object has the following properties:

 DbTimeout – The amount of time (in seconds) to allow the database to execute a query
before returning to Exago.

 DateFormat – Used to format dates on a report output.

 CurrencySymbol – The symbol prepended to currency numbers on a report output.

 SeparatorSymbol – The symbol used to separate 3 digits of number on a report output.

 ReadFilterValues – Boolean value that indicates whether to show a list of data values
associated with a specific filter in the Report Filters window. In certain cases, allowing this can
result in a lengthy delay of showing filter values, however, this depends on the amount of data,
the complexity of data object, etc. If the delay is unacceptable, setting this value to ‘false’ will
disable the feature.

 ShowGrid – Boolean value that indicates whether to show the grid in the Report Designer. Also
sets the ‘Show Grid Lines’ default HTML in Report Options.

 ReportVirtualPath – IIS virtual path for the location of the report path.

The General property of the Role object does not have any available methods.

Parameter Class

The Parameter class is used to create and modify Parameters.

A Parameter object has the following properties:

 Id – Name of the parameter.

NOTE. Parameter names ARE case sensitive.

Exago Technical Guide

172 Exago Inc.

 Value – The value being stored in the parameter.

A Parameter object has the following available methods:

Constructor (string paramId, string paramValue)

Description Instantiates a Parameter object with the specified Id and Value.

ParameterCollection Class

This collection should not be instantiated; there is a single ParameterCollection object that is
accessed through the Parameters property of the Api object.

The Parameter property of an Api object has the following method:

GetParameter(string parameterId)

Description Returns the Parameter object or null if not found.

Role Class

The Role class contains all of the information concerning General and Security parameters. A Role can
be created at runtime and used for a single session or loaded from the roles that have been created
through the Administration Console. For more information see Roles.

This collection should not be instantiated; there is a single RoleCollection object that is accessed
through the Role property of the Api object.

A Role object may have the following properties:

 General – Access to all of the General Parameters. See General Class.

 Security – Access to all of the Security Parameters. See Security Class.

A Role object has one available method:

Activate()

Description Makes this role active.

RoleCollection Class

This collection should not be instantiated; there is a single RoleCollection object that is accessed
through the Roles property of the Api object.

GetRole(string roleId)

Description Returns the Role object or null if not found.

Exago Technical Guide

173 Exago Inc.

NewRole()

Description Returns a new Role object and adds it to the collection.

Remarks The returned Role object needs to have all of its properties filled or an error will occur.

Security Class

The Security class contains all of the security parameters for a user session.

This collection should not be instantiated; there is a single Security object that is accessed
through the Security property of the Role object.

The Security object has the following properties:

 Folders – Controls access to all of the FolderCollection parameters. See FolderCollection
class.

 DataObjects – Controls access to all of the DataObjectCollection parameters. See
DataObjectCollection class.

 DataObjectRows – Controls access to all of the DataObjectRowCollection parameters. See
DataObjectRowCollection class.

There are no available methods for a Security object.

Exago Technical Guide

174 Exago Inc.

WebReports.Api.Scheduler

ReportScheduler Class

The ReportScheduler class can be used to schedule reports to run on a regular basis. Output can be
emailed or stored in a repository. The output destination (email or storage) is normally set on a global
basis. This API allows you to override the global setting for indiv idual report schedules if desired.

A ReportScheduler object uses the following enumerations:

 ReportScheduleInfo.WeekOfMonthType – weeks of the month.

o Uses the enumeration WeekOfMonthType (First, Second, Third, Fourth, Last)

 ReportScheduleInfo.DayOfWeekType – days of the week.

Uses the enumeration DayOfWeekType (Day, Weekday, Weekendday, Sunday, Monday, Tuesday, The
API is designed to mirror the capabilities of the SchedulerWizard in the Exago main interface. There
are a few concepts that will be helpful to understand in using the API. In general each API call
requires the following information:

 Schedule name: A “handle” to refer to this schedule.

 Recurrence Information: usually a Start Date and Time, recurrence pattern and end
condition. The end condition may be “No end condition” which indicates that the schedule
should execute indefinitely according to the specified recurrence pattern. In certain instances,
the recurrence information uses static Enumerations from the ReportScheduleInfo class.

 Email information: Includes To List, CC List, BCC List, Subject and Body. A new class
ScheduleEmailInfo has been created to easily pass this information.

NOTE. a small number of Scheduler API calls don’t follow the above pattern. For example, there
are CreateOnceSchedule and CreateImmediateSchedule calls that don’t use any recurrence
information.

For each schedule type that uses a recurrence pattern the following rules apply:

- The start time can be passed in one of two ways:

o As the Time Component of the startDate DateTime

o As a separate TimeSpan schedTime

The TimeSpan will always take precedence if not null. If the TimeSpan is null, the scheduler
will use the Time element of startDate

- The end condition can be set in one of three ways

o No End Condition: Report executions will continue indefinitely

o End by number of occurrences: Executions will cease after N occurrences, where N is a
passed parameter

Exago Technical Guide

175 Exago Inc.

o End by Date: Executions will cease after a certain date where the date is a passed
parameter.

Each type of call is overloaded to reflect the desired end condition. For example, there are three
possible ways to create an “Every Weekday” schedule:

void CreateEveryWeekdaySchedule(string name, DateTime rangeStartDate, TimeSpan schedTime,
SchedulerEmailInfo emailInfo) //No end condition

void CreateEveryWeekdaySchedule(string name, DateTime rangeStartDate, int
rangeEndAfterNOccurrences, TimeSpan schedTime, SchedulerEmailInfo emailInfo) //End by number of
occurrences

void CreateEveryWeekdaySchedule(string name, DateTime rangeStartDate, DateTime rangeEndDate,
TimeSpan schedTime, SchedulerEmailInfo emailInfo) //End by date

As noted above, report output can be sent through email or stored to a repository, and the choice can
be made with the schedule. Passing a ScheduleEmailInfo object to the appropriate argument will tell
the Exago Scheduler to send output through email based on the passed information. Passing null for
the argument will tell the scheduler to archive the output for that schedule.

NOTE. Archiv ing requires a Report Path to be set in the Scheduler Configuration XML. The
Report Path tells the scheduler where to store the output.

A ReportScheduler object has the following methods:

void CreateImmediateSchedule(string name, SchedulerEmailInfo emailInfo)

Description Schedules a report to be run immediately.

Remarks Before calling this method be sure to activate the report you want to schedule using
api.ReportObjectFactory.LoadFromRepository()

See SchedulerEmailInfo class for information on emailInfo.

void CreateOnceScheduleByDateTime(DateTime schedDateTime, string name, TimeSpan schedTime,
SchedulerEmailInfo emailInfo)

Description Schedule a report to be run every weekday.

Report will be executed indefinitely.

Remarks Before calling this method be sure to activate the report you want to schedule using
api.ReportObjectFactory.LoadFromRepository()

If schedTime is null the time component of schedDateTime will be used to determine

the time the report is run.

See SchedulerEmailInfo class for information on emailInfo.

Exago Technical Guide

176 Exago Inc.

void CreateEveryWeekdaySchedule(string name, DateTime rangeStartDate, int
rangeEndAfterNOccurrences, TimeSpan schedTime, SchedulerEmailInfo emailInfo)

Description Schedules a report to be run every weekday.

Report will be executed the number of times specified in rangeEndAfterNOccurrences.

Remarks Before calling this method be sure to activate the report you want to schedule using
api.ReportObjectFactory.LoadFromRepository()

If schedTime is null the time component of schedDateTime will be used to determine

the time the report is run.

See SchedulerEmailInfo class for information on emailInfo.

void CreateEveryWeekdaySchedule(string name, DateTime rangeStartDate, DateTime rangeEndDate,
TimeSpan schedTime, SchedulerEmailInfo emailInfo)

Description Schedules a report to be run every weekday.

Report will be executed until the specified rangeEndDate.

Remarks Before calling this method be sure to activate the report you want to schedule using
api.ReportObjectFactory.LoadFromRepository()

If schedTime is null the time component of schedDateTime will be used to determine
the time the report is run.

See SchedulerEmailInfo class for information on emailInfo.

void CreateEveryNDaySchedule(string name, int everyNDays, DateTime rangeStartDate, TimeSpan
schedTime, SchedulerEmailInfo emailInfo)

Description Schedules a report to be run on a daily interval.

Report will be executed indefinitely.

Remarks Before calling this method be sure to activate the report you want to schedule using
api.ReportObjectFactory.LoadFromRepository()

everyNDays indicates the interval at which the schedule is run (e.g. every 10 days).

If schedTime is null the time component of schedDateTime will be used to determine

the time the report is run.

See SchedulerEmailInfo class for information on emailInfo.

void CreateEveryNDaySchedule (string name, int everyNDays, DateTime rangeStartDate, int
rangeEndAfterNOccurrences, TimeSpan schedTime, SchedulerEmailInfo emailInfo)

Description Schedules a report to be run on a daily interval.

Report will be executed the number of times specified in rangeEndAfterNOccurrences.

Exago Technical Guide

177 Exago Inc.

Remarks Before calling this method be sure to activate the report you want to schedule using
api.ReportObjectFactory.LoadFromRepository()

everyNDays indicates the interval at which the schedule is run (e.g. every 10 days).

If schedTime is null the time component of schedDateTime will be used to determine

the time the report is run.

See SchedulerEmailInfo class for information on emailInfo.

void CreateEveryNDaySchedule(string name, int everyNDays, DateTime rangeStartDate, DateTime
rangeEndDate, TimeSpan schedTime, SchedulerEmailInfo emailInfo)

Description Schedules a report to be run on a daily interval.

Report will be executed until the specified rangeEndDate.

Remarks Before calling this method be sure to activate the report you want to schedule using
api.ReportObjectFactory.LoadFromRepository()

everyNDays indicates the interval at which the schedule is run (e.g. every 10 days).

If schedTime is null the time component of schedDateTime will be used to determine

the time the report is run.

See SchedulerEmailInfo class for information on emailInfo.

void CreateWeeklySchedule(string name, int everyNWeeks, List<DayOfWeek> days, DateTime
rangeStartDate, TimeSpan schedTime, SchedulerEmailInfo emailInfo)

Description Schedules a report to be run on a weekly interval.

Report will be executed indefinitely.

Remarks Before calling this method be sure to activate the report you want to schedule using
api.ReportObjectFactory.LoadFromRepository()

everyNWeeks indicates the interval at which the schedule is run (e.g. every 2 weeks).

days indicates a list of the days each week to run the schedule.

If schedTime is null the time component of schedDateTime will be used to determine

the time the report is run.

See SchedulerEmailInfo class for information on emailInfo.

void CreateWeeklySchedule(string name, int everyNWeeks, List<DayOfWeek> days, DateTime
rangeStartDate, int rangeEndAfterNOccurrences, TimeSpan schedTime, SchedulerEmailInfo emailInfo)

Description Schedules a report to be run on a weekly interval.

Report will be executed until the specified rangeEndDate.

Exago Technical Guide

178 Exago Inc.

Remarks Before calling this method be sure to activate the report you want to schedule using
api.ReportObjectFactory.LoadFromRepository()

everyNWeeks indicates the interval at which the schedule is run (e.g. every 2 weeks).

days indicates a list of the days each week to run the schedule.

If schedTime is null the time component of schedDateTime will be used to determine

the time the report is run.

See SchedulerEmailInfo class for information on emailInfo.

void CreateWeeklySchedule(string name, int everyNWeeks, List<DayOfWeek> days, DateTime
rangeStartDate, int rangeEndDate, TimeSpan schedTime, SchedulerEmailInfo emailInfo)

Description Schedules a report to be run on a weekly interval.

Report will be executed the number of times specified in rangeEndAfterNOccurrences.

Remarks Before calling this method be sure to activate the report you want to schedule using
api.ReportObjectFactory.LoadFromRepository()

everyNWeeks indicates the interval at which the schedule is run (e.g. every 2 weeks).

days indicates a list of the days each week to run the schedule.

If schedTime is null the time component of schedDateTime will be used to determine

the time the report is run.

See SchedulerEmailInfo class for information on emailInfo.

void CreateMonthlyScheduleByNumericDay(string name, int everyNMonths, int numericDay, DateTime
rangeStartDate, TimeSpan schedTime, SchedulerEmailInfo emailInfo)

Description Schedules a report to be run on a specific day each month.

Report will be executed indefinitely.

Remarks Before calling this method be sure to activate the report you want to schedule using
api.ReportObjectFactory.LoadFromRepository()

everyNMonths indicates the interval at which the schedule is run (e.g. every 2

months).

numericDay indicates the day of each month to run the schedule (e.g. 17).

If schedTime is null the time component of schedDateTime will be used to determine

the time the report is run.

See SchedulerEmailInfo class for information on emailInfo.

void CreateMonthlyScheduleByNumericDay(string name, int everyNMonths, int numericDay, DateTime
rangeStartDate, int rangeEndAfterNOccurrences, TimeSpan schedTime, SchedulerEmailInfo emailInfo)

Exago Technical Guide

179 Exago Inc.

Description Schedules a report to be run on a specific day each month.

Report will be executed the number of times specified in rangeEndAfterNOccurrences.

Remarks Before calling this method be sure to activate the report you want to schedule using
api.ReportObjectFactory.LoadFromRepository()

everyNMonths indicates the interval at which the schedule is run (e.g. every 2
months).

numericDay indicates the day of each month to run the schedule (e.g. 17).

If schedTime is null the time component of schedDateTime will be used to determine

the time the report is run.

See SchedulerEmailInfo class for information on emailInfo.

void CreateMonthlyScheduleByNumericDay(string name, int everyNMonths, int numericDay, DateTime
rangeStartDate, DateTime rangeEndDate, TimeSpan schedTime, SchedulerEmailInfo emailInfo)

Description Schedules a report to be run on a specific day each month.

Report will be executed the specified rangeEndDate.

Remarks Before calling this method be sure to activate the report you want to schedule using
api.ReportObjectFactory.LoadFromRepository()

everyNMonths indicates the interval at which the schedule is run (e.g. every 2

months).

numericDay indicates the day of each month to run the schedule (e.g. 17).

If schedTime is null the time component of schedDateTime will be used to determine

the time the report is run.

See SchedulerEmailInfo class for information on emailInfo.

void CreateMonthlyScheduleByDescriptionDay(string name, int everyNMonths, WeekOfMonthType
ordinal, DayOfWeekType dayOfWeek, DateTime rangeStartDate, TimeSpan schedTime,
SchedulerEmailInfo emailInfo)

Description Schedules a report to be run on a described day each month.

Report will be executed indefinitely.

Remarks Before calling this method be sure to activate the report you want to schedule using
api.ReportObjectFactory.LoadFromRepository()

everyNMonths indicates the interval at which the schedule is run (e.g. every 2

months).

ordinal used in context with dayOfWeek describe when during each month to run the

scheduled report.

If schedTime is null the time component of schedDateTime will be used to determine

Exago Technical Guide

180 Exago Inc.

the time the report is run.

ordinal and dayOfWeek are enumerations detailed at the beginning of this section

See SchedulerEmailInfo class for information on emailInfo.

void CreateMonthlyScheduleByDescriptionDay(string name, int everyNMonths, WeekOfMonthType
ordinal, DayOfWeekType dayOfWeek, DateTime rangeStartDate, int rangeEndAfterNOccurrences,
TimeSpan schedTime, SchedulerEmailInfo emailInfo)

Description Schedules a report to be run on a described day each month.

Report will be executed the number of times specified in rangeEndAfterNOccurrences.

Remarks Before calling this method be sure to activate the report you want to schedule using
api.ReportObjectFactory.LoadFromRepository()

everyNMonths indicates the interval at which the schedule is run (e.g. every 2

months).

ordinal used in context with dayOfWeek describe when during each month to run the
scheduled report.

If schedTime is null the time component of schedDateTime will be used to determine

the time the report is run.

ordinal and dayOfWeek are enumerations detailed at the beginning of this section

See SchedulerEmailInfo class for information on emailInfo.

void CreateMonthlyScheduleByDescriptionDay(string name, int everyNMonths, WeekOfMonthType
ordinal, DayOfWeekType dayOfWeek, DateTime rangeStartDate, DateTime rangeEndDate, TimeSpan
schedTime, SchedulerEmailInfo emailInfo)

Description Schedules a report to be run on a described day each month.

Report will be executed the specified rangeEndDate.

Remarks Before calling this method be sure to activate the report you want to schedule using
api.ReportObjectFactory.LoadFromRepository()

everyNMonths indicates the interval at which the schedule is run (e.g. every 2

months).

ordinal used in context with dayOfWeek describe when during each month to run the
scheduled report.

If schedTime is null the time component of schedDateTime will be used to determine

the time the report is run.

ordinal and dayOfWeek are enumerations detailed at the beginning of this section

See SchedulerEmailInfo class for information on emailInfo.

Exago Technical Guide

181 Exago Inc.

void CreateYearlyScheduleByNumericDay(string name, int numericMonth, int numericDay, DateTime
rangeStartDate, TimeSpan schedTime, SchedulerEmailInfo emailInfo)

Description Schedules a report to be run on a specific month and day each year.

Report will be executed indefinitely.

Remarks Before calling this method be sure to activate the report you want to schedule using
api.ReportObjectFactory.LoadFromRepository()

numericMonth indicates the month of each year to run the schedule (e.g. 3).

numericDay indicates the day of each month to run the schedule (e.g. 17).

If schedTime is null the time component of schedDateTime will be used to determine
the time the report is run.

See SchedulerEmailInfo class for information on emailInfo.

void CreateYearlyScheduleByNumericDay(string name, int numericMonth, int numericDas, DateTime
rangeStartDate, int rangeEndAfterNOccurrences, TimeSpan schedTime, SchedulerEmailInfo emailInfo)

Description Schedules a report to be run on a specific day each month.

Report will be executed the number of times specified in rangeEndAfterNOccurrences.

Remarks Before calling this method be sure to activate the report you want to schedule using
api.ReportObjectFactory.LoadFromRepository()

numericMonth indicates the month of each year to run the schedule (e.g. 3).

numericDay indicates the day of each month to run the schedule (e.g. 17).

If schedTime is null the time component of schedDateTime will be used to determine
the time the report is run.

See SchedulerEmailInfo class for information on emailInfo.

void CreateYearlyScheduleByNumericDay(string name, int numericMonth, int numericDay, DateTime
rangeStartDate, DateTime rangeEndDate, TimeSpan schedTime, SchedulerEmailInfo emailInfo)

Description Schedules a report to be run on a specific day each month.

Report will be executed the specified rangeEndDate.

Remarks Before calling this method be sure to activate the report you want to schedule using
api.ReportObjectFactory.LoadFromRepository()

numericMonth indicates the month of each year to run the schedule (e.g. 3).

numericDay indicates the day of each month to run the schedule (e.g. 17).

If schedTime is null the time component of schedDateTime will be used to determine
the time the report is run.

Exago Technical Guide

182 Exago Inc.

See SchedulerEmailInfo class for information on emailInfo.

void CreateYearlyScheduleByDescriptionDay(string name, int numericMonth, WeekOfMonthType
ordinal, DayOfWeekType dayOfWeek, DateTime rangeStartDate, TimeSpan schedTime,
SchedulerEmailInfo emailInfo)

Description Schedules a report to be run on a described day each month.

Report will be executed indefinitely.

Remarks Before calling this method be sure to activate the report you want to schedule using
api.ReportObjectFactory.LoadFromRepository()

numericMonth indicates the month of each year to run the schedule (e.g. 3).

ordinal used in context with dayOfWeek describe when during each month to run the

scheduled report.

If schedTime is null the time component of schedDateTime will be used to determine

the time the report is run.

ordinal and dayOfWeek are enumerations detailed at the beginning of this section.

See SchedulerEmailInfo class for information on emailInfo.

void CreateYearlyScheduleByDescriptionDay(string name, int numericMonth, WeekOfMonthType
ordinal, DayOfWeekType dayOfWeek, DateTime rangeStartDate, int rangeEndAfterNOccurrences,
TimeSpan schedTime, SchedulerEmailInfo emailInfo)

Description Schedules a report to be run on a described day each month.

Report will be executed the number of times specified in rangeEndAfterNOccurrences.

Remarks Before calling this method be sure to activate the report you want to schedule using
api.ReportObjectFactory.LoadFromRepository()

numericMonth indicates the month of each year to run the schedule (e.g. 3).

ordinal used in context with dayOfWeek describe when during each month to run the

scheduled report.

If schedTime is null the time component of schedDateTime will be used to determine

the time the report is run.

ordinal and dayOfWeek are enumerations detailed at the beginning of this section See

SchedulerEmailInfo class for information on emailInfo.

void CreateYearlyScheduleByDescriptionDay(string name, int numericMonth, WeekOfMonthType
ordinal, DayOfWeekType dayOfWeek, DateTime rangeStartDate, DateTime rangeEndDate, TimeSpan
schedTime, SchedulerEmailInfo emailInfo)

Description Schedules a report to be run on a described day each month.

Exago Technical Guide

183 Exago Inc.

Report will be executed the specified rangeEndDate.

Remarks Before calling this method be sure to activate the report you want to schedule using
api.ReportObjectFactory.LoadFromRepository()

numericMonth indicates the month of each year to run the schedule (e.g. 3).

ordinal used in context with dayOfWeek describe when during each month to run the
scheduled report.

If schedTime is null the time component of schedDateTime will be used to determine

the time the report is run.

ordinal and dayOfWeek are enumerations detailed at the beginning of this section

See SchedulerEmailInfo class for information on emailInfo.

SchedulerEmailInfo Class

The SchedulerEmailInfo class is utilized used by methods of ReportScheduler objects.

A SchedulerEmailInfo object has the following property:

 toAddrs – list of email addresses and/or distribution lists for the 'To' field of the email.

 ccAddrs – list of email addresses and/or distribution lists for the ‘cc’ field of the email.

 bcAddrs – list of email addresses and/or distribution lists for the 'bc' field of the email.

NOTE. If toAddrs, ccAddrs and bcAddrs are all null, Exago will attempt to archive the report to
the Scheduler Repository.

 Subject – The subject of the email.

 body – The body text of the email.

Other Notes

Using MySQL through the .NET Api

For Exago .NET Api to connect to a MySQL database add the following to the host application’s
web.config file.

<system.data>
 <DbProviderFactories>
 <remove invariant="MySql.Data.MySqlClient" />
 <add name="MySQL Data Provider" invariant="MySql.Data.MySqlClient" description=".NET
Framework Data Provider for MySQL"
type="MySql.Data.MySqlClient.MySqlClientFactory, MySql.Data, Version=6.3.6.0,
 Culture=neutral, PublicKeyToken=c5687fc88969c44d" />
 </DbProviderFactories>
</system.data>

Exago Technical Guide

184 Exago Inc.

Additionally if the host application does not already have a MySQL ADO.NET Data Adapter copy the file
‘Exago/bin/MySql.Data.dll’ to the host application’s bin folder.

Examples

To access the Exago Api, add a reference to the assembly WebReportsApi.dll to your project.

In all of the examples below the return value should be checked for validity. The examples below have
omitted validations for clarity.

Create Api object

// create WebReports API object passing Exago virtual path;
Api api = new Api("ExagoServer/Exago");

Adding/modifying a Role

// create a new runtime Role (is automatically made active)
Role role = api.Roles.NewRole();
// -- OR --
// accessing a pre-created Role and making it active
Role role = api.Roles.GetRole("Admin");
role.Activate();

Adding Folder security to role

// start with privileges to all folders for this user session (this is the default)
role.Security.Folders.IncludeAll = true;

// disallow access to folder 'Stew's Reports' (and any subfolders)
Folder folder = role.Security.Folders.NewFolder();
folder.Name = "Stew's Reports";

// make folder 'Summary Reports' (and any subfolders) read only
Folder folder = role.Security.Folders.NewFolder();
folder.Name = "Summary Reports";
folder.ReadOnly = true;

Adding Data Object security to role

// start with privileges to all data objects (this is the default)
role.Security.DataObjects.IncludeAll = true;

// disallow access to data object ‘vw_cancellation’
DataObject dataObject = role.Security.DataObjects.NewDataObject();
dataObject.Name = "vw_cancellation";

Adding Data Object Row security to role

// don’t allow this user to view rows from the ‘vw_grant’ object with a
// ‘Grant Date’ value of ‘2000-01-01’
DataObjectRow dataObjectRow = role.Security.DataObjectRows.NewDataObjectRow();
dataObjectRow.ObjectName = "vw_grant";
dataObjectRow.FilterString = @"""Grant Date"" <> '2000-01-01'";

Exago Technical Guide

185 Exago Inc.

Setting up several general user session parameters for role (overrides individual global
general parameters)

// set global date format for this user
role.General.DateFormat = "dd/MM/yyyy";

// set currency symbol for this user
role.General.CurrencySymbol = "kr";

Modifying the data connection string of a specific data source

// set data connection string for a specific datasource
DataSource dataSource = api.DataSources.GetDataSource("MyDb");
dataSource.DataConnStr = "Server=SVR;Database=db1;uid=sa;pwd=dba;";

Modifying a parameter value

// modify a parameter value
Parameter parameter = api.Parameters.GetParameter("asOfDate");
parameter.Value = "2007-06-01";

Setting a data column alias

// set column alias
api.Entities.GetEntity("vw_webrpt_optionee").ColumnMetadatas.SetColumnAlias("HIre Date", "Date
of Hire");

Starting Exago - At this point if you want to run the Exago applications, do the following:

// setup URL
string url = "http://MyDomainServer/Exago/" + api.GetUrlParamString();
Response.Redirect(url);

// or you can redirect any control that can be set to a URL
this.ReportIFrame.Attributes["src"] = url;

Executing a report directly from the host application – You can combine setting user
session information as above with report execution. To do that, just omit the redirect
above and do the following:

// load a specific report and return Report object (make sure to check return value)
Report report = (Report) api.ReportObjectFactory.LoadFromRepository(@"Stew Meyers' Reports\My
Report");

// add a sort
Sort sort = report.Sorts.NewSort();
sort.DbName = "vw_optionee.First Name";
sort.Direction = wrSortDirection.Ascending;
report.Sorts.Add(sort);

// add a filter

Exago Technical Guide

186 Exago Inc.

Filter filter = report.Filters.NewFilter();
filter.DbName = "vw_grant.Grant Date";
filter.Operator = wrFilterOperator.LessThan; // default is EqualTo
filter.Value = "20070501"; // filter dates are entered in YYYYMMDD sequence
filter.AndOrWithNext = wrFilterAndOrWithNext.And; // default is And
filter.GroupWithNext = false; // default is false
filter.Prompt = true; // default is false

// set export type
report.ExportType = wrExportType.Html; // default is Html

// should HTML viewer be opened in new browser window
report.OpenNewWindow = false; // default is false
report.ShowStatus = false; // default is true

// saves a temporary version of the report to be used for execution
api.ReportObjectFactory.SaveToApi(report);

Start report execution

// setup URL
string url = "http://MyDomainServer/Exago/" + api.GetUrlParamString();
Response.Redirect(url);

// or you can redirect any control that can be set to a URL
this.ReportIFrame.Attributes["src"] = url;

Executing a dashboard report directly from the host application:

api.Action = wrApiAction.ExecuteReport;
 DashboardReport report = Api.ReportObjectFactory.LoadFromRepository(@"Reports\My
Dashboard") as DashboardReport;
 report.ReportItems[0].SetParameterValue("productname", "Parm1");
 report.ReportItems[0].SetFilterValue("Employees.EmployeeID",
wrFilterOperator.EqualTo, new List<string>() { "3" });
 report.ReportItems[0].SetFilterValue("Orders.OrderDate",
wrFilterOperator.GreaterThanOrEqualTo, new List<string>() { "1996-07-04 01:00:00" });

 report.ReportItems[1].SetParameterValue("productname", "Parm2");
 report.ReportItems[1].SetFilterValue("Employees.EmployeeID",
wrFilterOperator.EqualTo, new List<string>() { "5" });
 report.ReportItems[1].SetFilterValue("Orders.OrderDate",
wrFilterOperator.GreaterThanOrEqualTo, new List<string>() { "1996-07-04 01:00:00" });

 api.ReportObjectFactory.SaveToApi(report);

 string url = @"[Exago Install Path] /" + api.GetUrlParamString("Home");
 this.ReportIFrame.Attributes["src"] = url;

Scheduling a report with a filter and emailing results:

//load in the report
Report report = api.ReportObjectFactory.LoadFromRepository(@"Reports\Employee

Performance") as Report;

//specify the export type of the scheduled report

Exago Technical Guide

187 Exago Inc.

report.ExportType = wrExportType.Pdf;

//set email information

List<string> toList = new List<string>();
toList.Add("emailaddress@example.com");
SchedulerEmailInfo info = new SchedulerEmailInfo(toList);

//set a filter on the report

Filter filter = report.Filters.NewFilter();
filter.DbName = "Employees.FirstName";
filter.Operator = wrFilterOperator.EqualTo;
filter.Value = "Janet";
filter.Prompt = true;

//create a schedule

api.ReportScheduler.CreateImmediateSchedule("Schedule Test", info);

//save the report to the api

api.ReportObjectFactory.SaveToApi(report);

Web Service API

The Exago Web Service Api provides a way for non-.NET applications to interface with Exago. The
functionality provided by the Web Service is a subset of the .NET Api, and includes basic methods to
launch Exago and execute reports directly from the host application.

The Web Service must be installed on a Microsoft Windows Server running IIS and be able to access
the Exago application directory directly or through an IIS virtual directory. For more information see
Web Service Installation.

Quick List of Web Service Methods
Main:
GetUrlParamString
GetUrlParamString2
InitializeApi
InitializeApi2
SetAction
SetAction2
SetDefaultReportName
SetGeneralProperty
SetGeneralProperties

Data:
DataObject_Add
DataObject_Add2
DataObject_SetColumnAlias
DataSource_AddXmlType
DataSource_Modify
Join_Add

Folders:
Folder_Add
Folder_Delete
Folder_Exist
Folder_Rename

Parameters:
Parameter_Add
Parameter_Modify

ReportObjects:
ReportObject_Activate
ReportObject_Delete
ReportObject_Duplicate

Dashboards:
Dashboard_SetReportParameterValue
Dashboard_SetReportFilterValue

mailto:emailaddress@example.com

Exago Technical Guide

188 Exago Inc.

Reports:
Report_AddFilter
Report_AddFilterValue
Report_AddSort
Report_GetExecuteData
Report_GetExecuteHtml
Report_GetReportListXml
Report_GetReportXml
Report_SetFilterValue
Report_SetParams
Report_TestExecute

Roles:
Role_GetRoles
Role_Activate
Role_Add
Role_AddDataObject
Role_AddDataObjectRow
Role_AddFolder
Role_SetCurrencySymbol
Role_SetDateFormat
Role_SetDbTimeout
Role_SetDecimalSymbol
Role_SetLanguageFile
Role_SetReadFilterValues
Role_SetReportVirtualPath

Role_SetScheduleManagerViewLevel
Role_SetSeparatorSymbol
Role_SetShowGrid
Role_SetShowScheduleReports
Role_SetShowScheduleReportsEmail
Role_SetShowScheduleReportsManager

Schelduer:
Report_CreateImmediateSchedule
Report_CreateImmediateScheduleForArchiving
Report_CreateOnceScheduleByDateTime
Report_CreateOnceScheduleByDateTimeForArchiving
Report_CreateEveryWeekdaySchedule
Report_CreateEveryWeekdayScheduleForArchiv ing
Report_CreateEveryNDaySchedule
Report_CreateEveryNDayScheduleForArchiv ing
Report_CreateWeeklySchedule
Report_CreateWeeklyScheduleForArchiv ing
Report_CreateMonthlyScheduleByNumericDay
Report_CreateMonthlyScheduleByNumericDayForArchiving
Report_CreateMonthlyScheduleByWeekAndDay
Report_CreateMonthlyScheduleByWeekAndDayForArchiving
Report_CreateYearlyScheduleByNumericDay
Report_CreateYearlyScheduleByNumericDayForArchiving
Report_CreateYearlyScheduleByWeekAndDay
Report_CreateYearlyScheduleByWeekAndDayForArchiving

Full Description of Web Service Methods

This section provides detailed information on the available web service api methods.

Types of Web Service methods:

 Main Methods

 Data Methods

 Folder Methods

 Parameter Methods

 ReportObject Methods

 Dashboard Methods

 Report Methods

 Role Methods

 Scheduler Methods

Exago Technical Guide

189 Exago Inc.

Main Methods

This section lists the main web service methods used to access Exago.

void GetUrlParamString(string apiId)

Description Returns the URL parameter string. Points to ExagoHome.aspx.

Remarks This is always the last method called.

Appended the returned URL to your Exago application URL and redirect the user.

void GetUrlParamString2(string apiId, string webPageName, boolean showErrorDetail)

Description Returns the URL parameter string. Points to the specified home page. Set

showErrorDetail to True to display detailed error messages.

Remarks This is always the last method called.

Appends the returned URL to your Exago application URL and redirects the user.

string InitalizeApi()

Description Returns an apiId as a string that is used in all subsequent calls.

Remarks This is always the first method called.

string InitializeApi2(string configFn)

Description Returns an apiId as a string that is used in all subsequent calls.

Remarks Can be used instead of InitializeApi to specify a configuration file other than

WebReports.xml

bool SetAction(string apiId, int action, string defaultFolderName)

Description Set the Action property of the Api object. The action dictates the behavior of Exago
when you call GetUrlParamString.

Returns Boolean indicating success/failure.

Remarks Valid values for action are:
0: Default – Executes a report on ReportObject_Activate, otherwise opens the

home page.

1: Home – opens the home page.

2: ExecuteReport – Executes the active report.
3: EditReport – opens the

4: NewReport – opens the new report wizard directly.

5: NewCrossTabReport – opens the new crosstab report wizard directly.

6: NewExpressReport – opens the new express report wizard directly.

Exago Technical Guide

190 Exago Inc.

7: NewDashboardReport – opens a new dashboard designer directly.

8: Schedule Report – opens the new schedule report wizard directly.

9: ScheduleReportManager – opens the new schedule report wizard directly.

bool SetAction2(string apiId, int action, string defaultFolderName, Boolean showTabs)

Description Set the Action property of the Api object. The action dictates the behavior of Exago

when you call GetUrlParamString.
Returns Boolean indicating success/failure.

Remarks Valid values for action are:

0: Default – Executes a report on ReportObject_Activate, otherwise opens the
home page.

1: Home – opens the home page.

2: ExecuteReport – Executes the active report.

3: EditReport – opens the
4: NewReport – opens the new standard report wizard directly.

5: NewCrossTabReport – opens the new crosstab report wizard directly.

6: NewExpressReport – opens the new express report wizard directly.

7: NewDashboardReport – opens a new dashboard designer directly.

8: Schedule Report – opens the new schedule report wizard directly.
9: ScheduleReportManager – opens the new schedule report wizard directly.

bool SetDefaultReportName(string apiId, string defaultReportName)

Description Set the DefaultReportName property of the Api object. The DefaultReportName is

used in conjunction with the Action property of the Api to modify the behavior of

Exago when you call GetUrlParamString.
Returns Boolean indicating success/failure.

Remarks The Default report name is a string providing the fully qualified path of the report.

This function’s effect will change based on the set value of the Action.

When the Action is set to NewReport, NewCrossTabReport or NewExpressReport: The

DefaultReportName provides the full path name for the report. The Info tab of the

new report wizard will be hidden and the report designer will not display menus to

rename the report or change its description.

When the Action is set to EditReport: If DefaultReportName is any non-empty value

the report designer will not display menus to rename the report or change its

description.

bool SetGeneralProperty(string apiId, string propertyName, string propertyValue)

Description Modify any of the General Settings in the Administration Console for the session.

Remarks The propertyName must match the name used in the configuration file

WebReports.xml for the setting you want to modify. Ex. ‘showexpressreports’

controls the Feature/UI Setting ‘Show Express Reports’.

The propertyValue type will depend on the setting using the following rules based on

how the property is shown in the Administration Console:

 1. If the setting is True/False then use a boolean.

Exago Technical Guide

191 Exago Inc.

 2. If the setting is enterable text (ex. chart colors) use a string.

 3. If the setting is a number use an int.

 4. If the setting is a dropdown of predefined values use the enumeration specified

below.

DefaultOutputType:
 0.Html

 1. Excel

 2. Pdf

 3. Rtf
 4. Csv

 6. Default

DateTimeTreatedAs:

 0. Date

 1. Time – NOTE. Time filters are not supported.
 2. DateTime

ScheduleManagerViewLevel:

 0. Current User at Current Company

 1. All Users at Current Company
 2. All Users at All Companies

UserPreferenceStorage:

 0. Cookie

 1. ExternalInterface:
 2. None

ExcelExportTarget:

 0. v2003

 1. v2007

 2. v2010

DefaultFilterExecutionWindow

SchemaAccessType:

Default

Datasource
Metadata

bool SetGeneralProperties(string apiId, string[] propertyName, string[] propertyValue)

Description Allows multiple SetGeneralProperty calls to be grouped together to avoid making

many web service calls.

Remarks The length the propertyName array and the propertyValue array must be equal.

See remarks above in the SetGeneralProperty method.

Data Methods

This section lists the web service methods used to create, modify or delete Data Objects, Data Sources
and Joins.

Exago Technical Guide

192 Exago Inc.

bool DataObject_Add(string apiId, string dataSourceName, int objectType, string, objectName, string
mnemonicName, string keyName, string categoryName, string sqlStmt, string parmaterIds, string
tenants)

Description Adds a Data Object. Returns Boolean indicating success/failure.

Remarks Valid objectType values are:
0: database table

1: database view

2: database function

3: database stored procedure
4: database SQL statement

5: web service method

parameterIds is a comma delimited list whose values will be passed to the data

object.

tenants is a comma delimited list of columns and parameters. Ex.
‘db_col1,paramId1,db_col,paramId2’

bool DataObject_Add2(string apiId, string dataSourceName, int objectType, string, objectName,
string, objectId, string mnemonicName, string keyName, string categoryName, string sqlStmt, string
parmaterIds, string tenants)

Description Adds a Data Object. Returns Boolean indicating success/failure.

Remarks Unlike DataObject_Add this function includes an objectId. This allows for multiple
Data Objects with the same name. The objectID should be a unique value.

bool DataObject_Add3(string apiId, string dataSourceName, int objectType, string, objectName,
string, objectId, string schemaName, string mnemonicName, string keyName, string categoryName,
string sqlStmt, string parmaterIds, string tenants)

Description Adds a Data Object. Returns Boolean indicating success/failure.

Remarks Unlike DataObject_Add this function includes an objectId and schemaName.
ObjectId allows for multiple Data Objects with the same name and should be a unique

value.

SchemaName sets the database schema of the object.

bool DataObject_SetColumnAlias(string apiId, string objectName, string columnName, string alias)

Description Sets the alias of a specific data column. Returns Boolean indicating success/failure.

bool DataSource_AddXmlType(string apiId, string xml, string categoryNames)

Description Loads Xml into Exago as a data source. Returns Boolean indicating success/failure.

Exago Technical Guide

193 Exago Inc.

Remarks Xml can be Excel worksheet type or compatible with .NET DataSet.

The Data Object can appear in multiple categories using a comma delimiter.

bool DataSource_Modify(string apiId, string dataSourceName, string dataConnStr)

Description Modifies the connection string of a Data Source. Returns Boolean indicating

success/failure.

bool Join_Add(string apiId, string dataObjectFromName, string columnFromName, string
dataObjectToName, string columnToName, int joinType int relationType, int weight)

Description Adds a Data Object Join. Returns Boolean indicating success/failure.

Remarks Valid relationType values are:

0:one-to-one

1:one-to-many

Valid joinType values are:

0:inner

1: left outer

2: right outer
3: full outer

Folder Methods

This section lists the web service methods used to create, modify or delete Folders.

bool Folder_Add(string apiId, string parentName, string name)

Description Adds a report folder. Returns Boolean indicating success/failure.

Remarks parentName is relative to the Report Path and should not contain slashes.

Method will fail if a parent folder named parentName does not exist.

bool Folder_Delete(string apiId, string folderName)

Description Deletes a report folder. Returns Boolean indicating success/failure.

Remarks folderName is relative to the Report Path.

Method will fail if the report is not empty.

bool Folder_Exist(string apiId, string folderName)

Exago Technical Guide

194 Exago Inc.

Description Checks if a report folder exists. Returns Boolean indicating success/failure.

Remarks folderName is relative to the Report Path.

bool Folder_Rename(string apiId, string oldName, string newName)

Description Renames a report folder exists. Returns Boolean indicating success/failure.

Remarks Both folder names are relative to the Report Path.

Parameter Methods

This section lists the web service methods used to create, modify or delete Parameters.

bool Parameter_Add(string apiId, string parameterId, string parameterValue, int dataType, bool
isHidden, string promptText)

Description Adds a parameter. Returns Boolean indicating success/failure.

Remarks Valid dataType values are:

0: string
1: date

2: integer

5: decimal

bool Parameter_Modify(string apiId, string parameterId, string parameterValue)

Description Modifies a parameter value. Returns Boolean indicating success/failure.

bool Parameter_ModifyMultiple(string apiId, string[] parameterIds, string[] parameterValues)

Description Modifies multiple parameter values. Returns Boolean indicating success/failure.

Remarks The length of the parameterIds and parameterValues arrays must be the same.

ReportObject Methods

This section lists the web service methods used to create, modify or delete Report objects. A Report
object is any type of report supported by the application (currently Report_ or Dashboard_).

bool ReportObject _Activate(string apiId, string reportName)

Exago Technical Guide

195 Exago Inc.

Description Activates an existing report. Returns Boolean indicating success/failure.

Remarks Use backslashes to delineate subfolders.

NOTE. Before calling any report or dashboard method call ReportObject_Activate to specify which
Report object to modify.

bool ReportObject _Delete(string apiId, string reportName)

Description Deletes an existing report. Returns Boolean indicating success/failure.

Remarks Use backslashes to delineate subfolders.

bool ReportObject _Duplicate(string apiId, string srcReportName, string destReportName)

Description Creates a duplicate copy of an existing report (srcReportName) and provides a new

name (destReportName). Returns Boolean indicating success/failure.

Remarks Use backslashes to delineate subfolders.

Dashboard Methods

bool Dashboard_SetReportFilterValue(string apiId, int reportIndex, string filterName,
wrFilterOperator filterOperator, List<string> filterValues)

Description Sets the dashboard value for a promptable filter that exists on the specified report
contained within the dashboard

Remarks To find the reportIndex of a particular report on a dashboard:

 Enter the dashboard designer.

 Press Ctrl+Shift+I.
 Click on the desired report. The index will appear in the reports title bar.

The number of items in filterValues depends on the filter operator.

bool Dashboard_SetReportParameterValue(string apiId, int reportIndex, string parameterName,
string parameterValue)

Description Sets the dashboard value for a promptable parameter that exists on the specified

report contained within the dashboard

Remarks To find the reportIndex of a particular report on a dashboard:

 Enter the dashboard designer.

 Press Ctrl+Shift+I.

 Click on the desired report. The index will appear in the reports title bar.

Exago Technical Guide

196 Exago Inc.

Report Methods

bool Report_AddFilter(string apiId, string filterName, int filterOperator, string filterValue, int
andOrWithNext, bool groupWithNext, bool promptForValue)

Description Adds a filter to a report. Returns Boolean indicating success/failure.

Remarks Valid filterOperator values are:

0: equal to

1: less than

2: less than or equal to
3: greater than

4: greater than or equal to

5: not equal to

6: starts with
7: not starts with

8: ends with

9: not ends with

10: contains

11: not contains
12: between

13: not between

14: one of

15: not one of

filterValue can contain multiple values. Delineate values with ‘|~|’ (pipe tilde pipe).

Valid andOrWithNext values are:

0: and

1:or

Dates must be in the following format YYYY-MM-DD.

bool Report_AddFilterValue(string apiId, int index, string value)

Description Adds a value to a filter that accepts multiple values (ex ‘one of’ filters).

Returns Boolean indicating success/failure.

Remarks Index indicates which filter to add the value to.
This method can only be used on filters with the following operators: ‘one of’, ‘not one

of’.

bool Report_AddSort(string apiId, string sortName, int sortDirection)

Description Adds a sort to a report. Returns Boolean indicating success/failure.

Remarks Valid sortDirection values are:

0: ascending

1: descending

bool Report_RemoveSort(string apiId, string sortName)

Exago Technical Guide

197 Exago Inc.

Description Removes a sort from a report. Returns Boolean indicating success/failure.

bool Report_SetSorts(string apiId, string[] sortName, int[] sortDirection)

Description Replaces any existing sorts of a report with the new sorts specified. Returns Boolean

indicating success/failure.

Remarks Valid sortDirection values are:

0: ascending

1: descending

If the lengths of the sortName and sortDirection arrays are not equal the following

behavior will occur:

 sortNames without a corresponding sortDirection will default to ascending.

 sortDirections without a corresponding sortName will be ignored.

byte[] Report_GetExecuteData(string apiId)

Description Executes a report directly and returns data as a byte array.

Remarks Any export type can be used with this method. Use Report_setParams method to set
the export type prior to this call.

string Report_GetExecuteHtml(string apiId)

Description Executes a report directly and returns HTML as a string.

Remarks This can be used to populate a container in the host application.

HTML will not contain Exago’ paging HTML viewer.

string Report_GetReportListXml(string apiId)

Description Returns the hierarchical structure of reports and folders as an Xml string.

Remarks Returned list adheres to the active Role if set.

See Report and Folder Storage/Management for an example of the Xml output.

string Report_GetReportXml(string apiId)

Description Returns the hierarchical structure of the active report an Xml string.

bool Report_SetFilterValue(string apiId, int index, int subIndex, string value)

Description Sets the value of a filter. Returns Boolean indicating success/failure.

Exago Technical Guide

198 Exago Inc.

Remarks subIndex is used for filters with multiple values such as ‘one of’ or ‘between’ filters.

Set subIndex to -1 for single value operators.

Dates must be in the following format YYYY-MM-DD.

bool Report_SetParams(string apiId, int exportType, bool openNewWindow, bool showStatus)

Description Sets report execution parameters. Returns Boolean indicating success/failure.

Remarks Valid exportType values are:

0: html
1: excel

2: pdf

3: rtf

4: csv

Role Methods

This section lists the web service methods used to create, modify or delete Roles.

string Role_GetRoles(string apiId)

Description Returns the list of existing Roles as an Xml string.

bool Role_Activate(string apiId, string roleId)

Description Activates a pre-created role. Returns Boolean indicating success/failure.

NOTE. Before calling any of the following methods call Role_Activate to specify which role to modify.

bool Role_Add(string apiId, bool includeAllFolders, bool foldersReadOnly, bool
allowFolderManagement, bool includeAllDataObjects)

Description Creates a new temporary run-time role. Returns Boolean indicating success/failure.

bool Role_AddDataObject(string apiId, string objectName)

Description Adds a Data Object to the role. Returns Boolean indicating success/failure.

Remarks If includeAllDataObjects is True this method will exclude the Data Object and vice
versa.

objectName is the database value not the mnemonic.

Exago Technical Guide

199 Exago Inc.

bool Role_AddDataObjectRow(string apiId, string objectName, string filterString)

Description Adds a Data Object row to the role. Returns Boolean indicating success/failure.

Remarks objectName is the database value not the mnemonic.

filterString should be standard SQL to go into the WHERE clause.

bool Role_AddFolder(string apiId, string folderName, bool readOnly)

Description Adds a Report Folder to the role. Returns Boolean indicating success/failure.

Remarks If includeAllFolders is True this method will exclude the Folder and vice versa.

bool Role_ SetCurrencySymbol (string apiId, string currencySymbol)

Description Overrides global currency symbol. Returns Boolean indicating success/failure.

bool Role_ SetDateFormat (string apiId, string dateFormat)

Description Overrides global date format. Returns Boolean indicating success/failure.

bool Role_ SetDbTimeout (string apiId, int dbTimeout)

Description Overrides maximum seconds the database is allowed to execute a query before

timing out. Returns Boolean indicating success/failure.

bool Role_ SetDecimalSymbol(string apiId, string decimalSymbol)

Description Overrides global decimal symbol. Returns Boolean indicating success/failure.

bool Role_ SetLanguageFile(string apiId, string languageFile)

Description Overrides global Language File. Returns Boolean indicating success/failure.

bool Role_ SetReadFilterValues(string apiId, bool readFilterValues)

Description Overrides whether to allow users to see database values in filter dropdowns. Returns

Boolean indicating success/failure.

bool Role_ SetReportVirutalPath (string apiId, string reportPath)

Description Overrides report virtual path. Returns Boolean indicating success/failure.

bool Role_ SetScheduleManagerViewLevel (string apiId, int scheduleManagerViewLevel)

Exago Technical Guide

200 Exago Inc.

Description Sets the level of view privilege for the user session Returns Boolean indicating

success/failure.

Remarks Valid values for scheduleManagerViewLevel are:
0: Current users (requires parameter userId be set)

1: Current Company (requires parameter companyId be set)

2: All

bool Role_ SetSeparatorSymbol (string apiId, string separatorSymbol)

Description Overrides global numeric separator symbol. Returns Boolean indicating

success/failure.

bool Role_SetServerTimeZoneOffset(string apiId, decimal serverTimeZoneOffset)

Description Overrides global Server Time Zone Offset. Returns Boolean indicating success/failure.

bool Role_ SetShowGrid (string apiId, bool showGrid)

Description Overrides global numeric separator symbol. Returns Boolean indicating

success/failure.

bool Role_ SetShowScheduleReports (string apiId, bool showScheduleReports)

Description Overrides whether to show the schedule report option. Returns Boolean indicating

success/failure.

bool Role_ SetShowScheduleReportsEmail (string apiId, bool showScheduleReportsEmail)

Description Overrides whether to show the schedule reports instant email option. Returns Boolean

indicating success/failure.

bool Role_ SetShowScheduleReportsManager(string apiId, bool showScheduleReportsManager)

Description Overrides whether to show the schedule reports management option. Returns Boolean
indicating success/failure.

Scheduler Methods

This section lists the web service methods used to create Schedules for Reports to be emailed or
Archived.

Before calling any of the following methods call Report_Activate to specify which report to schedule and
Report_SetParams to set a non-html export format.

NOTE. There are two methods for type of schedule: a regular method and a ‘ForArchiving’ method. The
regular method will email the report while the ForArchiv ing method will save the report to the
Scheduler Repository. For more information on archiv ing schedules see Saving Scheduled Reports
to External Repository.

Exago Technical Guide

201 Exago Inc.

NOTE. Dates must be in the following format YYYY-MM-DD. Times must be in the following format
HH:MM[:SS] (24-hour format).

bool Report_CreateImmediateSchedule(string apiId, string name, string[] toAddrArray, string[]
ccAddrArray, string[] bccAddrArray, string subject, string body)

Description Schedules a report to run and emailed immediately.

Returns Boolean indicating success/failure.

Remarks name: The name of the schedule as it appears in the Schedule Manager

toAddrArray: The array of email addresses and/or distribution lists for the 'To' field of

the email. If none of To, CC or BCC are set, Exago will attempt to archive scheduled

reports.

ccAddrArray: The array of email addresses and/or distribution lists for the 'CC' field of
the email. If none of To, CC or BCC are set, Exago will attempt to archive scheduled

reports.

bccAddrArray: The array of email addresses and/or distribution lists for the 'BCC' field

of the email. If none of To, CC or BCC are set, Exago will attempt to archive
scheduled reports.</param>

subject: The subject line of the email

body: The body text of the email

bool Report_CreateImmediateScheduleForArchiving(string apiId, string name)

Description Schedules a report to run and archived immediately.

Returns Boolean indicating success/failure.

Remarks name: The name of the schedule as it appears in the Schedule Manager

bool Report_CreateOnceScheduleByDateTime(string apiId, string dateStr, string timeStr, string
name, string[] toAddrArray, string[] ccAddrArray, string[] bccAddrArray, string subject, string body)

Description Schedules a report to be run and emailed at a specific date and time..

Returns Boolean indicating success/failure.

Remarks dateStr: The date to run the schedule. If the timeStr parameter is null, the scheduler

will use the time value of this parameter

timeStr: The time to run the schedule. If null, the scheduler will use the time value of

the dateStr parameter

NOTE. See remarks in Report_CreateImmediateSchedule toAddrArray,

ccAddrArray & bccAddrArray

Exago Technical Guide

202 Exago Inc.

bool Report_CreateOnceScheduleByDateTimeForArchiving(string apiId, string dateStr, string
timeStr, string name)

Description Schedules a report to be run and archived at a specific date and time..

Returns Boolean indicating success/failure.

Remarks dateStr: The date to run the schedule. If the timeStr parameter is null, the scheduler

will use the time value of this parameter

timeStr: The time to run the schedule. If null, the scheduler will use the time value of
the dateStr parameter

bool Report_CreateEveryWeekdaySchedule(string apiId, string startDateStr, string timeStr, bool
noEndDate, int endOccurrences, string endDateStr, string name, string[] toAddrArray, string[]
ccAddrArray, string[] bccAddrArray, string subject, string body)

Description Schedules a report to be run and emailed every weekday.

Returns Boolean indicating success/failure.

Remarks startDateStr: The date to begin running the schedule.

timeStr: The time to run the schedule. If null, the scheduler will use the time value of

the startDateStr parameter.

Three parameters are used to determine when to end a recurring schedule: bool

NoEndDate, int endOccurrences, string endDateStr. These parameters adhere to the
following logic.

If noEndDate is true, the report will run indefinitely.

Else if endOccurrences is greater than zero, the report will execute that many times.

Else the schedule will execute until the date represented in endDateStr.

NOTE. See remarks in Report_CreateImmediateSchedule for a description of
toAddrArray, ccAddrArray & bccAddrArray.

bool Report_CreateEveryWeekdayScheduleForArchiving(string apiId, string startDateStr, string
timeStr, bool noEndDate, int endOccurrences, string endDateStr, string name)

Description Schedules a report to be run and archived every weekday.

Returns Boolean indicating success/failure.

Remarks startDateStr: The date to begin running the schedule.

timeStr: The time to run the schedule. If null, the scheduler will use the time value of

the startDateStr parameter.

NOTE. See remarks in Report_CreateEveryWeekdaySchedule for a description of

noEndDate, endOccurrences & endDateStr.

Exago Technical Guide

203 Exago Inc.

bool Report_CreateEveryNDaySchedule(string apiId, int everyNDays, string startDateStr, string
timeStr, bool noEndDate, int endOccurrences, string endDateStr, string name, string[] toAddrArray,
string[] ccAddrArray, string[] bccAddrArray, string subject, string body)

Description Schedules a report to be run and emailed every N days.

Returns Boolean indicating success/failure.

Remarks everyNDays: Indicates the interval at which to run the schedule (e.g. every 10 days).

NOTE. See remarks in Report_CreateEveryWeekdaySchedule for a description of
startDateStr, timeStr, noEndDate, endOccurrences & endDateStr.

NOTE. See remarks in Report_CreateImmediateSchedule for a description of

toAddrArray, ccAddrArray & bccAddrArray.

bool Report_CreateEveryNDayScheduleForArchiving(string apiId, int everyNDays, string
startDateStr, string timeStr, bool noEndDate, int endOccurrences, string endDateStr, string name)

Description Schedules a report to be run and archived every N days.

Returns Boolean indicating success/failure.

Remarks everyNDays: Indicates the interval at which to run the schedule (e.g. every 10 days).

NOTE. See remarks in Report_CreateEveryWeekdaySchedule for a description of

startDateStr, timeStr, noEndDate, endOccurrences & endDateStr.

bool Report_CreateWeeklySchedule(string apiId, int everyNWeeks, int[] dayNums, string
startDateStr, string timeStr, bool noEndDate, int endOccurrences, string endDateStr, string name,
string[] toAddrArray, string[] ccAddrArray, string[] bccAddrArray, string subject, string body)

Description Schedules a report to be run and emailed on a weekly interval.

Returns Boolean indicating success/failure.

Remarks everyNWeeks: Indicates the interval at which to run the schedule (e.g. every 2

weeks).

dayNums: Days on which the schedule is to be run. Valid values are:

 1: Sunday
 2: Monday

 3: Tuesday

 4: Wednesday

 5: Thursday
 6: Friday

 7: Saturday

NOTE. See remarks in Report_CreateEveryWeekdaySchedule for a description of

startDateStr, timeStr, noEndDate, endOccurrences & endDateStr.

NOTE. See remarks in Report_CreateImmediateSchedule for a description of

Exago Technical Guide

204 Exago Inc.

toAddrArray, ccAddrArray & bccAddrArray.

bool Report_CreateWeeklyScheduleForArchiving(string apiId, int everyNWeeks, int[] dayNums,
string startDateStr, string timeStr, bool noEndDate, int endOccurrences, string endDateStr, string name)

Description Schedules a report to be run and archived on a weekly interval.

Returns Boolean indicating success/failure.

Remarks everyNWeeks: Indicates the interval at which to run the schedule (e.g. every 2

weeks).

dayNums: Days on which the schedule is to be run. Valid values are:

 1: Sunday
 2: Monday

 3: Tuesday

 4: Wednesday

 5: Thursday
 6: Friday

 7: Saturday

NOTE. See remarks in Report_CreateEveryWeekdaySchedule for a description of

startDateStr, timeStr, noEndDate, endOccurrences & endDateStr.

bool Report_CreateMonthlyScheduleByNumericDay(string apiId, int everyNMonths, int
numericDay, string startDateStr, string timeStr, bool noEndDate, int endOccurrences, string endDateStr,
string name, string[] toAddrArray, string[] ccAddrArray, string[] bccAddrArray, string subject, string
body)

Description Schedules a report to be run and emailed on a specific day each month.

Returns Boolean indicating success/failure.

Remarks everyNMonths: Indicates the interval at which to run the schedule (e.g. every 2

months).

numericDay: The numeric day of each month (e.g. 17) on which to run the schedule

NOTE. See remarks in Report_CreateEveryWeekdaySchedule for a description of

startDateStr, timeStr, noEndDate, endOccurrences & endDateStr.

NOTE. See remarks in Report_CreateImmediateSchedule for a description of
toAddrArray, ccAddrArray & bccAddrArray.

bool Report_CreateMonthlyScheduleByNumericDayForArchiving(string apiId, int
everyNMonths, int numericDay, string startDateStr, string timeStr, bool noEndDate, int endOccurrences,
string endDateStr, string name)

Description Schedules a report to be run and archived on a specific day each month.

Returns Boolean indicating success/failure.

Remarks everyNMonths: Indicates the interval at which to run the schedule (e.g. every 2

Exago Technical Guide

205 Exago Inc.

months).

numericDay: The numeric day of each month (e.g. 17) on which to run the schedule

NOTE. See remarks in Report_CreateEveryWeekdaySchedule for a description of

startDateStr, timeStr, noEndDate, endOccurrences & endDateStr.

bool Report_CreateMonthlyScheduleByWeekAndDay(string apiId, int everyNMonths, int
weekOfMonthNum, int dayOfWeekNum, string startDateStr, string timeStr, bool noEndDate, int
endOccurrences, string endDateStr, string name, string[] toAddrArray, string[] ccAddrArray, string[]
bccAddrArray, string subject, string body)

Description Schedules a report to be run and emailed on a “described” day each month,
consisting of the week and the day.

Returns Boolean indicating success/failure.

Remarks everyNMonths: Indicates the interval at which to run the schedule (e.g. every 2
months).

weekOfMonthNum: The 'described' week of each month (e.g. 'Third') on which to run

the schedule. Used in conjunction with dayOfWeek. Valid values are:

 1: First

 2: Second
 3: Third

 4: Fourth

 5: Last

dayOfWeekNum: The 'described' day of each week (e.g. 'Weekday') on which to run
the schedule. Valid values are:

 1: Sunday

 2: Monday

 3: Tuesday

 4: Wednesday
 5: Thursday

 6: Friday

 7: Saturday

 8: Day
 9: Weekday

 10: Weekend Day

NOTE. See remarks in Report_CreateEveryWeekdaySchedule for a description of

startDateStr, timeStr, noEndDate, endOccurrences & endDateStr.

NOTE. See remarks in Report_CreateImmediateSchedule for a description of

toAddrArray, ccAddrArray & bccAddrArray.

bool Report_CreateMonthlyScheduleByWeekAndDayForArchiving(string apiId, int
everyNMonths, int weekOfMonthNum, int dayOfWeekNum, string startDateStr, string timeStr, bool
noEndDate, int endOccurrences, string endDateStr, string name)

Description Schedules a report to be run and archived on a “described” day each month,

consisting of the week and the day.

Returns Boolean indicating success/failure.

Exago Technical Guide

206 Exago Inc.

Remarks everyNMonths: Indicates the interval at which to run the schedule (e.g. every 2

months).

weekOfMonthNum: The 'described' week of each month (e.g. 'Third') on which to run

the schedule. Used in conjunction with dayOfWeek. Valid values are:

 1: First
 2: Second

 3: Third

 4: Fourth

 5: Last

dayOfWeekNum: The 'described' day of each week (e.g. 'Weekday') on which to run

the schedule. Valid values are:

 1: Sunday

 2: Monday

 3: Tuesday
 4: Wednesday

 5: Thursday

 6: Friday

 7: Saturday
 8: Day

 9: Weekday

 10: Weekend Day

NOTE. See remarks in Report_CreateEveryWeekdaySchedule for a description of
startDateStr, timeStr, noEndDate, endOccurrences & endDateStr.

bool Report_CreateYearlyScheduleByNumericDay(string apiId, int numericMonth, int
numericDay, string startDateStr, string timeStr, bool noEndDate, int endOccurrences, string endDateStr,
string name, string[] toAddrArray, string[] ccAddrArray, string[] bccAddrArray, string subject, string
body)

Description Schedules a report to be run and emailed on a specific day each year.

Returns Boolean indicating success/failure.

Remarks everyNMonths: Indicates the interval at which to run the schedule (e.g. every 2
months).

numericMonth: The numeric Month of each year (e.g. 3) on which to run the schedule

numericDay: The numeric day of each month (e.g. 17) on which to run the schedule

NOTE. See remarks in Report_CreateEveryWeekdaySchedule for a description of
startDateStr, timeStr, noEndDate, endOccurrences & endDateStr.

NOTE. See remarks in Report_CreateImmediateSchedule for a description of

toAddrArray, ccAddrArray & bccAddrArray.

bool Report_CreateYearlyScheduleByNumericDayForArchiving(string apiId, int numericMonth,
int numericDay, string startDateStr, string timeStr, bool noEndDate, int endOccurrences, string
endDateStr, string name)

Description Schedules a report to be run and archived on a specific day each year.

Exago Technical Guide

207 Exago Inc.

Returns Boolean indicating success/failure.

Remarks everyNMonths: Indicates the interval at which to run the schedule (e.g. every 2

months).

numericMonth: The numeric Month of each year (e.g. 3) on which to run the schedule

numericDay: The numeric day of each month (e.g. 17) on which to run the schedule

NOTE. See remarks in Report_CreateEveryWeekdaySchedule for a description of

startDateStr, timeStr, noEndDate, endOccurrences & endDateStr.

bool Report_CreateYearlyScheduleByWeekAndDay(string apiId, int numericMonth, int
weekOfMonthNum, int dayOfWeekNum, string startDateStr, string timeStr, bool noEndDate, int
endOccurrences, string endDateStr, string name, string[] toAddrArray, string[] ccAddrArray, string[]
bccAddrArray, string subject, string body)

Description Schedules a report to be run and emailed on a specific day each year.

Returns Boolean indicating success/failure.

Remarks numericMonth: The numeric Month of each year (e.g. 3 = March) on which to run the

schedule

weekOfMonthNum: The 'described' week of each month (e.g. 'Third') on which to run

the schedule. Used in conjunction with dayOfWeek. Valid values are:
 1: First

 2: Second

 3: Third

 4: Fourth
 5: Last

dayOfWeekNum: The 'described' day of each week (e.g. 'Weekday') on which to run

the schedule. Valid values are:

 1: Sunday
 2: Monday

 3: Tuesday

 4: Wednesday

 5: Thursday

NOTE. See remarks in Report_CreateEveryWeekdaySchedule for a description of
startDateStr, timeStr, noEndDate, endOccurrences & endDateStr.

NOTE. See remarks in Report_CreateImmediateSchedule for a description of

toAddrArray, ccAddrArray & bccAddrArray.

bool Report_CreateYearlyScheduleByWeekAndDayForArchiving(string apiId, int numericMonth, int
weekOfMonthNum, int dayOfWeekNum, string startDateStr, string timeStr, bool noEndDate, int
endOccurrences, string endDateStr, string name)

Description Schedules a report to be run and archived on a specific day each year.

Returns Boolean indicating success/failure.

Exago Technical Guide

208 Exago Inc.

Remarks numericMonth: The numeric Month of each year (e.g. 3 = March) on which to run the

schedule

weekOfMonthNum: The 'described' week of each month (e.g. 'Third') on which to run

the schedule. Used in conjunction with dayOfWeek. Valid values are:

 1: First
 2: Second

 3: Third

 4: Fourth

 5: Last

dayOfWeekNum: The 'described' day of each week (e.g. 'Weekday') on which to run

the schedule. Valid values are:

 1: Sunday

 2: Monday

 3: Tuesday
 4: Wednesday

 5: Thursday

NOTE. See remarks in Report_CreateEveryWeekdaySchedule for a description of

startDateStr, timeStr, noEndDate, endOccurrences & endDateStr.

Examples C#

The following examples demonstrate the capabilities of the Web Service Api using C#.

It is important that the first call instantiate an Api object. After making all the desired changes the final
call should be GetUrlParamString. Then redirect the user to Exago’ Url concatenated with the string
GetUrlParamString returns.

In all of the examples below the return value should be checked for validity. The examples below have
omitted these checks for clarity.

Create Api object and initialize

// create an instance of the web service
//(web service needs to have been discovered in your application)
ExagoWebService.Api api = new ExagoWebService.Api();

// initialize API; returns an ID which is used in subsequent calls
string apiId = api.InitializeApi();

Adding/modifying a Role

// create a new runtime Role (is automatically made active)
api.Role_Add(apiId, true, false, true, true);
// -- OR --
// accessing a pre-created Role and making it active
api.Role_Activate(apiId, "Admin");

Adding Folder security to role

// disallow access to folder 'Stew's Reports' (and any subfolders)
api.Role_AddFolder(apiId, "Stew's Reports", false);

// make folder 'Summary Reports' (and any subfolders) read only

Exago Technical Guide

209 Exago Inc.

api.Role_AddFolder(apiId, "Summary Reports", true);

Adding Data Object security to role

// disallow access to data object ‘vw_cancellation’
api.Role_AddDataObject(apiId, "vw_cancellation");

Adding Data Object Row security to role

// don’t allow this user to view rows from the ‘vw_grant’ object with a
// ‘Grant Date’ value of ‘2000-01-01’
api.Role_AddDataObjectRow(apiId, "vw_grant", @"""Grant Date"" <> '2000-01-01'");

Setting up several general user session parameters for role (overrides individual global
general parameters)

// set global date format for this user
api.Role_SetDateFormat(apiId, "dd/MM/yyyy");

// set currency symbol for this user
api.Role_SetCurrencySymbol(apiId, "kr");

Modifying the data connection string of a specific data source

// set data connection string for a specific datasource
api.DataSource_Modify(apiId, "MyDb", "Server=SVR;Database=db1;uid=sa;pwd=dba;");

Modifying a parameter value

// modify a parameter value
api.Parameter_Modify(apiId, "asOfDate", "2007-06-01");

Adding a data object

api.DataObject_Add(apiId, "eowin", 0, "optionee", "Optionee Dynamic", "OPT_NUM", "Dynamic",
null, null, null));

Setting data column alias

api.DataObject_SetColumnAlias(apiId, "vw_webrpt_optionee", "Hire Date", "Date of Hire"));

Adding a data object join

api.Join_Add(apiId, "optionee", "OPT_NUM", "fn_webrpt_grant", "Optionee Number", 1, 10));

Starting Exago - At this point if you want to run the Exago applications, do the following:

// setup URL
string url = "http://MyDomainServer/Exago/" + api.GetUrlParamString(apiId);
Response.Redirect(url);

// or you can redirect any control that can be set to a URL
this.ReportIFrame.Attributes["src"] = url;

Executing a report directly from the host application – You can combine setting user
session information as above with report execution. To do that, just omit the redirect
above and do the following:

Exago Technical Guide

210 Exago Inc.

// activate specific report
api.ReportObject_Activate(apiId, @"Stew Meyers' Reports\My Report")

// add a sort
api.Report_AddSort(apiId, "vw_optionee.First Name", 0);

// add a filter
api.Report_AddFilter(apiId, "vw_grant.Grant Date", 1, "20070501", 0, false, true);

// set other execution params
api.Report_SetParams(apiId, 0, false, false);

Start report execution

// setup URL
string url = "http://MyServer/Exago/" + api.GetUrlParamString(apiId);
Response.Redirect(url);

// or you can redirect any control that can be set to a URL
this.ReportIFrame.Attributes["src"] = url;

Scheduler Examples

Api api = new Api(apiPath, "AdventureWorks.XML");
api.Report.Load(@"DevReports\Adventure Works\Product Locations and Inventory");
api.Report.ExportType = wrExportType.Pdf;

ReportScheduler scheduler = api.ReportScheduler;

List<string> toAddrs = new List<string>();
toAddrs.Add("foo@bar.com");
List<string> ccAddrs = new List<string>();
ccAddrs.Add("foo@bar.com");
List<string> bccAddrs = new List<string>();
bccAddrs.Add("foo@bar.com");

DateTime dt = new DateTime(2013, 5, 16, 11, 00, 0);
DateTime dt2 = new DateTime(2013, 6, 15, 10, 20, 0);
TimeSpan ts = new TimeSpan(17, 20, 25);

scheduler.CreateOnceScheduleByDateTime(dt, "Once by datetime", toAddrs);

scheduler.CreateDailySchedule(true, 3, dt, true, 0, dt, "Daily No End Date");
scheduler.CreateDailySchedule(false, 2, dt, false, 5, dt2, "Daily two occurrences");
scheduler.CreateDailySchedule(false, 2, dt, false, 0, dt2, string.Format("Daily end by {0}_{1}",
dt2.Month, dt2.Day), toAddrs, ccAddrs);

List<DayOfWeek> days = new List<DayOfWeek>();
days.Add(DayOfWeek.Wednesday);
days.Add(DayOfWeek.Wednesday);
days.Add(DayOfWeek.Sunday);
scheduler.CreateWeeklySchedule(2, days, dt, true, 0, null, "Weekly no end date");
scheduler.CreateWeeklySchedule(2, days, dt, false, 2, null, "Weekly 2 occurrences");
scheduler.CreateWeeklySchedule(2, days, dt, false, 0, dt2, "Weekly end by date", toAddrs,
ccAddrs, bccAddrs, ts);

Examples PHP

mailto:foo@bar.com
mailto:foo@bar.com
mailto:foo@bar.com

Exago Technical Guide

211 Exago Inc.

The following examples demonstrate the capabilities of the Web Service Api using PHP.

It is important that the first call instantiate an Api object. After making all the desired changes the final
call should be GetUrlParamString. Then redirect the user to Exago’ Url concatenated with the string
GetUrlParamString returns.

In all of the examples below the return value should be checked for validity. The examples below have
omitted these checks for clarity.

Create Api object and initialize

$client = new SoapClient('http://MyServer/ExagoApi/Api.asmx?wsdl');

$r = $client->InitializeApi();
$apiId = $r->InitializeApiResult;

Activate a role

$r = $client->Role_Activate(array('apiId' => $apiId, 'roleId'=>'Admin'));
$result = $r->Role_ActivateResult;

Activate a report

$r = $client->ReportObject_Activate(array('apiId' => $apiId, 'reportName'=>'Stew Meyers'
Reports\\My Report'));

Get URL

$url = "http://MyServer/Exago/" . $client->GetUrlParamString(array('apiId' => $apiId);

Exago Technical Guide

212 Exago Inc.

REST API

Exago provides a RESTful API Web Service useful for language-agnostic application support. If enabled,
an admin can access and modify elements of the Exago Application using standard HTTP methods in
either XML or JSON representation.

The REST API is installed to the Exago Web Service directory. For information on how to install the
Exago Web Service, see Web Service Installation.

In order to enable the REST API, the following key must be added to the Exago Web Service’s
AppSettings.config file:

<appSettings>
 <add key="ExagoREST" value="true" />
</appSettings>

Once enabled, the REST API can be accessed through the “/REST/*” URL from the Web Service virtual
directory.

The format of the data sent and returned can be either XML or JSON. The format of the content being
sent is defined through the Content-Type header of the request; the format of the data returned is
defined through the Accept header of the request:

Content-Type: application/(json/xml)
Accept: application/(json/xml)

For any request, parameters can be appended to the URL in the following form:
“/Path/To/Resource/?param1=value1¶m2=value2”

A session id parameter “sid” is required for most resources. Each resource may additionally define
parameters unique to that URL pattern.

Authorization

The REST API can be accessed in either an authorized or unauthorized state. Certain URLs and/or
HTTP Methods and/or properties within a resource may only be available or may behave differently
depending on whether the request is authorized or not.

To make an authorized request, the Authorization header must be supplied. There are two different
authorization methods depending on your needs. Both rely on the username and password found
within the configuration file currently being accessed.

Basic Authorization
When using basic authorization, the authorization header is constructed as follows:

1. The username and password are combined into a string “username:password”.
2. The resulting string literal is encoded using Base64.

Exago Technical Guide

213 Exago Inc.

3. “Basic” and a space are placed before the encoded string.

For example, if the username is “Brian” and the password is “open sesame” then the authorization
header would be:

Authorization: Basic QWxhZGRpbjpvcGVuIHN1c2FtZQ==

NOTE. The password is sent in clear text with each request. If this is a concern, the REST API should
be deployed in an SSL environment or the more secure ExagoKey authorization should be used.

A configuration lacking a username and password can be accessed using the following authorization
header:

Authorization: Basic Og==

ExagoKey Authorization
ExagoKey authorization uses the HMAC-SHA256 algorithm for authorization. When using ExagoKey
authorization, the authorization header is constructed as follows:

1. The string to sign is UTF-8 encoded, then signed with the UTF-8 encoded password using the
HMAC-SHA256 algorithm.

2. The resulting signature is then encoded using Base64.
3. The username and a colon is put before the encoded signature.
4. “ExagoKey” and a space are placed before the username:encoded string literal.

For example, if the username is “Brian” and the password is “open sesame” then depending on the
request the authorization header might be something like:

Authorization: ExagoKey Brian:6HZE5tCWjsjbJY+VXQg3UzXlK/jeoGhbm25YDXiHWdE=

Using ExagoKey does not send the password with each request, making it more secure than Basic
Authorization. However to ensure greater security the REST API should be deployed in an SSL
environment.

ExagoKey String
The ExagoKey string that is to be signed is constructed using the following information from the
request, in the following order, with “\n” after each item (including the last one).

1. The HTTP Method, must be in uppercase.
2. The absolute request path, up to but not including the query string if one should exist. For

example, if the request is to “http://myserver.com/reporting/api/Sessions?config=myconfig” the
absolute request path would be “/reporting/api/Sessions”.

3. The contents of the Content-Length header.
4. The contents of the Content-Type header, or a string of zero length if no header exists.
5. The contents of the Content-MD5 header, or a string of zero length if no header exists.
6. The SID, or a string of zero length if no SID exists.
7. The contents of the X-Exago-Date header, or the contents of the Date header if the X-Exago-

Date header does not exist, or a string of zero length if neither header exists.
NOTE. If a date is supplied, the REST API will reject any request that is older than 15

Exago Technical Guide

214 Exago Inc.

minutes from the supplied date. The date supplied is in GMT (UTC).

List of Resources

URL GET POST PUT PATCH DELETE
/Sessions ✓

/Sessions/{sid} ✓ ✓ ✓ ✓
/DataSources ✓ ✓

/DataSources/{id} ✓ ✓ ✓ ✓
/Joins ✓ ✓

/Joins/{id} ✓

/Roles ✓ ✓

/Roles/{id} ✓ ✓ ✓ ✓
/Roles/{id}/Settings ✓ ✓ ✓

/Roles/{id}/Entities ✓ ✓ ✓

/Roles/{id}/Folders ✓ ✓ ✓

/Roles/{id}/DataObjectRows ✓ ✓ ✓

/Settings ✓ ✓ ✓

/Parameters ✓ ✓

/Parameters/{id} ✓ ✓ ✓ ✓
/Entities ✓ ✓

/Entities/{id} ✓ ✓ ✓ ✓
/Entities/{id}/Fields ✓

/Entities/{id}/Fields/{fid} ✓ ✓ ✓

/Functions ✓ ✓

/Functions/{id} ✓ ✓ ✓ ✓
/ServerEvents ✓ ✓

/ServerEvents/{id} ✓ ✓ ✓ ✓
/Folders/{id} ✓ ✓ ✓

Sessions

This resource provides access to session information. A session is the first object created in order to
interface with the REST Api. “POST /Sessions” should be the first service called by the user. If
successful, it will return a Session ID parameter that is the resource path for the REST services.

POST /Sessions
Creates a new session within the Exago application. This is the only URL that does not require a
session ID in some form.

Info Description
Authorization Required

Parameters config Optionally specify the base configuration to load
for this session.

Input Data SessionResource

Output Data SessionResource

Exago Technical Guide

215 Exago Inc.

GET /Sessions/{sid}
Retrieves the session information for a previously created session.

Info Description
Authorization Required

Path {sid} The session id to retrieve.

Output Data SessionResource

PUT /Sessions/{sid}
Updates a session in its entirety. If a property is not specified, it will revert to its original and default
value.

Info Description
Authorization Required

Path {sid} The session id to update.

Input Data SessionResource

Output Data SessionResource

PATCH /Sessions/{sid}
Updates specified properties of a session. If a property is not specified, it will not be changed.

Info Description
Authorization Required

Path {sid} The session id to update.

Input Data SessionResource

Output Data SessionResource

DELETE /Sessions/{sid}
Deletes a session.

Info Description
Authorization Required

Path {sid} The session id to delete.

DataSources

This resource provides access to the data sources.

GET /DataSources
Retrieves the data sources in a session.

Info Description

Exago Technical Guide

216 Exago Inc.

Authorization Required

Parameters sid Required session id.

 entity Only return joins that join the entity id.

Output Data DataSourceListItemResource A list of DataSourceResource
objects.

GET /DataSources/{id}
Retrieve a single data source in a session.

Info Description
Authorization Required

Parameters sid Required session id.

Path {id} The data source id to retrieve.

Output Data DataSourceResource

POST /DataSources
Creates a new data source.

Info Description
Authorization Required

Parameters sid Required session id.

Input Data DataSourceResource

Output Data DataSourceResource

PUT /DataSources/{id}
Update a single data source in a session in its entirety. If a property is not specified, it will revert to its
original and default value.

Info Description
Authorization Required

Parameters sid Required session id.

Path {id} The data source id to update.

Input Data DataSourceResource

PATCH /DataSources/{id}
Update specified properties for single data source in a session. If a property is not specified, it will not
be changed.

Info Description
Authorization Required

Parameters sid Required session id.

Path {id} The data source id to update.

Exago Technical Guide

217 Exago Inc.

Input Data DataSourceResource

DELETE /DataSources/{id}
Delete a single data source in a session.

Info Description
Authorization Required

Parameters sid Required session id.

Path {id} The data source id to delete.

Joins

This resource provides access to join information.

GET /Joins
Retrieves the joins in a session.

Info Description
Authorization Required

Parameters sid Required session id.

 entity Only return joins that join the entity id.

Output Data JoinListItemResource A list of JoinResource objects.

GET /Joins/{id}
Retrieves a single join in a session.

Info Description
Authorization Required

Parameters sid Required session id.

Path {id} The join id to retrieve.

Output Data JoinResource

POST /Joins
Creates a new join.

Info Description
Authorization Required

Parameters sid Required session id.

Input Data JoinResource

Output Data JoinResource

PUT /Joins/{id}

Exago Technical Guide

218 Exago Inc.

Update a single join in a session in its entirety. If a property is not specified, it will revert to its original
and default value.

Info Description
Authorization Required

Parameters sid Required session id.

Path {id} The join id to update.

Input Data JoinResource

PATCH /Joins/{id}
Update specified properties for single join in a session. If a property is not specified, it will not be
changed.

Info Description
Authorization Required

Parameters sid Required session id.

Path {id} The join id to update.

Input Data JoinResource

Output Data JoinResource

DELETE /Joins/{id}
Delete a single join in a session.

Info Description
Authorization Required

Parameters sid Required session id.

Path {id} The join id to delete.

Roles

This resource provides access to role information.

GET /Roles
Retrieves the roles in a session.

Info Description
Authorization Required

Parameters sid Required session id.

Output data RoleListItemResource List of RoleResource objects.

GET /Roles/{id}
Retrieves a single role in a session.

Exago Technical Guide

219 Exago Inc.

Info Description
Authorization Required

Parameters sid Required session id.

Path {id} The role id to retrieve.

Output data RoleResource

POST /Roles
Creates a new role.

Info Description
Authorization Required

Parameters sid Required session id.

Input Data RoleResource

Output data RoleResource

PUT /Roles/{id}
Update a single role in a session in its entirety. If a property is not specified, it will revert to its original
and default value.

Info Description
Authorization Required

Parameters sid Required session id.

Path {id} The role id to update.

Input Data RoleResource

PATCH /Roles/{id}
Update specified properties for single role in a session. If a property is not specified, it will not be
changed.

Info Description
Authorization Required

Parameters sid Required session id.

Path {id} The role id to update.

Input Data RoleResource

DELETE /Roles/{id}
Delete a role in a session.

Info Description
Authorization Required

Parameters sid Required session id.

Exago Technical Guide

220 Exago Inc.

Path {id} The role id to delete.

GET /Roles/{id}/Settings
Retrieves the settings for a single role in a session.

Info Description
Authorization Required

Parameters sid Required session id.

Path {id} The role id to retrieve.

Output data RoleSettingsResource

PUT /Roles/{id}/Settings
Updates the settings for a single role in a session in its entirety. If a property is not specified, it will
revert to its original and default value.

Info Description
Authorization Required

Parameters sid Required session id.

Path {id} The role id to update.

Input data RoleSettingsResource

PATCH /Roles/{id}/Settings
Updates specified properties for the settings for a single role in a session. If a property is not specified,
it will not be changed.

Info Description
Authorization Required

Parameters sid Required session id.

Path {id} The role id to update.

Input data RoleSettingsResource

GET /Roles/{id}/Entities
Retrieves the entity security for a single role in a session.

Info Description
Authorization Required

Parameters sid Required session id.

Path {id} The role id to retrieve.

Output data RoleEntityResource

PUT /Roles/{id}/Entities
Updates the entity security for a single role in a session in its entirety. If a property is not specified, it
will revert to its original and default value.

Exago Technical Guide

221 Exago Inc.

Info Description
Authorization Required

Parameters sid Required session id.

Path {id} The role id to update.

Input data RoleEntityResource

PATCH /Roles/{id}/Entities
Updates specified properties for the entity security for a single role in a session. If a property is not
specified, it will not be changed.

Info Description
Authorization Required

Parameters sid Required session id.

Path {id} The role id to update.

Input data RoleEntityResource

GET /Roles/{id}/Folders
Retrieves the folder security for a single role in a session.

Info Description
Authorization Required

Parameters sid Required session id.

Path {id} The role id to retrieve.

Output data RoleFoldersResource

PUT /Roles/{id}/Folders
Updates the folder security for a single role in a session in its entirety. If a property is not specified, it
will revert to its original and default value.

Info Description
Authorization Required

Parameters sid Required session id.

Path {id} The role id to update.

Input data RoleFoldersResource

PATCH /Roles/{id}/Folders
Updates specified properties for the folder security for a single role in a session. If a property is not
specified, it will not be changed.

Info Description
Authorization Required

Exago Technical Guide

222 Exago Inc.

Parameters sid Required session id.

Path {id} The role id to update.

Input data RoleFoldersResource

GET /Roles/{id}/DataObjectRows
Retrieves the data object row security for a single role in a session.

Info Description
Authorization Required

Parameters sid Required session id.

Path {id} The role id to retrieve.

Output data RoleDataObjectRowResource

PUT /Roles/{id}/DataObjectRows
Updates the data object row security for a single role in a session in its entirety. If a property is not
specified, it will revert to its original and default value.

Info Description
Authorization Required

Parameters sid Required session id.

Path {id} The role id to update.

Input data RoleDataObjectRowResource

PATCH /Roles/{id}/DataObjectRows
Updates specified properties for the data object row security for a single role in a session. If a property
is not specified, it will not be changed.

Info Description
Authorization Required

Parameters sid Required session id.

Path {id} The role id to update.

Input data RoleDataObjectRowResource

Settings

GET /Settings
Retrieves the general settings of the configuration.

Info Description
Authorization

Optional Unauthorized access may only return a subset of
data.

Parameters sid Required session id.

Exago Technical Guide

223 Exago Inc.

Output data SettingsResource

PUT /Settings
Updates the general properties of the configuration in its entirety. If a property is not specified, it will
revert to its original and default value.

Info Description
Authorization Required

Parameters sid Required session id.

Input data SettingsResource

PATCH /Settings
Updates the general properties of the configuration. If a property is not specified, it will not be
changed.

Info Description
Authorization Required

Parameters sid Required session id.

Input data SettingsResource

Parameters

This resource provides access to all the parameters within the application.

GET /Parameters
Retrieves the parameters in a session.

Info Description
Authorization

Optional Unauthorized access may only return a

subset of data.
Parameters sid Required session id.

Output Data ParameterListItemResource A list of ParameterResource objects.

POST /Parameters
Creates a new parameter.

Info Description
Authorization Required

Parameters sid Required session id.

Input Data ParameterResource

GET /Parameters/{id}
Retrieves a single parameter in a session.

Exago Technical Guide

224 Exago Inc.

Info Description
Authorization

Optional Unauthorized access may only return a subset

of data.
Parameters sid Required session id.

Path {id} The parameter id to retrieve.

Output Data ParameterResource

PUT /Parameters/{id}
Update a single parameter in a session in its entirety. If a property is not specified, it will revert to its
original and default value.

Info Description
Authorization Required

Parameters sid Required session id.

Path {id} The parameter id to update.

Input Data ParameterResource

PATCH /Parameters/{id}
Update specified properties for single parameter in a session. If a property is not specified, it will not
be changed.

Info Description
Authorization Required

Parameters sid Required session id.

Path {id} The parameter id to update.

Input Data ParameterResource

DELETE /Parameters/{id}
Delete a single parameter in a session.

Info Description
Authorization Required

Parameters sid Required session id.

Path {id} The parameter id to delete.

Entities

This resource provides access to all the entities within the application.

GET /Entities
Retrieves the entities in a session.

Exago Technical Guide

225 Exago Inc.

Info Description
Authorization

Optional Unauthorized access may only return a

subset of data.
Parameters sid Required session id.

Output Data EntityListItemResource A list of EntityResource objects.

POST /Entities
Creates a new entity.

Info Description
Authorization Required

Parameters sid Required session id.

Input Data EntityResource

GET /Entities/{id}
Retrieves a single entity in a session.

Info Description
Authorization

Optional Unauthorized access may only return a subset of

data.
Parameters sid Required session id.

Path {id} The entity id to retrieve.

Output Data EntityResource

PUT /Entities/{id}
Updates a single entity in a session in its entirety. If a property is not specified, it will revert to its
original and default value.

Info Description
Authorization Required

Parameters sid Required session id.

Path {id} The entity id to update.

Input data EntityResource

PATCH /Entities/{id}
Updates specified properties for a single entity in a session. If a property is not specified, it will not be
changed.

Info Description
Authorization Required

Parameters sid Required session id.

Path {id} The entity id to update.

Input data EntityResource

Exago Technical Guide

226 Exago Inc.

DELETE /Entities/{id}
Delete a single entity in a session.

Info Description
Authorization Required

Parameters sid Required session id.

Path {id} The entity id to delete.

GET /Entities/{id}/Fields
Retrieves the fields for a single entity in a session.

Info Description
Authorization

Optional Unauthorized access may only return a

subset of data.
Parameters sid Required session id.

Path {id} The entity id to retrieve.

Output Data EntityFieldListItemResource A list of EntityFieldResource objects.

GET /Entities/{id}/Fields/{fid}
Retrieves a single field for a single entity in a session.

Info Description
Authorization

Optional Unauthorized access may only return a
subset of data.

Parameters sid Required session id.

Path {id} The entity id to retrieve.

 {fid} The field id to retrieve for the entity.

Output Data EntityFieldResource

PUT /Entities/{id}/Fields/{fid}
Updates a single field for a single entity in a session in its entirety. If a property is not specified, it will
revert to its original and default value.

Info Description
Authorization Required

Parameters sid Required session id.

Path {id} The entity id to retrieve.

 {fid} The field id to retrieve for the entity.

Input Data EntityFieldResource

PATCH /Entities/{id}/Fields/{fid}
Updates specified properties for a single field for a single entity in a session. If a property is not
specified, it will not be changed.

Exago Technical Guide

227 Exago Inc.

Info Description
Authorization Required

Parameters sid Required session id.

Path {id} The entity id to retrieve.

 {fid} The field id to retrieve for the entity.

Input Data EntityFieldResource

Functions

This resource provides access to all the functions within the application.

GET /Functions
Retrieves the functions in a session.

Info Description
Authorization

Optional Unauthorized access may only return a

subset of data.
Parameters sid Required session id.

 filter Optionally allows the user to filter by
types of functions. Accepted values:

 custom: only custom functions
Output Data FunctionListItemResource A list of FunctionResource objects.

POST /Functions
Creates a new function.

Info Description
Authorization Required

Parameters sid Required session id.

Input Data FunctionResource

GET /Functions/{id}
Retrieves a single function in a session.

Info Description
Authorization

Optional Unauthorized access may only return a subset of
data.

Parameters sid Required session id.

Path {id} The function id to retrieve.

Output Data FunctionResource

PUT /Functions/{id}

Exago Technical Guide

228 Exago Inc.

Updates a single function in a session in its entirety. If a property is not specified, it will revert to its
original and default value.

Info Description
Authorization Required

Parameters sid Required session id.

Path {id} The function id to update.

Input Data FunctionResource

PATCH /Functions/{id}
Updates specified properties for a single function in a session. If a property is not specified, it will not
be changed.

Info Description
Authorization Required

Parameters sid Required session id.

Path {id} The function id to update.

Input Data FunctionResource

DELETE /Functions/{id}
Delete a single function in a session.

Info Description
Authorization Required

Parameters sid Required session id.

Path {id} The function id to delete.

ServerEvents

GET /ServerEvents
Retrieves the server events in a session.

Info Description
Authorization

Optional Unauthorized access may only return

a subset of data.
Parameters sid Required session id.

 filter Optionally allows the user to filter by
types of server events. Accepted
values:

 custom: only custom server
events

Output Data ServerEventListItemResource A list of ServerEventResource
objects.

Exago Technical Guide

229 Exago Inc.

POST /ServerEvents
Creates a new server event.

Info Description
Authorization Required

Parameters sid Required session id.

Input Data ServerEventResource

GET /ServerEvents/{id}
Retrieves a single server event in a session.

Info Description
Authorization

Optional Unauthorized access may only return a subset

of data.
Parameters sid Required session id.

Path {id} The server event id to retrieve.

Output Data ServerEventResource

PUT /ServerEvents/{id}
Updates a single server event in a session in its entirety. If a property is not specified, it will revert to
its original and default value.

Info Description
Authorization Required

Parameters sid Required session id.

Path {id} The server event id to update.

Input Data ServerEventResource

PATCH /ServerEvents/{id}
Updates specified properties for a single server event in a session. If a property is not specified, it will
not be changed.

Info Description
Authorization Required

Parameters sid Required session id.

Path {id} The server event id to update.

Input Data ServerEventResource

DELETE /ServerEvents/{id}
Delete a single server event in a session.

Info Description
Authorization Required

Exago Technical Guide

230 Exago Inc.

Parameters sid Required session id.

Path {id} The server event id to delete.

Folders

POST /Folders/{id}
Creates a new folder.

Info Description
Authorization Required

Parameters sid Required session id.

Path {id} The folder id to create.

Output Data FolderResource

POST /Folders/{id}
Renames an existing folder.

Info Description
Authorization Required

Parameters sid Required session id.

Path {id} The folder id to rename.

Input Data FolderRenameResource

Output Data FolderResource

GET /Folders/{id}
Checks if a folder exists or not.

Info Description
Authorization Required

Parameters sid Required session id.

Path {id} The folder id to check.

Output Data FolderResource

DELETE /Folders/{id}
Deletes a folder.

Info Description
Authorization Required

Parameters sid Required session id.

Path {id} The folder id to delete.

Input Data FolderResource

Exago Technical Guide

231 Exago Inc.

Data Definitions

A: Authorized Only
W: Writable Property (Y: Yes, N: No, C: Create Only)
R: Required Property(Y: Yes, N: No, C: Create Only)

Sessions

SessionResource

Name Type A W R Default Description

Id String Y N - - The SID for this session

AppUrl String Y N - - The URL to access the Exago Application as
session.

Page String Y Y N ExagoHome The page to access within the Exago
Application.

Action String Y Y N Default The action to take when initially accessing the
application, one of:

 Default – The default action
 Home – Open the home page
 NewReport – Open the New Report

Wizard for a Standard Report
 NewCrossTabReport – Open the New

Report Wizard for a CrossTab Report
 NewDashboardReport – Open the

New Report Wizard for a Dashboard
Report

ShowTabs Boolean Y Y N true Whether tabs should be shown.

ShowErrorDetail Boolean Y Y N false Whether error details should be shown.

DataSources

DataSourceListItemResource

Name Type A W R Default Description

Id String Y N - - The ID for this data source

Name String Y N - - The name for this data source

DataSourceResource

Name Type A W R Default Description

Exago Technical Guide

232 Exago Inc.

Id String Y N - - The ID of the data source

Name String Y Y N The name of the data source

DbType String Y Y N Mssql The type of the data source, one of:
 MsSql
 MySql
 Postgres
 Oracle
 DB2
 Informix
 Assembly
 WebService

Connection String Y Y N The data source connection string

Schema String Y Y N The default data schema

Joins

JoinListItemResource

Name Type A W R Default Description

Id String Y N - - The ID for this join

JoinResource

Name Type A W R Default Description

Id String Y N - - The ID of the join

EntityFrom String Y C C The id of the from entity

EntityTo String Y C C The id of the to entity

JoinType String Y Y N Inner The type of join, one of:
 Inner
 LeftOuter
 RightOuter
 FullOuter

RelationshipType String Y Y N OneToOne The type of relationship, one of:
 OneToOne
 OneToMany

Weight Integer Y Y N 0 The weight of the join

Roles

RoleListItemResource

Exago Technical Guide

233 Exago Inc.

Name Type A W R Default Description

Id String Y N - - The ID for this role.

RoleResource

Name Type A W R Default Description

Id String Y C C - The ID for this role.

IsActive Boolean Y Y N false Whether this role is active,
NOTE. Only one role may be active at a time.

RoleSettingsResource

Name Type A W R Default Description

ReportPath String Y Y N - The report path

ReadFilterValues Boolean Y Y N - When true, filter values are read
from the database

DbTimeout Number Y Y N - Maximum number of seconds a
single query is allowed to run

ScheduleManagerViewLevel String Y Y N - One of:
 User
 Company
 All

LanguageFile String Y Y N - The language file string

ServerTimeZoneOffset Number Y Y N - Used to convert server time to client
time

DateFormat String N Y N - The date format string for this role

TimeFormat String N Y N - The time format string for this role

DateTimeFormat String N Y N - The datetime format string for this
role

SeparatorSymbol String N Y N - The character to use as a number
separator symbol

CurrencySymbol String N Y N - The character to use to represent
currencty

Decimal Symbol String N Y N - The character to use as a decimal
symbol

ShowGrid Boolean N Y N - When true, the default html option to
show grid will be true.

ShowCrossTabReports Boolean N Y N - When true, the crosstab designer is
accessible

ShowExpressReports Boolean N Y N - When true, the express report
designer is accessible

ShowExpressReportsGrouping Boolean N Y N - When true, express report grouping
is accessible

ShowExpressReportsFormulas Boolean N Y N - When true, express report formulas
are accessible

Exago Technical Guide

234 Exago Inc.

ShowExpressReportsStyling Boolean N Y N - When true, express report styling is
accessible

ShowExpressReportsThemes Boolean N Y N - When true, express report themes
are accessible

ShowStandardReports Boolean N Y N - When true, the standard report
designer is accessible

ShowScheduleReports Boolean N Y N - When true, scheduling reports is
accessible

ShowScheduleReportsManager Boolean N Y N - When true, the schedule report
manager is accessible

ShowScheduleReportsEmail Boolean N Y N - When true, emailing reports is
accessible

RoleEntityResourceCollection

Name Type A W R Default Description

IncludeAll Boolean Y Y N false When true, all entities except
specified in the Entities property are
included. When false, only the entities
specified in the Entities property are
included.

Entities List<RoleEntityResource> Y Y N The list of entities that are included or
excluded (depends on IncludeAll)

RoleEntityResource

Name Type A W R Default Description

Id String Y Y N The id of the entity this role is
controlling.

RoleFolderResourceCollection

Name Type A W R Default Description

IncludeAll Boolean Y Y N false When true, all folders except
specified in the Folders
property are included. When
false, only the folders specified
in the Folders property are
included.

ReadOnly Boolean Y Y N false When true, all folders except
specified as readonly in the
Folders property are read only.
When false, only the folders
specified in the Folders
property as readonly are read

Exago Technical Guide

235 Exago Inc.

only.

AllowManagement Boolean Y Y N false When true, folder management
is allowed

Folders List<RoleFolderResource> Y Y N The list of folders that are
included or excluded (depends
on IncludeAll)

RoleFolderResource

Name Type A W R Default Description

Id String Y Y N The id of the folder

ReadOnly Boolean Y Y N false When true, this folder is read only

Propogate Boolean Y Y N false When true, the readonly property is
propogated to the children of this folder.

RoleDataObjectRowResourceCollection

Name Type A W R Default Description

DataObjectRows List<RoleDataObjectRowResource> Y Y N The data object rows
included.

RoleDataObjectRowResource

Name Type A W R Default Description

Id String Y Y N The id of the data object

Filter String Y Y N The filter string

Settings

SettingsResource

Name Type A W R Default Description

ReportPath String Y Y N The report path

ReadFilterValues Boolean Y Y N When true, filter values are read from
the database

DbTimeout Number Y Y N Maximum number of seconds a single
query is allowed to run

ScheduleManagerViewLevel String Y Y N All One of:
 User
 Company
 All

LanguageFile String Y Y N The language file string

Exago Technical Guide

236 Exago Inc.

ServerTimeZoneOffset Number Y Y N Used to convert server time to client
time

DateFormat String N Y N The date format string

TimeFormat String N Y N The time format string

DateTimeFormat String N Y N The datetime format string

SeparatorSymbol String N Y N , The character to use as a number
separator symbol

CurrencySymbol String N Y N $ The character to use to represent
currencty

DecimalSymbol String N Y N . The character to use as a decimal
symbol

ShowGrid Boolean N Y N When true, the default html option to
show grid will be true.

ShowCrossTabReports Boolean N Y N When true, the crosstab designer is
accessible

ShowExpressReports Boolean N Y N When true, the express report
designer is accessible

ShowExpressReportsGrouping Boolean N Y N When true, express report grouping
is accessible

ShowExpressReportsFormulas Boolean N Y N When true, express report formulas
are accessible

ShowExpressReportsStyling Boolean N Y N When true, express report styling is
accessible

ShowExpressReportsThemes Boolean N Y N When true, express report themes
are accessible

ShowStandardReports Boolean N Y N When true, the standard report
designer is accessible

ShowScheduleReports Boolean N Y N When true, scheduling reports is
accessible

ShowScheduleReportsManager Boolean N Y N When true, the schedule report
manager is accessible

ShowScheduleReportsEmail Boolean N Y N When true, emailing reports is
accessible

Parameters

ParameterListItemResource

Name Type A W R Default Description

Id String N N - - The ID for this parameter

ParameterResource

Name Type A W R Default Description

IsHidden Boolean Y Y N true Whether this parameter is hidden to

Exago Technical Guide

237 Exago Inc.

the user

Id String N C C - The ID for this parameter

DataType String N Y N String The data type of the parameter, one
of:

 String
 Date
 Integer
 Decimal

Value String N Y N “” The value of the parameter

PromptText String N Y N “” The text to prompt the user for the
value.

Entities

EntityListItemResource

Name Type A W R Default Description

Id String N N - - The ID for this entity

Name String N N - - The name of this entity

EntityResource

Name Type A W R Default Description

Id String N C C - The ID for this entity

Name String N Y Y - The name of this entity

DataSourceId Integer Y Y Y - The DataSource Resource ID this
entity gets its data from

DataType String Y Y N Table The type of data this entity is, one
of:

 Assembly
 File
 Function
 Procedure
 SqlStmt
 Table
 View
 WebSvc

DataName String Y Y Y - The name of the data object for this
entity

EntityFieldListItemResource

Name Type A W R Default Description

Exago Technical Guide

238 Exago Inc.

Id String N N - - The ID for this entity field

Name String N N - - The name of this entity field

EntityFieldResource

Name Type A W R Default Description

Id String N N - - The ID for this entity field

Name String N Y Y - The name of this entity field

Type String N Y N <actual
data
type>

The type of data this entity field is,
one of:

 String
 Date
 DateTime
 Time
 Int
 Decimal
 Float
 Bit
 Guid
 Image

IsFilterable Boolean N Y N true When true, this field is filterable

IsVisible Boolean Y Y N true When true, this field is visible to
users

Functions

FunctionListItemResource

Name Type A W R Default Description

Id String N N - - The ID for this function

FunctionResource

Name Type A W R Default Description

Id String N C C - The ID for this function

Description String N Y N The description for the function
(only writeable if custom function)

MinArgs Integer N Y N 1 The minimum number of arguments
for this function (only writeable if
custom function)

MaxArgs Integer N Y N 1 The maximum number of arguments
for this function (only writeable if
custom function)

Exago Technical Guide

239 Exago Inc.

IsCustom Boolean Y N - - Whether this function is a custom
function or a built-in function

Language String Y Y N CSharp The language the custom function is
written in, one of:

 CSharp
 JavaScript
 VisualBasic

Namespaces Array of String Y Y N The namespaces to include for this
function

References Array of String Y Y N The references to include for this
function

ProgramCode String Y Y N The program code for this function

ServerEvents

ServerEventListItemResource

Name Type A W R Default Description

Id String N N - - The ID for this server event

Name String N N - - The name for this server event

ServerEventResource

Name Type A W R Default Description

Id String N C C - The ID for this server event

Name String N Y N The name for this server event

Code String Y Y N The program code for this function

Language String Y Y N CSharp The language the custom function is
written in, one of:

 CSharp
 JavaScript
 VisualBasic

Namespaces Array of String Y Y N The namespaces to include for this
function

References Array of String Y Y N The references to include for this
function

Folders

FolderResource

Name Type A W R Default Description

Exago Technical Guide

240 Exago Inc.

Id String Y Y Y - The ID for this folder

Name String Y Y Y The name for this folder

Exists String Y Y Y The status for this folder

FolderRenameResource

Name Type A W R Default Description

BasePath String Y Y Y - The path for this folder

OldName String Y Y Y The old name for this folder

NewName String Y Y Y The new name for this folder

Return Codes

For any request the below return codes are defined. Each resource may define more return codes as
well as better define the return codes provided here.

Status Code Description
200 The request was completed successfully. The document in the entire-body, if

any, is a representation of some resource.
201 The request was completed successfully. A new resource has been created at the

URL specified in the Location header of the response.
204 The request was completed successfully. There is no content in the body.
400 The request was bad on the client side. The document in the entire-body, if any,

is error data describing the problem.
401 The request wasn’t authorized to access the resource. The document in the

entire body, if any, is error data describing the problem.
404 The requested resource was not found. The document in the entire body, if any,

is error data describing the problem.
409 The request caused a conflict amongst two resources. The document in the

entire body, if any, is error data describing the problem.
500 There was a problem on the server side. The document in the entire-body, if

any, is error data describing the problem.

Error Data

All codes 4xx and 5xx will have a log entry in the WebReports log. When possible, the document body
returned with the status takes the following representation:

Name Type Description

Code String A string token indicating the reason for the error, for
programmatic consumption.

Message String A more verbose text describing the error, for developer
consumption.

UserMessageId String The language id to display to the user as the error, for user
consumption.

Exago Technical Guide

241 Exago Inc.

StackTrace String The server-side stack trace if one exists

Error Codes

Code Description

Unknown Unknown error

UnAuthorized UnAuthorized access was attempted

ResourceNotFound Resrouce was not found at the specified URL

ResourceConflict Resource conflicts with an already existing resource

MissingResource Request must contain a resource

MissingResourceId Request must contain a resource with a user supplied ID to identify location
of resource

InvalidResourceId Request must contain a resource with a valid ID to identify location of
resource

InvalidState Request contains a resource in an invalid state

Exago Technical Guide

242 Exago Inc.

Troubleshooting

The following chapter details techniques for troubleshooting issues that may arise when using Exago.

See Full Error Details

When an error occurs in Exago, a generic error message is displayed.

This generic message is meant to prevent end users from seeing the full stack trace of the error.

There are two ways to see detailed error messages.

1. If you are accessing Exago directly in a browser:

a. Append ‘?showerrordetail=true’ to the url. Ex.
…/Exagohome.aspx?showerrordetail=true

b. Refresh the page and recreate the error.

2. If you are accessing Exago through the Api:

a. Using the .Net Api call the method GetUrlParamString and set showErrorDetail to True.
-OR-
Using the Web Service Api call the method GetUrlParamString2 and set
showErrorDetail to True.

b. Enter Exago through the Api and recreate the error.

NOTE. The status code on the generic error message corresponds to standard html error codes.
For example if the status code is 408 it means there was a request timeout. For status code
200 the html completed successfully and the error lies elsewhere.

If you would like more details after seeing the full error message please see the section Read the Log
File.

Read the Log File

Exago keeps a text log of when certain tasks are performed. For example each time a page or report is
loaded, each time an error occurs or when various phases of execution happen.

To access the Log file:

1. Set “Write Log File” to True in Other Settings of the Administration Console.

Exago Technical Guide

243 Exago Inc.

2. Recreate the error you are investigating.

3. Navigate to the folder specified in the Temp Path of Main Settings. If this is blank go to
<webapp_dir>/Temp.

4. Open the file WebReportsLog.txt. Scroll to the bottom of the log for the most recent activity.

NOTE. Occasionally IIS may lock this file and prevent the log from being written. To correct this
reset, IIS, delete the file WebReportsLog.txt and repeat steps 2-4.

NOTE. If ‘Enable Remote Report Execution’ is set to True in the Scheduler Settings the report
execution will be recorded in the Scheduler Log.

Scheduler Log

Similar to the main application the Exago Scheduler Service maintains a log file. Considering the
Scheduler can reside on a different machine than the main application the log file is written where the
Scheduler is installed.

To access the Scheduler Log file:

 Set <logging> to True in the file <scheduler_dir>\Config\ ExagoScheduler.xml

 Rerun the scheduled report you are investigating.

 Open the file <scheduler_dir>\ExagoScheduler.log. Scroll to the bottom of the log for the most
recent activ ity.

Web Service Log

Similar to the main applicat ion Exago Web Service maintains a log file. Considering the Web Service
can reside on a different machine than the main application the log file is written where the Web
Service is installed.

To access the Api Log file:

 Set <writelog> to True in the file <websvc_dir>\Config\ WebReportsApi.xml

 Rerun the project that makes the Api calls you are investigating.

 Open the file <websvc_dir>\Config\ WebReportsApiLog.txt. Scroll to the bottom of the log for
the most recent activity.

Check the Version, Connections & Permissions

This section will detail a few useful things to check when troubleshooting an issue within Exago.

Exago Technical Guide

244 Exago Inc.

Verifying Folder Permissions

A common issue when installing or updating Exago is to not set read/write permissions on various
folders the application uses. For these folders the user accessing them via the IIS app pool must have
read write permissions. For the default app pool this is the IIS user (‘iis_iusrs’ for Windows 7, Vista &
2008, ‘aspnet’ for Windows XP or Server 2003). The folders that require read/write permissions are
listed below.

 <webapp_dir>/Config – this folder contains the configuration settings loaded and modified
by the Admin Console.

 <webapp_dir>/Temp – this folder is used to store some temporary files.

 The folder specified in the Report Path of the Main Settings.

 The folder specified in the Temp Path of the Main Settings.

Verifying Administration Settings

Some settings in the Administration Console are used to connect to other programs such as
databases, Web Services, .Net Assemblies or the External Interface module. Each of these items will

have a green check button () to verify they are connecting correctly.

The following settings can be checked:

 The Data Source(s) being utilized by the report you are investigating.

 The ‘Schedule Remoting Host’ and ‘Remote Execution Remoting Host’ in Scheduler Settings.

 The ‘External Interface’ in Other Settings.

Exago Technical Guide

245 Exago Inc.

Verifying Versions

When updating Exago occasionally issues arise because the Scheduler Service or Web Service Api have
not also been updated. For the Scheduler and Web Service Api to function properly they must be
running the same version and build as the Exago application.

NOTE. When using the .Net Api you will need to copy the dlls from the updated Exago
application to the bin directory of your host application.

To check the version of Exago:

 Navigate to the home page (default exaghome.aspx).

 Press Ctrl + Shift + V

To check the version of Scheduling Service:

 Locate the file <scheduler_dir>/eWebReportsScheduler.exe.

 Right click on this file and select ‘Properties’

 Navigate to the ‘Details’ tab.

Exago Technical Guide

246 Exago Inc.

To check the version of Web Service Api:

 Locate the file <websvc_dir>/bin/ WebReportsApi.dll.

 Right click on this file and select ‘Properties’

 Navigate to the ‘Details’ tab.

Exago Technical Guide

247 Exago Inc.

Submitting a Debug Package

If the “Debug Password” is set in Other Settings of the Administration Console, a client will have the
ability to submit Debug Packages automatically to Exago, Inc. via the internet. The client will need to
select the report that they are having a problem with and press Ctrl+Shift+X. This keystroke will bring
up the Debug Package submission window. The user will then be required to enter the “Debug
Password”, Company Name, and a description of the problem they are experiencing.

NOTE. The Debug Package consists of the same files that are created via “Enable Debugging,”
which is also located in Other Settings of the Administration Console. These files are
encrypted, and then sent to a Web Service that resides at the Exago Support site.

To send a Debug Package to Exago Support:

1. From the Main Menu, select the problematic report.

2. Press Ctrl+Shift+X.

3. In the Submit Debug Package window, enter the debug extraction password (this is set in
Other Settings), company name, and a description of the problem.

4. Click the ‘Ok’ button.

5. Fill in any information for Parameters or Filters if they are set for the report.

6. A success/failure message will display when the process finishes.

If submitting a debug package fails see Manually Creating a Debug Package.

Exago Technical Guide

248 Exago Inc.

Manually Creating a Debug Package

If submitting a debug package fails then you can set ‘Enable Debugging’ to True in the Other
Settings of Administration Console to manually create the files needed for debugging. These files can
be zipped and emailed to support@exagoinc.com.

NOTE. Before creating a Debug Package verify that ‘Enable Remote Report Execution’ in
Scheduler Settings is set to False.

To manually create a Debug Package:

1. Create the folder Debug where Exago is installed. Make sure this folder has the same read/write
permissions as the Report and Temp Folders.

2. Set ‘Enable Debugging’ in Other Settings to True.

3. Execute the problematic report. A copy of the report, the configuration settings and a data set will
be created in ‘.\Debug’.

4. Zip these three files together and email them to support@exagoinc.com.

mailto:support@exagoinc.com
file:///C:/Users/Ayleesa/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/01Y595WI/support@exagoinc.com

Exago Technical Guide

249 Exago Inc.

Exago, Inc.
Two Enterprise Drive
Shelton, CT 06484 USA
203.225.0876
http://www.exagoinc.com

http://www.exagoinc.com/

	Table of Contents
	Technical Overview
	Architecture

	Installation
	System Requirements
	Web Application Installation
	Installing the Web Application
	Configuring Exago

	Web Service Installation
	Installing the Web Services API
	Configuring Web Services API

	Scheduler Service Installation
	Installing the Scheduler Service
	Configuring Scheduler Services

	Installing Exago on Linux
	Installation Manifest

	Administration Console
	About
	Important Security Notes:
	Creating Additional Configuration Files

	Accessing the Administration Console
	Navigation
	Main Menu
	Tabs
	Supported Browsers

	Data
	Data Sources
	Data Source Drivers
	Web Services and .NET Assemblies
	Excel and XML Files
	OLAP and MDX Queries
	ODBC Drivers

	Parameters
	Data Objects
	Stored Procedures
	Table Value Functions
	Custom SQL Objects
	Data Object Macros

	Column Metadata
	Retrieving Data Object Schemas
	Data Object Ids
	Adding Multiple Data Objects with the Same Name
	Avoiding Issues from Changes to Object Names
	Calling a Single Web Service/.Net Assembly/Stored Procedure

	Reading Images from a Database

	Joins
	Modifying Joins
	Note About Cross Source Joins

	Automatic Database Discovery

	General
	Main Settings
	Culture Settings
	Features/UI Settings
	Available Report Types
	Express Report Designer Settings
	Standard Report Designer Settings
	Dashboard Report Designer Settings
	Common Settings

	Programmable Object Settings
	Filter Settings
	Database Settings
	Type-Specific Database Settings

	Scheduler Settings
	User Settings
	Other

	Roles
	About Roles
	Creating Roles
	Main Settings
	General Settings
	Folder Access
	Object Access
	Filters Access

	Extensions
	Functions
	Creating Functions
	Exago Session Info
	Calling Exago Functions
	Example

	Filter Functions
	Creating Filter Functions
	Example

	Server Events
	Event Handlers
	Custom Code
	.Net Assemblies
	Setting Event Handlers on Specific Reports
	Displaying User Messages from Server Events
	Quick List of Events
	Full Description of Events

	Action Events
	Event Handlers
	Custom Code
	.Net Assemblies
	Writing Action Events
	Local Action Events
	Creating Global Events

	Custom Options
	About Option
	Creating Options
	Setting Options
	Accessing Options

	Integration
	About
	Styling
	Styling Exago’ Surroundings
	Exago Control Properties

	Changing CSS
	Changing Icon Images
	Hovering Images
	Finding Image Ids

	Styling the Administration Console

	Multi-Language Support
	Translating Exago
	Modifying Select Language Elements
	Text of Prompting Filters and Parameters on Dashboards

	Customizing Getting Started Content
	Creating Additional Custom Tabs
	Available JavaScript Functions

	Themes: Charts, Crosstabs, Express Reports & Maps
	Chart Themes
	Crosstab Themes
	Express Report Themes
	Map Themes

	Using Exago within a WinForm
	Cloud Environment Integration
	Azure Cloud Support
	Configuration File Storage
	Report Storage
	Temp Cloud service

	.Net Assembly/Web Service Cloud Support
	Example

	Multi-Tenant Environment Integration
	Column Based Tenancy
	Schema Based Tenancy
	Database Based Tenancy
	Custom SQL Based Tenancy

	Manual Application Installation
	Exago and Exago Web Service Api Installer Integration
	Summary
	Directory Structure
	File Installation
	IIS Configuration
	IIS Version 5.0-6.0
	IIS Version 7+

	Exago Scheduler Installer Integration
	Summary
	File Installation
	Directory Security Settings
	Windows Service Creation

	Optional Setup Information
	Creating a Registry
	Values in a Registry
	Example of Registry

	Extensibility
	Load Balancing Execution
	Multiple Data Models
	Example

	External Interface
	Report Execution Start Event
	User Preference Management
	Handling Time Zones
	Email List for Report Scheduling
	Custom Scheduler Recipient Window
	Scheduler Repository Notification

	Custom Scheduler Recipient Window
	Custom Filter Execution Window
	Available JavaScript Functions
	Example Custom Filter Execution Control
	Example Custom Filter Execution WebPage

	Saving Scheduled Reports to External Repository
	Custom Context Sensitive Help
	Report Templates Setup
	PDF Templates
	Check Boxes in PDF Templates.

	RTF Templates
	Dynamic content with RTF Templates

	Excel Templates
	Referencing Data in Excel Templates

	Report and Folder Storage/Management
	User Defined Fields
	List of Methods
	Accessing SessionInfo in Folder Management

	Application Logging
	Logging Defaults
	Custom Logging

	Exago API
	About
	.NET API
	Quick List of Name Spaces and Classes
	WebReports.Api
	Api Class

	WebReports.Api.Data
	DataSource Class
	DataSourceCollection Class

	WebReports.Api.Common
	ReportObjectFactory Class
	ReportObject Class

	WebReports.Api.Composite.Dashboards
	DashboardReport Class
	ReportItem Class

	WebReports.Api.Reports
	Filter Class
	Report Class
	ReportFilterCollection Class
	ReportSortCollection Class
	Sort Class

	WebReports.Api.Roles
	DataObject Class
	DataObjectCollection Class
	DataObjectRow Class
	DataObjectRowCollection Class
	Folder Class
	FolderCollection Class
	General Class
	Parameter Class
	ParameterCollection Class
	Role Class
	RoleCollection Class
	Security Class

	WebReports.Api.Scheduler
	ReportScheduler Class
	SchedulerEmailInfo Class

	Other Notes
	Using MySQL through the .NET Api

	Examples

	Web Service API
	Quick List of Web Service Methods
	Full Description of Web Service Methods
	Main Methods
	Data Methods
	Folder Methods
	Parameter Methods
	ReportObject Methods
	Dashboard Methods
	Report Methods
	Role Methods
	Scheduler Methods
	Examples C#
	Examples PHP

	REST API
	Authorization
	List of Resources
	Sessions
	DataSources
	Joins
	Roles
	Settings
	Parameters
	Entities
	Functions
	ServerEvents
	Folders

	Data Definitions
	Sessions
	SessionResource

	DataSources
	DataSourceListItemResource
	DataSourceResource

	Joins
	JoinListItemResource
	JoinResource

	Roles
	RoleListItemResource
	RoleResource
	RoleSettingsResource
	RoleEntityResourceCollection
	RoleEntityResource
	RoleFolderResourceCollection

	RoleFolderResource
	RoleDataObjectRowResourceCollection
	RoleDataObjectRowResource

	Settings
	SettingsResource

	Parameters
	ParameterListItemResource
	ParameterResource

	Entities
	EntityListItemResource
	EntityResource
	EntityFieldListItemResource
	EntityFieldResource

	Functions
	FunctionListItemResource
	FunctionResource

	ServerEvents
	ServerEventListItemResource
	ServerEventResource

	Folders
	FolderResource
	FolderRenameResource

	Return Codes
	Error Data
	Error Codes

	Troubleshooting
	See Full Error Details
	Read the Log File
	Scheduler Log
	Web Service Log

	Check the Version, Connections & Permissions
	Verifying Folder Permissions
	Verifying Administration Settings
	Verifying Versions

	Submitting a Debug Package
	Manually Creating a Debug Package

